
A Boundary Hunting Radial Basis Function 
Classifier Which Allocates Centers 

Constructively 

Eric I. Chang and Richard P. Lippmann 

MIT Lincoln Laboratory 
Lexington, MA02173-0073, USA 

Abstract 

A new boundary hunting radial basis function (BH-RBF) classifier 
which allocates RBF centers constructively near class boundaries is 
described. This classifier creates complex decision boundaries only in 
regions where confusions occur and corresponding RBF outputs are 

similar. A predicted square error measure is used to determine how 
many centers to add and to determine when to stop adding centers. Two 
experiments are presented which demonstrate the advantages of the BH
RBF classifier. One uses artificial data with two classes and two input 
features where each class contains four clusters but only one cluster is 

near a decision region boundary. The other uses a large seismic database 
with seven classes and 14 input features. In both experiments the BH
RBF classifier provides a lower error rate with fewer centers than are 
required by more conventional RBF, Gaussian mixture, or MLP 
classifiers. 

1 INTRODUCTION 

Radial basis function (RBF) classifiers have been successfully applied to many pattern 
classification problems (Broomhead, 1988, Ng, 1991). These classifiers have the advan
tages of short training times and high classification accuracy. In addition, RBF outputs 
estimate minimum-error Bayesian a posteriori probabilities (Richard, 1991). Performing 
classification with RBF outputs requires selecting the output which is highest for each 
input. In regions where one class dominates, the Bayesian a posteriori probability for that 
class will be uniformly "high" and near 1.0. Detailed modeling of the variation of the 
Bayesian a posteriori probability in these regions is not necessary for classification. Only 
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at the boundary between different classes is accurate estimation of the Bayesian a posteri
ori probability necessary for high classification accuracy. If the boundary between differ
ent classes can be located in the input space, RBF centers can be judiciously allocated in 

those regions without wasting RBF centers in regions where accurate estimation of the 

Bayesian a posteriori probability does not improve classification perfonnance. 

In general, having more RBF centers allows better approximation of the desired output. 
While training a RBF classifier, the number of RBF centers must be selected. The tradi
tional approach has been to randomly choose patterns from the training set as centers, or to 
perfonn K-means clustering on the data and then to use these centers as the RBF centers. 
Frequently the correct number of centers to use is not known a priori and the number of 
centers has to be tuned. Also, with K-means clustering, the centers are distributed without 
considering their usefulness in classification. In contrast, a constructive approach to add
ing RBF centers based on modeling Bayesian a posteriori probabilities accurately only 

near class boundaries provides good perfonnance with fewer centers than are required to 

separately model class PDF's. 

Many algorithms have been proposed for constructively building up the structure of a RBF 
network (Mel, 1991). However. the algorithms proposed have all been designed for train
ing a RBF network to perfonn function mapping. For mapping tasks, accuracy is impor
tant throughout the input region and the mean squared error is the criterion that is 
minimized. In classification tasks, only boundaries between different classes are important 
and the overall mean squared error is not as important as the error in class boundaries. 

2 ALGORITHM DESCRIPTION 

A block diagram of a new boundary hunting RBF (BH-RBF) classifier that adds centers 

constructively near class boundaries is presented in Figure 1. A simple unimodal Gaussian 

classifier is first fonned by clustering the training patterns from a randomly selected class 
and assigning a center to that class. The confusion matrix generated by using this simple 
classifier is then examined to determine the pair of classes A and B, which have the most 
mutual confusion. Training patterns that are close to the boundary between these two 
classes are detennined by looking at the outputs of the RBF classifier. Boundary patterns 
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Figure 1: Block Diagram of Training of BH-RBF Network 
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which produce similar "high" outputs for both classes that are different by less than a 

"closecall" threshold are used to produce new cluster centers. 

Figure 2 shows RBF outputs corresponding to class A and B as the input varies over a 
small range. This figure illustrates how network outputs are used to determine the "close
call" region between classes. Network outputs are high in regions dominated by a particu
lar class and therefore these regions are outside the boundary between different classes. 
Networlc outputs are close in the region where the absolute difference of the two highest 
network outputs is less than the closecall threshold. Training patterns which fall into this 
closecall region plus all the points that are misclassified as the other class in the class pair 
are considered to be points in the boundary. For example, a pattern in class A which is 
misclassified as class B would be considered to be in the boundary between class A and B. 

On the other hand, a pattern in class A which is misclassified as class C would not be 

placed in the boundary between class A and B. 
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Figure 2: Using the Network Output to Determine Closecall Regions 

After the patterns which belong in the boundary are determined, clustering is performed 
separately on boundary patterns from different classes using K-means clustering and a 

number of centers ranging from zero to a preset maximum number of centers. After the 
centers are found, new RBF classifiers are trained using the new sets of centers plus the 

original set of centers. The combined set of centers that provides the best performance is 
saved and the cycle repeats again by fmding the next class pair which accounts for the 

most remaining confusions. Overfitting by adding too many centers at a time is avoided by 
using the predicted squared error (PSE) as the criterion for choosing new centers (Barron, 

1984): 

Cxa2 
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In this equation, RMS is the root mean squared error on the training set, (12 estimates the 

variance of the error, C is the total number of centers in the RBF classifier, and N is the 
total number of patterns in the training set. The error variance (12 is selected empirically 

using left-out evaluation data. Different values of cr2 are tried and the value which pro
vides the best performance on the evaluation data is chosen. On each cycle, different num

ber of centers are tried for each class of the selected class pair and the PSE is used to select 
the best subset of centers. The best PSE on each cycle is used to determine when training 
should be stopped to prevent overfitting. Training stops after the PSE has not decreased 
for five consecuti ve cycles. 

3 EXPERIMENTAL RESULTS 

Two experiments were performed using the new BH-RBF classifier, a more conventional 
RBF classifier, a Gaussian mixture classifier (Ng, 1991), and aMLP classifier. Five regu
lar RBF classifiers (RBF) were trained by asSigning 1, 2, 3,4, or 5 centers to each class. 
Similarly, five Gaussian mixture classifiers (GMIX) were trained with 1,2,3,4, or 5 cen
ters in each class. The means of each center were trained individually using K-means clus

tering to find the centers for patterns from each class. The diagonal covariance of each 
center was set using all the patterns that were assigned to a cluster during the last pass of 
K-means clustering. The structure of the regular RBF classifier and the Gaussian mixture 

classifier are identical when the number of centers are the same. The only difference 
between the classifiers is the method used to train parameters. 

MLP classifiers were trained for 10 independent trials for each data set. The number of 
hidden nodes was varied from 2 to 30 in increments of 2. The goal of the experiment was 
to explore the relationship between the complexity of the classifier and the classification 
accuracy of the classifier. Training was stopped using cross validation to avoid overfitting. 

3.1 FOUR-CLUSTER DATABASE 

The flfst problem is an artificial data set designed to illustrate the difference between BH

RBF and other classifiers. There are two classes, each class consist of one large Gaussian 
cluster with 700 random points and three smaller clusters with 100 points each. Figure 3 
shows the distribution of the data and the ideal decision boundary if the actual centers and 

variances are used to train a Bayesian minimum error classifier. There were 2000 training 
patterns, 2000 evaluation patterns, and 2000 test patterns. The BH -RBF classifier was 
trained with the closecall threshold set to 0.75, (12 set to 0.5, and a maximum of two extra 
centers per class at between each pair of classes. The theoretically optimal Bayesian clas
sifier for this database provides the error rate of 1.95% on the test set. This optimal Baye
sian classifier is obtained using the actual centers, variances, and a priori probability used 
to generate the data in a Gaussian mixture classifier. In a real classification task, these cen
ter parameters are not known and have to be estimated from training data. 

Figure 4 shows the testing error rate of the three different classifiers. The BH-RBF classi

fier was able to achieve 2.35% error rate with only 5 centers and the error rate gradually 
decreased to 2.15% with 15 centers. The BH-RBF classifier performed well with few cen
ters because it allocated these centers near the boundary between the two classes. On the 
other hand, the perfonnance of the RBF classifier and the Gaussian mixture classifier was 
worse with few centers. These classifiers perfonned worse because they allocated centers 
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Figure 3: The Artificially Generated Four-Cluster Problem 
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Figure 4: Testing Error Rate Of The BH-RBF Classifier, The Gaussian Mixture 
Classifier, And The Regular RBF Classifier On The Four-Cluster Problem. 

in regions that had many patterns. The training algorithm did not distinguish between pat
terns that are easily confusable between classes (Le. near the class boundary) and patterns 
that clearly belong in a given class. Furthermore, adding more centers did not monotoni-
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cally decrease the error rate. For example, the RBF classifier had 5% error using two cen
ters, but when the number of centers was increased to four, the error rate jumped to 11 %. 

Only until the number of centers increased above 14 did the RBF classifier and the Gauss

ian mixture classifier's error rates converge. The RBF and the Gaussian mixture classifiers 
performed poorly with few centers because the centers were concentrated away from the 

decision boundary due to the high concentration of data far away from the boundary. 
Thus, there weren't enough centers to model the decision boundary accurately. The BH
RBF classifier added centers near the boundary and thus was able to define an accurate 
boundary with fewer centers. 

Figure 5 presents the results from training MLP classifiers on the same data set using dif
ferent numbers of hidden nodes. The learning rate was set to 0.001, the momentum term 

was set to 0.6, and each classifier was trained for 100 epochs. The error rate on a left out 

evaluation set was checked to assure that the net had not overfitted the training data. As 
the number of hidden nodes increased, the MLP classifier generally performed better. 
However, the testing error rate did not decrease monotonically as the number of hidden 

nodes increased. Furthermore, the random initial condition set by the different random 
seeds affected the classification error rate of each classifier. In comparison, the training 
algorithms used for BH -RBF, RBF, and GMIX classifiers do not exhibit such sensitivity 
to initial conditions. 
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Figure 5: Testing Error Rate Of The MLP Classifiers On The Four-Cluster Problem 

3.2 SEISMIC DATABASE 

The second problem consists of data for classification of seismic events. The input consist 
of 14 continuous and binary measurements derived from seismic waveform signals. These 
features are used to classify a wavefonn as belonging to one of 7 classes which represent 

different seismic phases. There were 3038 training, 3033 evaluation, and 3034 testing pat-
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Figure 6: Error Rate Comparison Between The BH -RBF Classifier, The Regular 
RBF Classifier, And The Gaussian Mixture Classifier On The Seismic Problem 

terns. Once again, the number of centers per class was varied from 1 to 5 for the regular 
RBF classifier and the Gaussian mixture classifier, while the BH-RBF classifier was 

started with 1 center in the frrst class and then more centers were automaticallY assigned. 
The BH-RBF classifier was trained with the closecall threshold set to 0.75, (52 set to 0.5, 

and a maximum of one extra center per class at each boundary. The parameters were cho
sen according to the performance of the classifier on the left-out evaluation data. For this 

problem, the closecall threshold and (52 turned out to be the same as the ones used in the 
four-cluster problem. 

Figure 6 shows the error rate on the testing patterns for all three classifiers. The BH-RBF 

classifier clearly performed better than the regular RBF classifier and the Gaussian mix
ture classifier. The BH-RBF classifier added centers only at the boundary region where 
they improved discrimination. Also, the diagonal covariance of the added centers are more 

local in their influence and can improve discrimination of a particular boundary without 
affecting other decision region boundaries. 

MLP classifiers were also trained on this data set with the number of hidden nodes varying 
from 2 to 32 in increments of 2. The learning rate was set to 0.001, the momentum term 
was set to 0.6, and each classifier was trained for 100 epochs. The classification error rate 
on the left-out evaluation set showed that the network had not overfitted on the training 
data. Once more, the MLP classifiers exhibited great sensitivity to initial conditions, espe
cially when the number of hidden nodes were small. Also, for this high dimensionality 
classification task, even the best performance of the MLP classifier (15.5%) did not match 

the best performance of the BH-RBF classifier. This result suggests that for this high 
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dimensionality data, the radially symmetric boundaries fonned with local basis functions 
such as the RBF classifier are more appropriate than the ridge-like boundaries formed with 
the MLP classifier. 

4 CONCLUSION 

A new boundary-hunting RBF classifier was developed which adds RBF centers construc
tively near boundaries of classes which produce classification confusions. Experimental 
results from two problems differing in input dimension, number of classes, and difficulty 

show that the BH-RBF classifier performed better than traditional training algorithms used 

for RBF, Gaussian mixture, and MLP classifiers. Experiments have also been conducted 

on other problems such as Peterson and Barney's vowel database and the disjoint database 

used by Ng (Peterson, 1952, Ng, 1990). In all experiments, the BH-RBF constructive 
algorithm performed at least as well as the traditional RBF training algorithm. These 

results, and the experiments described above, confirm the hypothesis that better discrimi

nation performance can be achieved by training a classifier to perform discrimination 

instead of probability density function estimation. 
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