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Abstract

In natural language processing, it is common

that many entities contain other entities in-

side them. Most existing works on named en-

tity recognition (NER) only deal with flat en-

tities but ignore nested ones. We propose a

boundary-aware neural model for nested NER

which leverages entity boundaries to predict

entity categorical labels. Our model can lo-

cate entities precisely by detecting boundaries

using sequence labeling models. Based on

the detected boundaries, our model utilizes the

boundary-relevant regions to predict entity cat-

egorical labels, which can decrease computa-

tion cost and relieve error propagation prob-

lem in layered sequence labeling model. We

introduce multitask learning to capture the de-

pendencies of entity boundaries and their cate-

gorical labels, which helps to improve the per-

formance of identifying entities. We conduct

our experiments on nested NER datasets and

the experimental results demonstrate that our

model outperforms other state-of-the-art meth-

ods.

1 Introduction

Named entity recognition (NER) is a task that

seeks to locate and classify named entities in un-

structured texts into pre-defined categories such as

person names, locations or medical codes. NER

is generally treated as single-layer sequence label-

ing problem (Lafferty et al., 2001; Lample et al.,

2016) where each token is tagged with one label.

The label is composed by an entity boundary la-

bel and a categorical label. For example, a to-

ken can be tagged with B-PER, where B indi-

cates the boundary of an entity and PER indicates

the corresponding entity categorical label. How-

ever, when entities are nested within one another,

single-layer sequence labeling models can not ex-
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tract both entities simultaneously. A token con-

tained inside many entities has more than one cat-

egorical label. Consider an example in Figure 1

from GENIA corpus (Kim et al., 2003), “Human

TR Beta 1” is an protein and it is also a part of

a DNA “Human TR Beta 1 mRNA”. Both enti-

ties contain the same token “Human”. Thus the

token should have two different categorical labels.

In that case, assigning a single categorical label for

“Human” is improper.

Figure 1: An example of nested entities and their

boundary labels. “B” and “E” indicate the beginning

and end of an entity. They are the boundary labels.

“I” and “O” denote tokens inside and outside entities,

respectively. protein and RNA are categories of enti-

ties.

Traditional methods coping with nested entities

rely on hand-craft features (Shen et al., 2003; Alex

et al., 2007) and suffer from heavy feature engi-

neering. Recent studies tackle the nested NER us-

ing neural models without relying on linguistics

features or external knowledge resources. Ju et al.

(2018) propose a layered sequence labeling model

and Sohrab and Miwa (2018) propose a exhaustive

region classification model.

• Layered sequence labeling model will first

extract the inner entities (contained by other

entities) and feed them into the next layer to

extract outer entities. Thus, this model suf-

fers from error propagation. When the previ-

ous layer extracts wrong entities, the perfor-

mance of next layer will be affected. More-

over, when an outer entity is extracted first,

the inner one will not be detected.
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• Exhaustive region classification model enu-

merates all possible regions or spans in sen-

tences to predict entities in a single layer.

One issue of their method is the explicit

boundary information is ignored, leading to

extraction of some non-entities. We consider

an example. In a sequence of tokens in GE-

NIA dataset, “novel TH protein” is an en-

tity and “a novel TH protein” is not an en-

tity. However, since they share many tokens,

the merged region representations of them

are similar to each other. “novel” and “pro-

tein” are the boundary of the entity. Without

the boundary information, both candidate re-

gions are extracted as the entities.

Despite their shortcomings, layered sequence

labeling model and exhaustive region classifi-

cation model are complementary to each other.

Therefore, we can combine them to improve the

performance of nested NER. We leverage the se-

quence labeling model to consider the boundary

information into locating entities. In the exam-

ple mentioned above, “novel” is the boundary of

the entity “novel TH protein”, while “a” is a gen-

eral token whose representation is different from

“novel”. With the guidance of boundary informa-

tion, the model can detect “novel” as a boundary

of the entity rather than token “a”. We also utilize

the region classification model to predict entities

without considering the dependencies of inner and

outer entities. In such case, Our model will not

suffer error propagation problem.

In this paper, we propose a boundary-aware

neural model that makes the fusion of sequence la-

beling model and region classification model. We

apply a single-layer sequence labeling model to

identify entity boundaries because the tokens in

nested entities can share the same boundary la-

bels. For example, as shown in Figure 1, “Human”

can be tagged with the label B although it is the

beginning of two different entities. Based on the

detected entity boundaries, we predict entity cate-

gorical labels by classifying boundary-relevant re-

gions. As shown in Figure 1, we match each token

with label B to tokens with label E. The regions

between them are considered as candidate entities.

The representation of candidate entities will be uti-

lized to classify categorical labels.

Our model is advanced than exhaustive region

classification model in two ways: (1) we lever-

age the explicit boundary information to guide

the model to locate and classify entities precisely.

Exhaustive region classification model classifies

entity regions individually, however, our model

can consider the context information of bound-

ary tokens with a sequence labeling model. That

facilitates the detection of boundaries. (2) Our

model only classifies the boundary-relevance re-

gions which are much fewer than all possible re-

gions. That decreases the time cost. Our model

is advanced than layered sequence labeling model

because we extract entities without distinguishing

inner and outer entities.

Multitask learning is considered good at opti-

mising the overall goal via alternatively tuning

2+ objectives, which are reinforced each other

(Ruder, 2017). Considering our boundary detec-

tion module and entity categorical label prediction

module share the same entity boundaries, we ap-

ply a multitask loss for training the two tasks si-

multaneously. The shared features of two mod-

ules are extracted by a bidirectional long short-

term memory (LSTM) layer. Extensive experi-

ments show the framework of multitask learning

improves final performance in a large margin.

In summary, we make the following major con-

tributions in this paper:

• We propose a boundary-aware neural model

which leverages entity boundaries to predict

categorical labels. Our model can locate en-

tities precisely by detecting boundaries us-

ing sequence labeling models. Based on

the detected boundaries, our model utilizes

boundary-relevant regions to predict entity

categorical labels, which can decrease com-

putation cost and relieve error propagation

problem.

• We introduce the multitask learning to cap-

ture the dependencies of entity boundaries

and their categorical labels, which helps to

improve the performance of identifying en-

tities.

• We conduct our experiments on public nested

NER datasets. The experimental results

demonstrate our model outperforms previ-

ous state-of-the-art methods and our model is

much faster in inference speed.

2 Related Work

NER has drawn the attention of NLP researchers

because several downstream tasks such as entity
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Figure 2: The Architecture of our boundary-aware model. The representation of each token in sentence “Human

TR Beta 1 mRNA Levels in..” is feed into a shared bidirectional LSTM layer. We leverage the outputs of Bi-

LSTM to detect entity boundaries and their categorical labels. The red circle indicates entity region representations

between entity boundaries.

linking (Gupta et al., 2017), relation extraction

(Mintz et al., 2009; Liu et al., 2017), co-reference

resolution (Chang et al., 2013) and conversation

system (Ren et al., 2019) rely on it. Several

methods have been proposed on flat named entity

recognition (Lample et al., 2016; Ma and Hovy,

2016; Strubell et al., 2017) while few of them ad-

dress nested entities. Early work on nested enti-

ties rely on hand-craft features or rule-based post-

processing (Zhang et al., 2004; Zhou et al., 2004;

Zhou, 2006). They detect the innermost flat en-

tities with a Hidden Markov Model and then use

rule-based post-processing to extract the outer en-

tities.

While most work concerns about named en-

tities, Lu and Roth (2015) present a novel

hypergraph-based method to tackle the problem

of entity mention detection. One issue of their

method is the spurious structure of hyper-graphs.

Muis and Lu (2017) improve the method of Lu and

Roth (2015) by incorporating mention separators

along with features.

Recent studies reveal that stacking sequence

model like conditional random filed(CRF) layer

can extract entities from inner to outer. Alex

et al. (2007) propose several CRF-based methods

for the GENIA dataset. However, their approach

can not recognize nested entities of the same type.

Finkel and Manning (2009) present a chart-based

parsing method where each named entity is a con-

stituent in the parsing tree. However, their method

is not scalable to larger corpus with a cubic time

complexity. Ju et al. (2018) dynamically stack

flat NER layers to extract nested entities, each flat

layer is based on a Bi-LSTM layer and then a cas-

caded CRF layer. Their model suffers error prop-

agation from layer to layer, an inner entity can not

be detected when a outer entity is identified first.

It is difficult for sequence model, like CRF, to

extract nested entities where a token can be in-

cluded in several entities. Wang et al. (2018)

present a transition-based model for nested men-

tion detection using a forest representation. One

drawback of their model is the greedy training and

decoding. Sohrab and Miwa (2018) consider all

possible regions in a sentence and classify them

into their entity type or non-entity. However, their

exhaustive method considers too many irrelevant

regions(non-entity regions) into detecting entity

types and the regions are classified individually,

without considering the contextual information.

Our model focuses on the boundary-relevant re-

gions which is much fewer and the explicit lever-

aging of boundary information helps to locate en-

tities more precisely.

3 Method

In this paper, we propose a boundary-aware neural

model which considers the boundary information

into locating and classifying entities. The archi-

tecture is illustrated in Figure 2.

Our model is built upon a shared bidirectional

LSTM layer. It uses the outputs of LSTM layer

to detect entity boundaries and predict categorical

labels. We extract entity boundaries as paired to-

kens with label B and label E, “B” indicates the

beginning of an entity and “E” means the end of an

entity. We match every detected token with label
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B and its corresponding token with label E, the re-

gions between them are identified as candidate en-

tities. We represent entities using the correspond-

ing region outputs of shared LSTM and classify

them into categorical labels.

The boundary detection module and entity cate-

gorical label prediction module are training simul-

taneously with a multitask loss function, which

can capture the underlying dependencies of entity

boundaries and their categorical labels. We will

describe each part of our model in detail.

3.1 Token Representation

We represent each token in the sentence following

the success of Ma and Hovy (2016) and Lample

et al. (2016) that leverages character embedding

for the flat NER task.

For a given sentence consisting of n tokens

(t1,t2,....tn), we represent the word embedding of

i-th token ti as equation(1):

x
w
i = e

w(ti) (1)

where ew denotes a word embedding lookup table.

We use pre-trained word embedding (Chiu et al.,

2016) to initialize it.

We capture the orthographic and morphological

features of the word by integrating character repre-

sentations. Denoting the representation of charac-

ters within ti as xc
i , The embedding of each char-

acter within token ti is denoted as e
c(cj). e

c is

the character embedding lookup which is initial-

ized randomly. Then we feed them into a bidi-

rectional LSTM layer to learn hidden states. The

forward and backward outputs are concatenated to

construct character representations:

x
c
i = [
−→

h
c
i ;
←−

h
c
i ] (2)

where
←−

h
c
i and

−→

h
c
i denote the forward and backward

outputs of bidirectional LSTM.

The final token representation is obtained as

equation (3), where [;] denotes concatenation.

x
t
i = [xw

i ;x
c
i ] (3)

3.2 Shared Feature Extractor

As shown in Figure 2, we apply the hard param-

eter sharing mechanism (Ruder, 2017) for multi-

task training using bidirectional LSTM as shared

feature extractor. Hard parameter sharing greatly

reduces the risk of overfitting (Baxter, 1997) and

increases the correlation of our boundary detec-

tion module and categorical label prediction mod-

ule. Specifically, the hidden state of bidirectional

LSTM can be expressed as following:

−→

h
t
i =
−−−−→

LSTM(xt
i,
−→

h
t
i−1) (4)

←−

h
t
i =
←−−−−

LSTM(xt
i,
←−

h
t
i−1) (5)

h
t
i = [
−→

h
t
i;
←−

h
t
i] (6)

where xt
i is the token representation which is men-

tioned in section 3.1. We feed x
t
i into a Dropout

layer to prevent overfitting.
−→

h
t
i and

←−

h
t
i denote

the i-th forward and backward hidden state of Bi-

LSTM layer. Formally, we extract the shared fea-

tures of each token in a sentence as ht
i.

3.3 Entity Boundary Detection

Previous works (Lample et al., 2016; Ma and

Hovy, 2016) on flat NER (non-nested named enti-

ties recognition) predict entity boundaries and cat-

egorical labels jointly. However, when entities are

nested in other entities, one individual token can

be included in many different entities. This means

assigning one single categorical label for each to-

ken is inappropriate.

We divide nested NER into two subtasks: en-

tity boundary detection and categorical label pre-

diction tasks. Unlike assigning an entity cat-

egorical label for each token, we predict the

boundary labels first. Formally, given a sentence

(t1,t2,...tn), and one entity in the sentence. we rep-

resent the entity as R(i, j), which denotes the en-

tity is composed by a continuous token sequence

(ti,ti+1,...tj). Specially, we tag the boundary to-

ken ti as “B” and tj as “E”. The tokens inside en-

tities are assigned with label “I” and non-entity to-

kens are assigned with “O” labels.

Figure 3: The architecture of entity boundary detection

module. We feed the representation of each token in the

sentence into a bidirectional LSTM layer, the outputs

of LSTM layer are utilized to predict boundary labels.

We detect entity boundaries as shown in Fig-
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ure 3. For each token ti in a sentence, we pre-

dict a boundary label by feeding its correspond-

ing shared feature representation h
t
i (described in

section 3.2) into a ReLU activation function and a

softmax classifier:

o
t
i = Uh

t
i + b (7)

d
t
i = softmax(oti) (8)

where U and b are trainable parameters. We com-

pute the KL-divergence multi-label loss between

the true distribution d̂
t
i and the predicted distribu-

tion d
t
i as equation (9):

Lbcls = −
∑

(d̂t
i) log(d

t
i) (9)

Conditional random field (CRF) (Lafferty et al.,

2001) is considered good at modeling sequence la-

bel dependencies (e.g., label I must be after B).

We make a comparison of choosing softmax or

CRF as output layer because our sequence labels

are different from flat NER models.

3.4 Entity Categorical Label Prediction

Given an input sentence sequence X = (x1,x2, ...

xn), and a corresponding boundary label sequence

L = (l1,l2, ... ln), we match each token with label

B to the token with label E to construct candi-

date entity regions. Especially, considering there

are entities containing one single token, we match

tokens with label B to themselves firstly. The rep-

resentation of entity R(i, j) is obtained as follow-

ing:

Ri,j =

[

1

j − i+ 1

j
∑

k=i

h
t
k

]

(10)

where h
t
k denotes the outputs of the shared bidi-

rectional LSTM layer for k-th token in sentence.

We simply average the representations for each

token within boundary regions. The final repre-

sentation of entities will be sent into a ReLU ac-

tivation function and the softmax layer to predict

entity categorical labels. We compute the loss of

categorical label prediction in equation (11-12):

d
e
i,j = softmax(Ue

i,jRi,j + b
e
i,j) (11)

Lecls = −
∑

(d̂e
i,j) log(d

e
i,j) (12)

where U
e
i,j and b

e
i,j are trainable parameters. d̂e

i,j

and d
e
i,j denote the true distribution and predicted

distribution of entity categorical labels, respec-

tively.

3.5 Multitask Training

In our model, it is inconvenient and inefficient for

the reason that we predict entity categorical labels

after all boundary-relative regions have been de-

tected. Considering our boundary detection mod-

ule and entity categorical label prediction mod-

ule share the same entity boundaries, we apply a

multitask loss for training the two tasks simulta-

neously.

During training phase, we feed the ground-truth

boundary labels into entity categorical label pre-

diction module so that the classifier will be trained

without affection from error boundary detection.

As for testing phase, the outputs of boundary de-

tection will be collected. The detected bound-

aries will indicate which entity regions should be

considered into predicting categorical labels. The

multitask loss function is defined as follows:

Lmulti = α
∑

Lbcls + (1− α)
∑

Lecls (13)

where Lbcls and Lecls denote the categorical cross-

entropy loss for boundary detection module and

entity categorical label prediction module, respec-

tively. α is a hyper-parameter which is assigned to

control the degree of importance for each task.

4 Experimental Settings

4.1 Dataset

To provide empirical evidence for effectiveness of

the proposed model, we employ our experiments

on three nested NER datasets: GENIA (Kim et al.,

2003), JNLPBA (Kim et al., 2004) and GermEval

2014 (Benikova et al., 2014).

GENIA dataset is constructed based on the GE-

NIA v3.0.2 corpus. We preprocess the dataset fol-

lowing the same settings of (Finkel and Manning,

2009) and (Lu and Roth, 2015). The dataset is split

into 8.1:0.9:1 for training, development and test-

ing. The statistics of GENIA dataset is shown as

Table 1.

Item Train Dev Test Overall Nested

Document 1599 189 212 2000 -

Sentences 15023 1669 1854 18546 -

Percentage 81% 9% 10% 100% -

DNA 7650 1026 1257 9933 1744

RNA 692 132 109 933 407

Protein 28728 2303 3066 34097 1902

Cell Line 3027 325 438 3790 347

Cell Type 5832 551 604 6987 389

Overall 45929 4337 5474 55740 4789

Table 1: Statistics of GENIA dataset

JNLPBA dataset is originally from GENIA cor-

pus. It contains a training and testing datasets.
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However, only the flat and top-most entities are

preserved. We collapse the sub-categories into 5

categories following the same settings as GENIA

dataset.

GermEval 2014 dataset contains German

nested named entities. The dataset covers over

31,000 sentences corresponding to over 590,000

tokens.

4.2 Baseline Methods

We compare our model with several state-of-the-

art models on GENIA dataset. These methods can

be divided into three groups:

Finkel and Manning (2009) and Ju et al. (2018)

propose CRF-based sequence labeling approaches

for nested named entity recognition. Finkel

and Manning (2009) leverage entity-level fea-

tures while Ju et al. (2018) propose neural-based

method. We rerun the codes of Ju et al. (2018)

because they have not shared their pre-processed

dataset.

Sohrab and Miwa (2018) propose an exhaustive

region classification model for nested NER. We re-

implement their method according to their paper

because they have not shared the codes.

Lu and Roth (2015) and Muis and Lu (2017)

build hyper-graphs to represent both the nested en-

tities and their mentions. Muis and Lu (2017) im-

prove the method of Lu and Roth (2015).

4.3 Parameter Settings

Our model is implemented by PyTorch frame-

work1 2. We use Adam optimizer for training our

model. We initialize word vectors with a 200-

dimension pre-trained word embedding the same

as Ju et al. (2018) and Sohrab and Miwa (2018)

while the char embedding is set to 50-dimension

and initialized randomly. The learning rate is

set to 0.005. We set a 0.5 dropout rate for the

Dropout layer employed after token-level LSTM

during training phase. The output dimension of

our shared bidirectional LSTM is 200. The co-

efficient α of multitask loss is tuned during de-

velopment process. All of our experiments are

performed on the same machine (NVIDIA 1080ti

GPU and Intel i7-8700 CPU).

1https://pytorch.org/
2Code is available at https://github.com/

thecharm/boundary-aware-nested-ner

4.4 Evaluation Metrics

We use a strict evaluation metrics that an entity is

confirmed correct when the entity boundary and

the entity categorical label are correct simultane-

ously. We employ precision, recall and F-score to

evaluate the performance.

5 Results and Discussion

5.1 Overall Evaluation

We conduct our experiments on GENIA test

dataset for nested named entity recognition. Ta-

ble 2 shows our method outperforms the com-

pared methods both in recall and F-score metrics.

The CRF-based model is considered as more effi-

cient in sequence labeling task, we compare the

utilization of softmax and CRF as output layer

of boundary detection module. The results show

they gain comparable scores in precision, recall

and F-score. However, the CRF-based model is

time-consuming, about 3-5 times slower than the

softmax-based model in inference speed.

Model P(%) R(%) F(%)

Finkel and Manning (2009)3 75.4 65.9 70.3

Lu and Roth (2015)3 72.5 65.2 68.7

Muis and Lu (2017)3 75.4 66.8 70.8
Sohrab and Miwa (2018) 73.3 68.3 70.7

Ju et al. (2018) 76.1 66.8 71.1

Our model(softmax) 75.9 73.6 74.7
Our model(CRF) 74.6 73.2 73.9

Table 2: Performance on GENIA test set. Our models

with softmax and CRF outperform other state-of-the-

art methods.

Our model achieves a recall value of 73.6% and

outperforms compared methods in Recall value

with a large margin. We think that our model

extract entities with a more accurate boundaries

comparing to other methods. We evaluate it in ex-

periments on boundary detection module.

Model P(%) R(%) F(%)

Sohrab and Miwa (2018) 75.0 60.8 67.2
Ju et al. (2018) 72.9 61.5 66.7

Our model 74.5 69.1 71.7

Table 3: Performance on GermEval 2014 test set.

Our model outperforms two state-of-the-art methods in

nested NER.

The GermEval 2014 dataset from KONVENS

2014 shared task is a German NER dataset. It

3The results are taken from their papers.

https://pytorch.org/
https://github.com/thecharm/boundary-aware-nested-ner
https://github.com/thecharm/boundary-aware-nested-ner
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Figure 4: (a): The number of candidate entity regions in our model with softmax and the approach of Sohrab and

Miwa (2018) when evaluating on GENIA test and development set; (b): The inference speed of our model and

compared models on GENIA test set. t/s indicates token per second.

contains few nested entities. Previous works in

this dataset ignore nested entities or extract inner

and outer entities in two independent models. Our

method can extract nested entities in an end-to-end

way. We compare our method with two state-of-

the-art approaches in Table 3. Our method outper-

forms their approaches both in Recall and F-score

metrics.

Table 4 describes the performances of our

model on the five categories on the test dataset.

Our model outperforms the model described in Ju

et al. (2018) and Sohrab and Miwa (2018) with F-

score value on all categories.

Category P(%) R(%) F(%) Ju. F(%) Soh. F(%)

DNA 73.6 67.8 70.6 70.1 67.8

RNA 82.2 80.7 81.5 80.8 75.9

protein 76.7 76.0 76.4 72.7 72.9

cell line 77.8 65.8 71.3 66.9 63.6

cell type 73.9 71.2 72.5 71.3 69.8

overall 75.8 73.6 74.7 71.1 70.7

Table 4: Our results on five categories compared to Ju

et al. (2018) and Sohrab and Miwa (2018) on GENIA

test set.

5.2 Performance of Boundary Detection

We conduct experiments on boundary detection to

illustrate that our model extract entity boundaries

more precisely comparing to Sohrab and Miwa

(2018) and Ju et al. (2018). Table 5 shows the re-

sults of boundary detection on GENIA test dataset.

Our model locates entities more accurately with

a higher recall value (76.9%) than the comparing

methods. It gives a reason why our model out-

performs other state-of-the-art methods in recall

value. We exploit boundary information explic-

itly and consider the dependencies of boundaries

and entity categorical labels with a multitask loss.

While in the method of Sohrab and Miwa (2018),

candidate entity regions are classified individually.

Model
Boundary Detection

P(%) R(%) F(%)

Sohrab and Miwa (2018) 76.6 69.2 72.7
Ju et al. (2018) 79.9 67.08 73.4

Our model(softmax) 79.7 76.9 78.3

Table 5: Performance of Boundary Detection on GE-

NIA test set.

Table 6 describes the performance of our model

in detecting boundary labels for each token in sen-

tences. The results are based on the shared bidirec-

tional LSTM and a softmax classifier. Our model

extracts entity boundaries with a relatively high

performance. This facilitates the prediction of en-

tity categorical labels because the candidate entity

regions are more likely to be true entities.

Boundary Label P(%) R(%) F(%)

O (non-entity) 99.3 99.0 99.2
B (beginning) 84.4 84.3 84.3

E (end) 86.0 87.2 86.6
I (inner-entity) 82.8 88.6 85.6

Table 6: Performance of Boundary Label Prediction

with softmax classifier on GENIA test set.

5.3 Inference Time

Figure 4(a) shows the number of candidate entity

regions in our model with softmax and the ap-

proach of Sohrab and Miwa (2018). Comparing

to classifying all possible regions in sentences, our
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model only concerns about boundary-relevant re-

gions which is much fewer. We compare the in-

ference speed of our model and the approaches of

Sohrab and Miwa (2018) and Ju et al. (2018) in

Figure 4(b). Our model is about 4 times faster than

Sohrab and Miwa (2018) and about 3 times faster

than Ju et al. (2018). The cascaded CRF layers

of Ju et al. (2018) are the limitation in inference

speed.

5.4 Performance of Multitask Learning

Table 7 shows the performance of our pipeline

model and multitask model on GENIA develop-

ment set and test set. For pipeline model, we train

the boundary detection module and entity categor-

ical label prediction module separately. Our mul-

titask model has a higher F value both in develop-

ment set and test set.

Model
Development Set Test Set

P(%) R(%) F(%) P(%) R(%) F(%)

Pipeline 74.5 74.8 74.6 75.4 72.2 73.8

Multitask 74.5 75.6 75.0 75.9 73.4 74.7

Table 7: Performance Comparison of our pipeline

model and multitask model on GENIA development set

and test set.

Multitask learning can capture the underlying

dependencies of boundaries and entity categorical

labels. It helps the model focus its attention on

those features that actually matter (Ruder, 2017).

In pipeline model, entity categorical prediction

module will not share information with bound-

ary detection module because they are trained sep-

arately. However, entity categorical prediction

module and boundary detection module share the

same entity boundaries. We assign a shared fea-

ture extractor (the bidirectional LSTM layer) to

extract the features utilized in both entity categori-

cal prediction and boundary detection. The results

have demonstrated that the framework of multi-

task learning improves final performance.

5.5 Ablation Study and Flat NER

We conduct ablation experiments on GENIA de-

velopment set to evaluate the contributions of

neural components including dropout layer, pre-

trained word embedding and the character-level

LSTM. The results are listed in Table 8. All these

components contribute to the effectiveness of our

model. Dropout layer contributes significantly for

both precision and recall values.

Setting P(%) R(%) F(%)

Our Model(softmax) 74.5 75.6 75.0

without Dropout 72.6 73.1 72.9

without Pre-trained 73.8 75.7 74.7

without Char repr. 75.3 73.9 74.6

Table 8: Results of Ablation Tests on GENIA develop-

ment set.

To prove our model can work on nested NER

and also flat NER task, we perform experiments

on the JNLPBA dataset. We achieve 73.6 in term

of F-score which is comparable with the state-of-

the-art result of Gridach (2017).

6 Case Study

Table 9 shows a case study comparing our model

with exhaustive model (Sohrab and Miwa, 2018)

and Layered model (Ju et al., 2018). In the ex-

ample, “human TATA binding factor” is an en-

tity nested in entity “transcriptionally active hu-

man TATA binding factor”. Our model with mul-

titask learning extracts both entities with exact

boundaries and entity categorical labels. Exhaus-

tive model gets the error boundaries and misses the

token “human” in entities. Comparing to layered

model only detecting an outer entity, our model

extract both inner and outer entities. It demon-

strates that our combination of sequence labeling

models and region classification models can locate

entities precisely and extract both inner and outer

entities.

Sentence
Cloning of a transcriptionally active

human TATA binding factor.

Gold Label

protein: {human TATA binding factor;

transcriptionally active human TATA

binding factor}

Exhaustive model

protein: {TATA binding factor;

transcriptionally active human TATA

binding factor}

Layered model
protein: {transcriptionally active

human TATA binding factor}
Our model(pipeline) protein: {human TATA binding factor;}

Our model(multitask)

protein: {human TATA binding factor;

transcriptionally active human TATA

binding factor}

Table 9: An example of predicted results in GENIA test

dataset.

For our pipeline model, without the dependen-

cies information from entity categorical labels, it

misses the outer entity boundaries and only ex-

tracts the inner one. It verifies that the multitask

learning can share boundary information between

boundary detection module and entity categorical
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label prediction module, which is very effective

for nested NER.

7 Conclusion

This paper presents a boundary-aware model

which leverages boundaries to predict entity cat-

egorical labels. Our model combines sequence la-

beling model and region classification model to lo-

cate and classify nested entities with high perfor-

mance. To capture the underlying dependencies of

boundary detection module and entity categorical

prediction module, we apply a multitask loss for

training the two tasks simultaneously. Our model

outperforms existing nested models in terms of F-

score.

For future work, we consider to model the de-

pendencies among entity regions explicitly and

improve the performance of boundary detection

module which is important for entity categorical

label prediction.

Acknowledgement

This work was supported by the Fundamental

Research Funds for the Central Universities,

SCUT (No. 2017ZD048, D2182480), the Science

and Technology Planning Project of Guangdong

Province (No.2017B050506004), the Science

and Technology Programs of Guangzhou (No.

201704030076,201802010027,201902010046)

and a CUHK Research Committee Funding

(Direct Grants) (Project Code: EE16963).

References

Beatrice Alex, Barry Haddow, and Claire Grover. 2007.
Recognising nested named entities in biomedical
text. In Proceedings of the Workshop on BioNLP
2007: Biological, Translational, and Clinical Lan-
guage Processing, pages 65–72. Association for
Computational Linguistics.

Jonathan Baxter. 1997. A bayesian/information the-
oretic model of learning to learn via multiple task
sampling. Machine learning, 28(1):7–39.

Darina Benikova, Chris Biemann, and Marc Reznicek.
2014. Nosta-d named entity annotation for german:
Guidelines and dataset. In LREC, pages 2524–2531.

Kai-Wei Chang, Rajhans Samdani, and Dan Roth.
2013. A constrained latent variable model for coref-
erence resolution. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language
Processing, pages 601–612.

Billy Chiu, Gamal Crichton, Anna Korhonen, and
Sampo Pyysalo. 2016. How to train good word em-
beddings for biomedical nlp. In Proceedings of the
15th workshop on biomedical natural language pro-
cessing, pages 166–174.

Jenny Rose Finkel and Christopher D Manning. 2009.
Nested named entity recognition. In Proceedings
of the 2009 Conference on Empirical Methods in
Natural Language Processing: Volume 1-Volume 1,
pages 141–150. Association for Computational Lin-
guistics.

Mourad Gridach. 2017. Character-level neural network
for biomedical named entity recognition. Journal of
biomedical informatics, 70:85–91.

Nitish Gupta, Sameer Singh, and Dan Roth. 2017. En-
tity linking via joint encoding of types, descriptions,
and context. In Proceedings of the 2017 Confer-
ence on Empirical Methods in Natural Language
Processing, pages 2681–2690.

Meizhi Ju, Makoto Miwa, and Sophia Ananiadou.
2018. A neural layered model for nested named en-
tity recognition. In Proceedings of the 2018 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
1446–1459.

J-D Kim, Tomoko Ohta, Yuka Tateisi, and Jun‘‘ichi
Tsujii. 2003. Genia corpus‘‘a semantically anno-
tated corpus for bio-textmining. Bioinformatics,
19(suppl 1):i180–i182.

Jin-Dong Kim, Tomoko Ohta, Yoshimasa Tsuruoka,
Yuka Tateisi, and Nigel Collier. 2004. Introduction
to the bio-entity recognition task at jnlpba. In Pro-
ceedings of the international joint workshop on nat-
ural language processing in biomedicine and its ap-
plications, pages 70–75. Citeseer.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360.

Liyuan Liu, Xiang Ren, Qi Zhu, Shi Zhi, Huan
Gui, Heng Ji, and Jiawei Han. 2017. Hetero-
geneous supervision for relation extraction: A
representation learning approach. arXiv preprint
arXiv:1707.00166.

Wei Lu and Dan Roth. 2015. Joint mention extrac-
tion and classification with mention hypergraphs.
In Proceedings of the 2015 Conference on Empiri-
cal Methods in Natural Language Processing, pages
857–867.



366

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional lstm-cnns-crf.
arXiv preprint arXiv:1603.01354.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extrac-
tion without labeled data. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Vol-
ume 2-Volume 2, pages 1003–1011. Association for
Computational Linguistics.

Aldrian Obaja Muis and Wei Lu. 2017. Labeling gaps
between words: Recognizing overlapping mentions
with mention separators. In Proceedings of the 2017
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 2608–2618, Copenhagen,
Denmark. Association for Computational Linguis-
tics.

Da Ren, Yi Cai, Xue Lei, Jingyun Xu, Qing Li, and
Ho-fung Leung. 2019. A multi-encoder neural con-
versation model. Neurocomputing, 358:344–354.

Sebastian Ruder. 2017. An overview of multi-task
learning in deep neural networks. arXiv preprint
arXiv:1706.05098.

Dan Shen, Jie Zhang, Guodong Zhou, Jian Su, and
Chew-Lim Tan. 2003. Effective adaptation of a hid-
den markov model-based named entity recognizer
for biomedical domain. In Proceedings of the ACL
2003 workshop on Natural language processing in
biomedicine-Volume 13, pages 49–56. Association
for Computational Linguistics.

Mohammad Golam Sohrab and Makoto Miwa. 2018.
Deep exhaustive model for nested named entity
recognition. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 2843–2849.

Emma Strubell, Patrick Verga, David Belanger, and
Andrew McCallum. 2017. Fast and accurate entity
recognition with iterated dilated convolutions. arXiv
preprint arXiv:1702.02098.

Bailin Wang, Wei Lu, Yu Wang, and Hongxia
Jin. 2018. A neural transition-based model
for nested mention recognition. arXiv preprint
arXiv:1810.01808.

Jie Zhang, Dan Shen, Guodong Zhou, Jian Su, and
Chew-Lim Tan. 2004. Enhancing hmm-based
biomedical named entity recognition by studying
special phenomena. Journal of biomedical infor-
matics, 37(6):411–422.

GD Zhou. 2006. Recognizing names in biomedical
texts using mutual information independence model
and svm plus sigmoid. International Journal of
Medical Informatics, 75(6):456–467.

Guodong Zhou, Jie Zhang, Jian Su, Dan Shen, and
Chewlim Tan. 2004. Recognizing names in biomed-
ical texts: a machine learning approach. Bioinfor-
matics, 20(7):1178–1190.

https://doi.org/10.18653/v1/D17-1276
https://doi.org/10.18653/v1/D17-1276
https://doi.org/10.18653/v1/D17-1276

