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1 Introduction

In models with rigid supersymmetry, R-symmetry is intimately tied to questions of su-

persymmetry breaking. The theorem of Nelson and Seiberg [1] asserts that a calculable

(and generic) supersymmetric theory exhibits supersymmetry breaking only if it possesses

an R-symmetry, and that a generic calculable theory with broken R-symmetry breaks

supersymmetry. Metastable breaking, one expects, will usually require an approximate

R-symmetry [2].

In a supersymmetric and R-symmetric theory, one is not allowed to add an arbitrary

constant to the superpotential. It can only be generated dynamically in the IR upon

R-symmetry breaking. Thus, in R-symmetric theories, a candidate order parameter for

R-symmetry breaking is the superpotential itself. As we will see, in R symmetric theories,

〈W 〉 is indeed a good order parameter, as it is directly measurable in low energy scattering

experiments. It is therefore natural to ask what is the relation of the superpotential VEV

to other order parameters in the problem, such as the R-axion decay constant and the

vacuum energy (which is related to the Goldstino decay constant). Understanding 〈W 〉
could elucidate the connection between R-symmetry breaking and SUSY breaking [1].

An additional circumstance in which 〈W 〉 takes on physical significance is in coupling

a theory to supergravity. There, 〈W 〉 plays an important role in accommodating a small

cosmological constant, and is directly related to the value of the gravitino mass and the

mass of any would-be R-axion.

– 1 –



J
H
E
P
0
3
(
2
0
1
0
)
0
1
1

The simplest model one might consider is a free theory of a single chiral superfield Z

with R(Z) = 2

W = fZ , K = Z†Z . (1.1)

Both the boson and the fermion in Z are massless, and there is a moduli space of SUSY-

breaking vacua parameterized by the expectation value of the bottom component of Z,

〈z〉. Writing z = |z|e2ia, we see that the R-axion decay constant1 is fa = 2|〈z〉| while

〈W 〉 = f〈z〉 and the vacuum energy density is |f |2. So,

|〈W 〉| =
1

2
faF , (1.2)

where F is the Goldstino decay constant, given by the vacuum energy F 2 = |f |2.
This trivial model is illuminating. In this paper, we will prove an inequality, which

holds in any theory with broken supersymmetry and broken R-symmetry:

|〈W 〉| ≤ 1

2
faF . (1.3)

We will also argue that interacting theories always lead to a strict inequality

|〈W 〉| < 1

2
faF . (1.4)

We will prove the result in a sequence of situations. First, in section 2, we will consider

general O’Raifeataigh-like models, at tree-level. Here the proof is quite simple. We will

illustrate the theorem with models that saturate the bound at tree-level, and which do not,

and understand the distinction. We will also consider renormalizable theories with gauge

interactions, for whichD-terms may be non-zero, and show that the inequality remains true.

In section 3, we consider linear sigma models, i.e. theories with chiral fields and a

general Kähler potential and superpotential. At the level of two derivative terms in the

effective action, the theorem is readily proven for these theories as well. However, for

a class of theories which saturate the bound, it is necessary to look at higher orders in

the derivative expansion. In this case, the proof of the theorem invokes considerations of

unitarity along the lines of [3].

In section 4 we address the most general case, which need not be a calculable theory.

To this end we use the machinery of non-linear effective Lagrangians, developed recently

in [4]. After reviewing the necessary background, we show that the desired inequality trans-

lates into an inequality between various parameters in the effective non-linear Lagrangian.

Along with standard manipulations in such effective theories, we use the consistency condi-

tions for effective field theories discussed in [3] to prove that non-trivial interacting theories

always satisfy (1.4).

A number of technical details are covered in an appendix.

1We define the R-axion decay constant, fa, as the coefficient of the kinetic term of the axion

−f
2

a (∂a)2 .

.
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2 The bound in (gauged) O’Raifeartaigh-like models

In this section we will prove the bound in theories with canonical Kähler potential where

both SUSY and the R-symmetry are broken. We will start our analysis from the case

of O’Raifeartaigh-like models. We then briefly comment on the extension to models with

gauge fields.

The general model with canonical Kähler potential and no gauge interactions takes

the form

L =

∫
d2θd2θ

∑

i

ΦiΦi +

∫
d2θW (Φi) + c.c. . (2.1)

The chiral fields Φi have charge qi under the R-symmetry. By assumption W (Φi) is a

holomorphic function of the Φi of R-charge 2. Before proving our inequality in these models,

we would like to outline rather general features that are helpful to develop some intuition.

Let us consider theories of the form (2.1) that have a SUSY-breaking and R-symmetry

breaking vacuum at some point φ
(0)
i , where φi is the bottom component of Φi. The spec-

trum therefore comprises a massless Goldstino and a massless R-axion. As discussed in [5],

classically, there is always a complex massless boson (in fact a whole flat direction) gener-

ated by the transformation

φ
(0)
i → φ

(0)
i + α

(
∂W

∂φi

)∗

, (2.2)

for any complex α. A simple way to remember this massless direction is as the bosonic

superpartner of the Goldstino [6].

One can distinguish two cases:

• If the R-symmetry is broken everywhere on the pseudomoduli space (2.2), the Gold-

stino superpartner is linearly independent of the R-axion [6]. As a consequence,

generically, the pseudomoduli space is three real dimensional.

• If somewhere on the pseudomoduli space (2.2) the R-symmetry is restored then often

these are the only two real flat directions. The R-axion is embedded into this complex

flat direction as some phase coordinate around the R-restoring point.

We will see that the first case satisfies the inequality |〈W 〉| < 1
2faF while, as in the second

case, if the R-axion direction is embedded in (2.2) we get |〈W 〉| = 1
2faF .

2.1 Proof of the bound for O’Raifeartaigh-like models

Since, by assumption, W (Φi) is a holomorphic function of the Φi of R-charge 2 we have

the following identity (qi stands for the R-charge of Φi)

2W (Φi) =
∑

j

qjΦj
∂W (Φi)

∂Φj
. (2.3)
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We now consider the bottom component of (2.3) and define two complex vectors wi = qiφi

and F †
i = ∂W

∂φi
. The Goldstino decay constant F is given by2

F 2 =
∑

j

F †
j Fj = 〈∇W,∇W〉 . (2.4)

The scalar fields are parameterized by the R-axion a as φi = |φi|eiqia. The kinetic part

of the Lagrangian for a is:

− ∂µa∂
µa
∑

i

q2i |φi|2 (2.5)

from which we read the R-axion decay constant f2
a =

∑
i q

2
i |φ

(0)
i |2 = 〈w,w〉.

We use the Cauchy-Schwarz inequality in (2.3) and obtain

4|W |2 = |〈F,w〉|2 ≤ 〈w,w〉〈∇W,∇W〉. (2.6)

This can be rewritten as 2|〈W 〉| ≤ faF , establishing the bound.

An immediate corollary is that we can classify the models which saturate the bound.

R-symmetry transformations are generated by

φ
(0)
i → φ

(0)
i + iǫqiφ

(0)
i . (2.7)

From (2.6) we see that the bound is saturated if and only if the vector wi = qiφ
(0)
i is

proportional to Fi = W ∗
i . This means that the R-symmetry transformation (2.7) is part of

the canonical pseudomodulus space (2.2). Theories in which the canonical pseudomoduli

space (2.2) does not contain an R-symmetric point cannot saturate the bound.

2.2 Examples

As a first example consider the original O’Raifeartaigh model [7] with superpotential

W = X

(
λ

2
A2 − f

)
−mY A . (2.8)

whereX and Y have R-charge 2 while A is neutral. This model is generic under the assump-

tion of an extra Z2 symmetry changing the sign of A and Y . For m2 ≥ λf the lowest lying

pseudomodulus space of vacua is given by Y = A = 0. The only field with a nonzero F -term

is X and F †
X = f . On this branchWeff = −fX. TheR-axion is embedded in the phase of X

with fa = 2|X|. Then faF = 2|X||f | = 2|W | and the bound is saturated. The story for the

other branch (which is stable form2 ≤ λf) of the O’Raifeartaigh model (2.8) is very similar.

A model where the R-symmetry is broken everywhere on the pseudomoduli space was

given in [8]; this class of models was considered in more generality in [6] and [9]. As an

example consider the following superpotential:

W = X
(
γφ2/3φ−2/3 − µ2

)
+
δ

3
φ2

2/3χ2/3 +m1φ2/3Y4/3 +m2φ−2/3Z8/3 + λχ3
2/3 . (2.9)

2The inner product 〈, 〉 is the standard (Hermitian) Euclidian inner product.

– 4 –



J
H
E
P
0
3
(
2
0
1
0
)
0
1
1

The subscripts are the R-charges of the various fields. X has R-charge 2. This superpoten-

tial is the most general compatible with a Z2 symmetry under which all fields but X and

χ2/3 are odd. When σ, defined by µ2 = m1m2

γ (1 + σ2γ2), is real there is a stable branch of

the pseudomoduli space where the R-symmetry is everywhere broken:

φ 2

3

= m2σe
iθ , φ− 2

3

= m1σe
−iθ , χ 2

3

= im2
1

3

√
δ

λ
σeiθ , (2.10)

while the fields with nonzero F -terms are related by:

Z 8

3

= −γσXeiθ , Y 4

3

= Z 8

3

e−2iθ − 2m2
2δ

3

2

3m1λ
1

2

σe2iθ . (2.11)

We see that the pseudomoduli space is three real dimensional, in accord with the fact that

the R-symmetry is nowhere restored.

On this branch the total vacuum energy (and hence the Goldstino decay constant) is

F 2 =
m2

1m
2
2

γ2

(
1 + 2σ2γ2

)
≤ µ4 . (2.12)

The R-axion is proportional to θ(x). It can checked explicitly that 2|W | < faF everywhere

on the pseudomoduli space for σ 6= 0. For σ = 0 the R-symmetry is restored at X = 0 and

the bound is saturated. The resulting expressions are cumbersome in general, therefore,

we just quote the result at leading order for large |X|

f2
aF

2 − 4|W |2 =
8

9
m2

1m
2
2σ

2(1 + 2γ2σ2)|X|2 +O
(
X0
)
≥ 0 . (2.13)

2.3 Adding D-terms

The discussion above is readily generalized to include possible D-terms. Indeed, we can

repeat the discussion around eqs. (2.3) and (2.5). The only change is that the Goldstino

decay constant, F , receives additional contributions,

F 2 =
∑

i

∣∣∣∣
∂W

∂φi

∣∣∣∣
2

+
∑

a

D2
a . (2.14)

So F 2 > 〈∇W,∇W〉, strengthening the bound.

3 The bound in sigma models

In this section, we show that the bound is satisfied for theories described by arbitrary

superpotential and Kähler potential (consistent with an R-symmetry)

K(φi, φj) , W (φi) . (3.1)

Let us denote for simplicity

Mlm =
∂2K

∂φl∂φm

. (3.2)
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The matrix g = M + M† is Hermitian. It is also positive definite around the configura-

tions in field space we are interested in, since otherwise there are ghosts. Therefore, we

can decompose

g = LL† , g−1 = (L†)−1L−1 . (3.3)

Even when the Kähler potential is non-canonical, (2.3) still holds and we can rewrite (by

inserting the identity matrix3)

2W =
∑

i

qiφi
∂W

∂φi
=
∑

i,j,k

qiφiLijL
−1
jk

∂W

∂φk
. (3.4)

It is useful to define the two vectors wj =
∑

i qiφiLij, v
†
j =

∑
k L

−1
jk

∂W
∂φk

. The Goldstino

decay constant, F , is related to the vacuum energy which is just F 2 = 〈v,v〉, while the

R-axion decay constant can be read off the kinetic terms of the sigma model (3.1). The

kinetic terms contain the matrix g and therefore the decay constant satisfies f2
a = 〈w,w〉.

Using the Cauchy-Schwarz inequality again we get

4|W |2 = |〈v,w〉|2 ≤ 〈w,w〉〈v,v〉 = f2
aF

2 , (3.5)

or in other words

2|W | ≤ faF , (3.6)

which confirms the bound we claim.

3.1 An overture to beyond the sigma model

While very suggestive, however, the tree-level argument in the general sigma model does

not prove the theorem in complete generality. There are two limitations. First, while many

models of dynamical supersymmetry breaking (in particular models where SUSY is broken

at tree-level) permit a low energy description of SUSY breaking in terms of a field theory

with linearly realized supersymmetry, there are many models which do not. Perhaps the

most well known examples are the SU(5) and SO(10) models of [10, 11]. Secondly, we have

only considered tree-level sigma models, forbidding derivative corrections in the Kähler

potential and (not dissimilar) radiative corrections.

To show that derivative corrections in the Kähler potential may play a decisive role,

consider the following tree-level theory of a single chiral superfield Z with R-charge 2

K = K(ZZ†) , W = fZ . (3.7)

Such models arise as an effective description of theories with a characteristic mass scale

M and a parameterically small SUSY breaking scale |f | ≪ M2. This separation of scales

guarantees that one should be able to describe the theory at low energies in terms of an

effective action with linearly realized supersymmetry.

Repeating our analysis above in this simple case, one sees that the bound is saturated

(since the R-symmetry breaking must occur, if at all, in the same direction as SUSY

3Note that the index j takes values in both barred and unbarred indices, while i,k only take values in

the unbarred indices. We hope our attempt not to clutter the notation will not cause a confusion.
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breaking). The description (3.7) is a valid effective description up to two derivatives. But

generically, there are also higher derivative corrections.

At the level of terms with two derivatives in superspace, the effective action may

include various contributions. Let us study, for example, the term

−
∫
d4θ

ǫ

M4
Z†Z∂µZ

†∂µZ . (3.8)

This term changes fa without affecting the Goldstino decay constant. Indeed since it has

explicit derivatives it has no effect on the vacuum energy, but it does change the normal-

ization of the kinetic term for z. In addition, this term does not change the superpotential

VEV 〈W 〉.4
Since the original theory (3.7) always saturates the bound, a negative sign for ǫ would

seem to contradict the inequality: the change in fa in the presence of (3.8) is such that fa

decreases if ǫ is negative. Therefore, some principle should dictate that ǫ is positive if the

inequality is true.

This is the first point where we see the importance of unitarity arguments in effective

field theory. The operator (3.8) can be shown to arise with a definite sign of ǫ in effective

theories that have UV completions. In the rest of this subsection we will show that this is

the case by carefully studying the theory (3.7) deformed by (3.8).

We define the R-axion as usual to be the phase of z, z = |z|e2ia. Suppose for a moment

that ǫ = 0. The Lagrangian, after integrating out the radial mode |z|, contains the usual

kinetic terms for the axion and Goldstino, but it also contains some interaction terms be-

tween the axion and the Goldstino. As we show in appendix ℵ, the leading interaction is

of the form

Linteraction ≈ c1ψ
2∂µa∂

µa+ c.c. . (3.9)

Another possible coupling one could imagine has three derivatives and takes the form

i
(
∂νψσµψ

)
∂µa∂νa, however, as we show explicitly in appendix ℵ, it does not arise at

tree-level in the theory with ǫ = 0.

Introducing the deformation (3.8) induces this new coupling of two fermions to two ax-

ions, with coefficient proportional to ǫ. We will now argue that, very similarly to examples

discussed in [3], the theory

L = −f2
a (∂µa)

2 + i∂µψσ
µψ +

(
c1ψ

2(∂µa)
2 + c.c.

)
− ic2

(
∂νψσµψ

)
∂µa∂νa · · · , (3.10)

where · · · stand for self interactions of the axion and the Goldstino that we are not inter-

ested in, has superluminal modes if c2 has the wrong sign.

Let us look at the propagation of the Goldstino ψ in a background with ∂µa = Vµ,

where Vµ is a constant four vector. The Lagrangian for the Goldstino becomes

L = i∂µψσ
µψ +

(
c1V

2ψ2 + c.c.
)
− ic2VµVν∂

νψσµψ + · · · . (3.11)

We are expanding in small V , as appropriate in effective field theory. Note that around

the background ∂µa = Vµ the fermion ψ is massive with mass ∼ V 2. As usual, in the final

4In the next section we will define the observable 〈W 〉 more carefully.
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dispersion relation the mass appears squared, so it can be dropped. The remaining terms

yield the following equation of motion in momentum space

(kµσ
µ − c2(V · k)Vµσ

µ)ψ = 0 . (3.12)

Let us multiply this equation by Vρσ
ρ from the left. We see that at leading order in V

Vρkµσ
ρσµψ = 0 . (3.13)

The next step is to multiply (3.12) by kρσ
ρ from the left to obtain

(
−k2δα

β − c2(V · k)kρVµ (σρσµ)α
β

)
ψα = 0 . (3.14)

We can symmetrize the second term using (3.13). We obtain

(
k2 − 2c2(V · k)2

)
ψβ = 0 . (3.15)

We see that the dispersion relation is corrected by (V · k)2, which has a definite sign.

This leads to superluminal modes unless c2 ≥ 0.

Expanding the term (3.8) in terms of component fields, we find that it leads to an

operator of the form c2 with coefficient c2 = 8ǫv2/M4, where v is the VEV of |z|. If the

operator of eq. (3.8) were the only four derivative operator, we see that unitarity would

require the coefficient ǫ to be positive.5 As we commented above, a positive ǫ increases

the decay constant of the R-axion, leaving the other quantities intact, therefore, we would

find, for any non-zero ǫ,

2|W | < faF . (3.16)

The operator of eq. (3.8) is just one of several operators which can potentially correct fa.

In order to provide a general proof of the bound, we will see that it is necessary to consider

the effective theory at very low energies.

In spite of the fact that at tree-level the bound can sometimes be saturated, we will

show that nontrivial interacting theories will always satisfy (3.16). It is not difficult to ver-

ify that in simple perturbative models, such as those of [12], the bound is indeed satisfied

at one-loop.

4 A proof of the bound via low energy effective field theory

In the previous two sections we have seen how the bound arises in tractable field theories

and we have also witnessed the importance of unitarity arguments in effective field theory.

The arguments of the previous sections cover a variety of models, but not the interesting,

and potentially important ones where the scale of supersymmetry breaking is not small

compared to other characteristic mass scales of the theory, so that SUSY breaking cannot

be described by a superpotential with linearly realized SUSY. Models of the latter kind are

5The connection between superluminal modes and unitarity bounds was demonstrated in [3]. These ideas

apply in our context equally well. In particular, while the absence of superluminal modes only suggests

that c2 ≥ 0, unitarity gives c2 > 0 because it relates c2 to an integral of a total cross section.
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pervasive; examples include the SU(5) and SO(10) models of [10, 11]. In addition, while

in the previous section we discussed one particular derivative correction characteristic of

perturbative models, we would like to be able to control all of them along with all the

possible radiative corrections.

Therefore, our goal in this section is to extend the validity of our bound to these cases

as well. All we know is that these models break supersymmetry and have a spontaneously

broken R-symmetry. Therefore, the low energy spectrum consists of an R-axion and a

Goldstino. However, this cannot be an arbitrary effective theory, rather, it has to be

constrained by nonlinearly realized SUSY and R-symmetry.

As explained in [4], such nonlinear theories are most conveniently organized in terms

of a set of superfields that satisfy algebraic constraints. Below we review this formalism,

focusing on the aspects pertinent to this work. After reviewing the necessary ingredients,

we will derive the bound

2|W | < faF , (4.1)

establishing its validity as a nonperturbative result.

4.1 A review of nonlinear SUSY and R-symmetry

The low energy effective theory we are after includes the Goldstino Gα(x) and the R-

axion a(x). The Lagrangian should respect nonlinearly realized supersymmetry as well

as nonlinearly realized R-symmetry. The latter is easier to understand, as it includes an

inhomogeneous shift of the R-axion accompanied by a rotation of the Goldstino field and

the superspace coordinate

a→ a+ ξ , Gα → eiξGα , θα → eiξθα . (4.2)

On the other hand, the action of nonlinear supersymmetry is more complicated since

the underlying group structure is non-Abelian. There are many approaches to nonlinear

realizations of supersymmetry, see e.g. [13] (more references can be found in [4]). In this

work we will adopt the conventions and approach of [4] as it easily allows to describe off-

shell effective actions that may or may not include particles in addition to the Goldstino.6

The main point is that we will use the power of supersymmetry and superfields, but

our superfields will satisfy some constraints. The effect of these constraints, as we will

momentarily see, is to remove some degrees of freedom from the conventional superfields.

To see how this works, we start from a chiral superfield, XNL, that satisfies the con-

straint

X2
NL = 0 . (4.3)

This constraint eliminates the complex boson in the bottom component of XNL but leaves

the fermion component as well as an auxiliary field. The solution to (4.3) is

XNL =
G2

2FX
+

√
2θG+ θ2FX , (4.4)

6Some comments on the relation between [4] and previous approaches can be found in [14].
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where all the variables are functions of yµ = xµ + iθσµθ. It is therefore natural to identify

the fermion surviving the constraint (4.3) as the Goldstino.

If the Goldstino is the only massless particle, we can easily write effective Lagrangians

by using superspace and the superfield XNL. These by construction respect nonlinear

SUSY. The simplest possible Lagrangian is

L =

∫
d4θX†

NLXNL +

(∫
d2θfXNL + c.c.

)
. (4.5)

This is no other than the Akulov-Volkov theory [15] , that in components includes the

following terms.7

L = −f2 + i∂µGσ
µG+

1

4f2
G

2
G2 + · · · , (4.6)

where . . . stand for terms with more Goldstinos.

While the constraint (4.3) forbids a nontrivial Kähler potential, corrections to (4.5)

with derivatives are allowed (and generally appear from microscopic models). The natural

way to control these corrections is to assign the Goldstino Gα effective scaling dimension

−1/2 and therefore the superfield XNL has scaling dimension −1

S(X) = −1 . (4.7)

This choice forces us to assign dθ scaling dimension +1/2. The terms in the La-

grangian (4.5) then have scaling dimension zero. It can be proven [4] that at scaling zero

the Lagrangian (4.5) is the most general possible up to field redefinitions. The theory (4.5)

has only one free parameter, the SUSY breaking scale.

To include an R-axion (or more generally a Goldstone boson) we introduce a chiral

superfield ANL, satisfying the following constraint

XNL

(
ANL −A†

NL

)
= 0 . (4.8)

Out of all the degrees of freedom in a conventional chiral superfield, the constraint (4.8)

leaves only one real degree of freedom (and no auxiliary fields). In components, the super-

field ANL takes the form

ANL = H + i
√

2θσµ
(

G
F X

)
∂µH + θ2

(
−∂ν

(
G

F X

)
σµσν G

F X
∂µH + 1

2F
2

X

G
2
H

)
, (4.9)

where

H = a+
i

2
(
G

FX
σµ G

FX

)∂µa+ · · · , (4.10)

where the ellipses stand for terms with more fermions and derivatives. We will not need

them here.8

We see that R-symmetry acts on ANL by shifts ANL → ANL + ξ. Of course, the shift

preserves the constraint (4.8). Due to this action of R-symmetry it is natural to define an

exponentiated superfield

RNL = eiANL , (4.11)

7For alternative descriptions of this theory see [16–20].
8The corrections are easily derived from (4.8). An explicit expression is given in [4].
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which under R-symmetry transforms as RNL → eiξRNL. The constraint (4.8) becomes

XNL

(
R†

NLRNL − 1
)

= 0 . (4.12)

We are now ready to write Lagrangians. As we are going to use superspace and

superfields, both nonlinear supersymmetry and nonlinear R-symmetry will be manifest.

Following the same idea as around (4.5) we get the following Lagrangian

LGoldstino−axion =

∫
d4θ

(
|XNL|2 + f2

a |RNL|2
)

+

∫
d2θ

(
fXNL + f̃R2

NL

)
+ c.c. . (4.13)

The natural scaling dimension of the R-axion is zero and so

S(RNL) = 0 . (4.14)

We see that the effective Lagrangian contains three independent parameters. f and

fa are identified as the SUSY breaking scale and the R-axion decay constant, respectively.

The remaining parameter f̃ corresponds to the VEV of the superpotential.

Similarly to the case in (4.5), it can be shown that in an expansion in derivatives (more

precisely, in the scaling S) the theory (4.13) is the leading universal theory at low energies

(up to field redefinitions that can be absorbed in redefinitions of f, fa, f̃).

Let us pause for a moment to discuss the parameter f̃ . In theories that break super-

symmetry, the VEV of the superpotential is, in general, not a holomorphic function of the

superpotential couplings. Furthermore, in the presence of covariant derivatives its naive

definition is ambiguous.9 The parameter f̃ provides a precise physical definition of 〈W 〉,
which generalizes what one would naively call the VEV of the superpotential in simple

theories like those analyzed in the previous sections.

We conclude that if we wish to analyze the interactions between an R-axion and

the Goldstino at very low energies, we should study the theory (4.13) and substitute the

component expressions (4.4), (4.9), (4.10) for the superfields XNL, RNL. This is done in

detail in the next subsection, where we provide the most general proof of the bound.

4.2 General proof of the bound

In this section we will describe the interactions resulting from (4.13). We will only keep

terms with at most four fields, as this will suffice for the argument we are about to make.

We directly substitute the expressions (4.4), (4.9), (4.10) into (4.13) and get the following

LGoldstino−axion = −f2 + i∂µGσ
µG− f2

a (∂a)2 +
1

4f2
G

2
G2 − 2i

f2
a

f2
∂µGσλG∂µa∂λa

+

(
f̃

f2
Gσµσν∂νG∂µ

(
e2ia
)
− if̃

f2
G

2
e2ia a+

2f̃

f2
G

2
(∂a)2 + c.c.

)
.(4.15)

We have dropped quartic terms that are proportional to the free equations of motion,

as they effectively contain more than four fields. Note that the first two terms in the

9For example, because we can always add to the superpotential terms like D
2

O† with O† anti-chiral and

R-neutral. This does not change the physical theory but may affect the value of 〈W 〉.
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second line are proportional to the free equations of motion of the Goldstino and the

axion, respectively. However, the key point is that these are cubic terms, so they can lead

to effective quartic operators.

To calculate the quartic terms we may use field redefinitions to eliminate the cubic

terms. Let us define a new Goldstino field G̃α and a new axion ã related to the variables

in (4.15) via

G̃ = G+ i
f̃

f2
Gσµ∂µ

(
e2ia

)
, ã = a− i

f̃

2f2f2
a

e2iaG̃
2
+ c.c. . (4.16)

Note that these new Goldstino and axion fields are not the same as those sitting in the

superfields, XNL, RNL. For example, their transformation laws under supersymmetry are

different. The Lagrangian (4.15) can be written in terms of the new fields (4.16). The

result (again, up to terms with more than four fields) is

LGoldstino−axion = −f2 + i∂µG̃σ
µG̃− f2

a(∂a)2 +

(
1

4f2
− |f̃ |2

2f4f2
a

)
G̃

2
G̃2

−2i

(
f2

a

f2
− 4

|f̃ |2
f4

)
∂µG̃σλG̃∂µa∂λa

+

(
2f̃

f2
G̃

2
(∂a)2 +

(f̃∗)2

4f4f2
a

G̃2 G̃2 + c.c.

)
. (4.17)

Let us now analyze the theory (4.17). The most interesting term is the first operator

in the second line of (4.17), −i∂µG̃σλG̃∂µa∂λa. In section 3, we have shown that the

coefficient must be non-negative to avoid superluminal propagation. Unitarity provides a

slightly stronger constraint. As in [3], the coefficient of the operator −i∂µG̃σλG̃∂µa∂λa

can be related to an integral of a total cross section, therefore once we include radiative

corrections, we expect the coefficient to be strictly positive. This means that

f2
a

f2
− 4

|f̃ |2
f4

> 0 , (4.18)

or equivalently,

2|f̃ | < faf . (4.19)

Since f̃ is just the VEV of the superpotential we conclude with the claimed bound

2|W | < faF , (4.20)

where F , as always, is the Goldstino decay constant (which is identical to the total vacuum

energy).

As long as (4.19) is satisfied the coefficient of the operator G̃
2
G̃2 is positive (and

in fact bounded from below by 1
8f2 ). This is important as one can show that unitarity

demands the coefficient of G̃
2
G̃2 to be positive.10

10Similar unitarity constraints on fermionic vertices were considered in [21].
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A simple consistency check on (4.17) is to contrast it with the explicit model in

appendix ℵ which at tree-level satisfies 2|W | = faF . (Of course, quantum corrections

will turn it to a strict inequality.) By plugging into (4.17) 2f̃ = faf we recover precisely

the low energy effective action we computed explicitly in the appendix by integrating out

heavy particles.

5 Conclusions

In this paper we have demonstrated an exact result in theories that break supersymme-

try. We have used the methods of spontaneously broken symmetries along with unitarity

bounds. This has led to a bound involving the VEV of the superpotential, the R-axion

decay constant and the SUSY breaking scale

|〈W 〉| < 1

2
faF . (5.1)

This holds in strongly coupled models in which we do not even know the appropriate

variables to describe SUSY breaking macroscopically. A simple (and somewhat surprising

at first sight) corollary of (5.1) is that when SUSY is unbroken, even if R-symmetry is

broken, a nonzero VEV for the superpotential cannot be generated.

While it is satisfying, in and of itself, that one can prove exact results in theories which

spontaneously break supersymmetry, we would also like to mention a few possible appli-

cations and open questions. The VEV of the superpotential plays a role in supergravity,

where it is relevant both for the R-axion mass [22] and the cosmological constant. Recently,

in [23], it was noted that in theories with discrete R-symmetries, the requirement of small

cosmological constant constrains their breaking. Indeed, in that reference it was noted

that discrete R-symmetries often lead to approximate, continuous symmetries, and it was

conjectured that the superpotential is bounded roughly along the lines we have established

here. As a result, the potential importance of such symmetries depends on the scale F .

In addition, since the bound involves quantities relating R-symmetry breaking and

SUSY breaking, it is feasible that it may lead to a better understanding of the connection

between R-symmetry breaking and SUSY breaking [1]. We have a great deal of evidence

that the observations by Nelson and Seiberg are correct even beyond the regime of validity

of their analysis. It would be nice to make this more precise.

It would be satisfying to derive the bound we proved in the language of current algebra.

This may lead to further exact results in SUSY-breaking theories. Needless to say, under-

standing additional general features of supersymmetry-breaking theories is important.
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A Low energy analysis of a simple sigma model

This appendix is dedicated to the analysis of the model

K = K(ZZ∗) , W = fZ (A.1)

at low energies. We restrict ourselves to the tree approximation. The simple theory (A.1)

enjoys R-symmetry under which R(Z) = 2. We assume that the Kähler potential is such

that there exists a SUSY-breaking vacuum at |z| = v where v is nonzero. Therefore, R-

symmetry is spontaneously broken. The spectrum of the theory thus consists of a massless

Goldstino, a massless R-axion and a massive real degree of freedom which we, for simplicity,

dub the “Higgs field.”

We denote the Kähler metric gzz∗ = ∂Z∂Z∗K and the Christoffel symbols Γz
zz =

gzz∗,z

gzz∗
,

Γz∗
z∗z∗ =

gzz∗,z∗

gzz∗
. The Lagrangian corresponding to (A.1) is given by

L = −gzz∗∂µZ∂
µZ∗ − igzz∗ψσ

µDµψ +
(

f
2Γz

zzψ
2 + c.c.

)
+ 1

4Rzz∗zz∗ψ
2ψ

2 − |f |2

gzz∗
. (A.2)

Here Dµψ = ∂µψ+ Γz
zz(∂µZ)ψ. Since the Kähler potential is only a function of ZZ∗, so is

the metric gzz∗. By assumption there is a vacuum at |z| = v so we substitute z = (v+h)e2ia

and we see that gzz∗ is independent of a. In addition, the existence of a vacuum for h = 0

implies that in an expansion around the vacuum

gzz∗ = α− β

v2
h2 + · · · , (A.3)

where α, β are dimensionless numbers that can be easily determined given a specific model.

From this we can also read out the expansion of the Christoffel symbols and curvature

around the vacuum

Γz
zz = − β

αv2
he−2ia + · · · , Γz∗

z∗z∗ = − β

αv2
he2ia + · · · , Rzz∗zz∗ = − β

2v2
+ · · · . (A.4)

We recall that the Higgs field h is massive, and in order to understand the couplings

in the IR we should integrate it out. The first approximation is to set it to zero, but we

want to read out the low energy effective action more carefully, so we solve the equations

of motion of the theory (A.2) at the leading nontrivial order in the number of Goldstinos,

axions and derivatives. The full Lagrangian (A.2) truncated to contain only the leading

order terms in the Higgs field, according to (A.3), (A.4) is

− L =
|f |2
α

+ α(∂h)2 + 4αv2(∂a)2 + iαψσµ∂µψ + 8αvh(∂a)2 +
2β

v
h∂µaψσ

µψ

+

(
fβ

2αv2
he−2iaψ2 + c.c.

)
+

β

8v2
ψ2ψ

2
+

|f |2β
α2v2

h2. (A.5)

The resulting equation of motion for the heavy Higgs field is solved by

h = −
(
αf

4|f |2 e
−2iaψ2 + c.c.

)
− α2v

|f |2 ∂µaψσ
µψ − 4α3v3

β|f |2 (∂a)2 . (A.6)
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We can now plug it back to the action to read out the effective Lagrangian for the axion

and Goldstino. We only keep the leading terms describing self interactions of the axion

and Goldstino as well as the leading operator connecting the axion with the Goldstino.

The final result is

Leff = −|f |2
α

− 4αv2(∂a)2 − iαψσµ∂µψ + α

(
α

4f∗
ψ2 + c.c.

)
∂2

(
α

4f∗
ψ2 + c.c.

)

+
16α4v4

β|f |2 (∂a)4 +

(
2vα2

f∗
ψ2(∂a)2 + c.c.

)
. (A.7)

In addition to the expected kinetic terms and vacuum energy, we wrote down the leading

interactions of the Goldstino with itself, the axion with itself and the leading operator

that connects them. Note that the self interaction of the axion has a positive sign, which

is guaranteed by unitarity [3]. A similar comment holds for the term ψ2∂2(ψ
2
) which

appears in the self interaction of the Goldstino.

The Lagrangian (A.7) takes a more natural form once the Goldstino is canonically

normalized (in spite of the change of variables we retain the notation) and we express

everything in terms of the decay constant f2
a = 4αv2 and SUSY breaking scale F = |f |/√α.

Without loss of generality, we also assume that f is real. We get

Leff = −F 2 − f2
a(∂a)2 − iψσµ∂µψ +

(
1

4F
ψ2 + c.c.

)
∂2

(
1

4F
ψ2 + c.c.

)

+
αf4

a

βF 2
(∂a)4 +

(
fa

F
ψ2(∂a)2 + c.c.

)
. (A.8)

We see that two of the interaction terms depend only on F, fa which suggests that they are

associated to universal terms in the low energy effective action. On the other hand, the

axion quartic interaction depends on the details of the high energy physics (e.g. the param-

eter β). We show in section 4 that these facts follow from studying nonlinear realizations

of broken R-symmetry and supersymmetry.
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