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Abstract

A method is derived for the solution of boundary value problems governed by a
second-order elliptic partial differential equation with variable coefficients. The
method is obtained by expressing the solution to a particular problem in terms of an
integral taken round the boundary of the region under consideration.

1. Introduction

The boundary integral equation method has been shown to be an effective technique
for the numerical solution of boundary value problems governed by linear elliptic
partial differential equations with constant coefficients (see, for example, Cruse and
Lachat [4], Cruse and Rizzo [5], Zienkiewicz et al. [6]). The method consists of
expressing the solution to a particular boundary value problem in terms of an
integral taken round the boundary of the region under consideration. The numerical
solution of this integral equation is then obtained by replacing the integral by a sum
and solving the resulting system of linear algebraic equations. Hence, since the
method involves the discretization of only the boundary and not the whole domain,
it offers some advantages over the finite element and finite difference procedures.

The aim of the present paper is to derive a boundary integral equation method for
the solution of a second-order linear elliptic partial differential equation with
variable coefficients. The equation considered governs certain important classes of
thermostatic, elastostatic and electrostatic problems and hence the method provides
an alternative to existing numerical procedures for a significant class of problems. A
particular numerical example is considered in order to demonstrate the application
of the method.

218

https://doi.org/10.1017/S0334270000002290 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000002290


[2] A boundary integral equation method 219

2. The boundary value problem

Consider the elliptic partial differential equation

where K(x) is a known function of the independent variable x. A solution to (2.1) is
required which is valid in a region R in E2 with boundary C which consists of a finite
number of piecewise smooth closed curves. On C, either the dependent variable <f> is
specified or d<j)/dn is specified, where n denotes the outward pointing normal to C.

Problems governed by equation (2.1) typically occur in plane inhomogeneous
thermostatics or elastostatics with the independent variables x arid y denoting the
coordinates of a point in a Cartesian frame and <p being the temperature or
displacement. In such applications the function K(x) would represent a material
parameter. From a practical viewpoint it is therefore reasonable to require that K(x)
be nonzero throughout the region R under consideration. Further, K(x) will be
required to be continuous and have continuous derivatives in R.

Although in the current discussion attention will be restricted to the equation (2.1)
it is appropriate to note that the more general equation

^-+a(^ + b(i)U + c(i)^- = 0, (2.2)

with c(£) > 0, can be transformed readily into (2.1) by a simple change of the
independent and dependent variables (see Clements and Rogers [3] for details).
Hence a number of boundary value problems for equations of the type (2.2) may be
solved readily by employing the procedure outlined in this paper.

The method of solution will be to express the solution to the boundary value
problem in terms of an integral taken round the boundary C of the region R under
consideration. Standard numerical procedures may then be used to solve the
resulting integral equation.

3. Solution of (2.1) in terms of an arbitrary harmonic function

In (2.1) set

(3.1)
to obtain

V 2 ^ - A ( x ) ^ = 0 , (3.2)
where

d \(dK\2LS\j(dK\ . . . .
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and

Consider the possibility of finding a solution to (3.2) in the form

<l>= I hn(x)Fn(x,y), (3.4)
n = 0

where the Fn are harmonic functions. Substitution of (3.4) into the left-hand side of
(3.2) yields

Hence (3.4) will be a solution to (3.2) if the hn(x) and Fn(x, y) satisfy the equations

- j - 2 = F n _ ! for n ^ 1 (3.6)

and

2—~LL+-j-jL—\hn=0 for n > 0 (h0 constant). (3.7)

The functions Fn in (3.6) are harmonic functions of x and y. For the present
purposes it is convenient to represent these harmonic functions as the real parts of
analytic functions of the complex variable z = x + iy. Specifically, consider the
functions <Dn(z) such that <D0(z) is an arbitrary analytic function with

<Dn(z) = f<DB.,(t)<it for II = 1,2,..., (3.8)
Jo

and

F (x v) = <%[$> (z)\ for n = 1 2 (3 9)

where ^2 denotes the real part of a complex number. Then, using (3.8),

showing that the Fn given by (3.9) satisfy (3.6). Now, from (3.8),

<*>n(z) = j^Ti)! [ V - t r ' O o W * for n 3*1, (3.10)

so that

Fn(x,y) = (-^T)f
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Hence the solution to (3.2) takes the form

«>o(z) + n | i ( ^ r | o
Z ( z - O n - 1 « > o W ^ } . (3-12)

Thus, from (3.1) and (3.12),

4>{x,y) = [JC(x)]-*«j/io*o(z) + ̂ ( ^T j jT J j ^ - t r - ^ o W d t } - (3-13)

Equation (3.13) provides the required solution to (2.1) in any domain in which the
infinite series converges uniformly. The uniform convergence of the series may be
investigated after the manner of Bergman [1]. Here it will suffice to note that for
certain nontrivial cases the series in (3.13) truncates after a finite number of terms
and in such cases (3.13) certainly provides the required solution to (2.1). For
example, if the series terminates after only one term, so that hn = 0 for n > 0, then
(3.7) yields A = 0 and (3.3) provides

K(x) = (<xx + /?)2, (3.14)

where a and /? are constants. Hence, if K(x) is given by (3.14), then equation (2.1)
admits a solution in terms of an arbitrary analytic function <f>0(z) in the form

(p{x,y) = (ax + /?r 1 ^{/ i o 0 o (z)} , (3.15)

where h0 is an arbitrary constant. In the case when the series terminates after two
terms, so that hn = 0 for n > 1, equation (3.7) yields

A = ^ L ^ , (3.16)
"o

and

d2h, =Ah

2hx

Hence

and

where y and S are constants.

/,

A

From

K(x

~ K '

1 yx + 8'

= (yx+df

(3.3) and (3.19) it.now follows that

) = {yx + 5y2.

(3.18)

(3.19)

(3.20)
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Thus, if K(x) is given by (3.20), then equation (2.1) admits a solution in terms of an
arbitrary analytic function <t>0(

z) m t n e f ° r m

cP(x,y) = (yx + d)®lho%(z)-^^{\(t)dt\. (3.21)

More generally, if K(x) has the form

(3.22)

then

A(x) = *-j-(p — 2)(ax + P)~2 (3.23)

so that, taking h0 = 1,

h2(x) = ~p(p-2){p + 2){p-4)(ax + li)-2, (3.24)

"f >2 -(2r)2]K(x) = {-=^-piP ~2") f l \J>2 -(2r)2] (ax
In r=i

Hence, from (3.13),

0(x,y) = (ax+ /?)-*" *{fco4»0(2)}
o o f / l^B(Yn " ~ '

+ I \K^-p(p-2n) n [p2-(2r)2]
l ( i « l

r = l

x (ax + P) -" X (z -1)"" J <P0(r) dt i. (3.25)

It is clear that, if p = 27V for TV = 0, + 1, ±2 , then the series for <p truncates after a
finite number of terms.

4. A reciprocal theorem

THEOREM. Let <f> be a solution of

valid in the region R in E2 bounded by the contour C consisting of a finite number of
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piecewise smooth closed curves. Also, let 4>' be another solution of (4.1) valid in R. Then

PROOF.

R (4.3)
i LIA v*. KJ y v y j I

Similarly,

The required result is immediately obtained by subtracting (4.4) from (4.3) and using
(4.1).

5. The integral equation

In (4.1) let (f> denote a required solution to a boundary value problem governed by
(2.1), and let 4>' be the solution given by (3.13) with

<D0(z) = ^ log (z-z 0 ) , (5.1)

where z0 = a + ib is a point in R. Hence

(5.2)

If (4.2) is to be valid with 4>' given by (5.2), then it is necessary to exclude the point
(a, b) by surrounding it with a small circle F of radius e. Then (4.2) yields

- a ( 5 - 3 )
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Now, on F,

x = a + ecos0, y = b+esin9, z = zo + eexp(id),

so that

r z o + Eexp(ifl
(5.4)

It may be verified readily that, on F, for small e,

1 hn

Hence, for small e,

J r
 X dn S 2%

f2"
X i

Jo

K(a+e cos 9) <p(a+ecos 9,b+e sin 9) d9 + O(e log e)

= - /io[K(fl)]* 0(a, ft) + O(£ log e). (5.7)

Also, if d<pIdn is required to be bounded in R, then, since K(x) is also bounded in R, it
immediately follows from (5.5) that, for small e,

K(x) ^4>'ds = O(e log e). (5.8)
jr on

Hence

lim f K(x) fe<j>'-^-AlS = (5.9)

Thus (5.3) yields

(5.10)

Equation (5.10) provides the required integral equation which expresses the
solution to a particular boundary value problem in terms of an integral taken round
the boundary of the region under consideration. If the point (a, b) is on the boundary
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C of the region R, then (5.10) should be replaced by

where A is a constant with 0 < X < 1. If C has a continuously turning tangent then

In general, (5.10) will not readily provide a useful analytical solution to a well-
posed boundary value problem. However, it may be used to obtain a numerical
solution to a particular boundary-value problem as follows. Suppose 0 is given on
C. Then (5.11) may be considered to be an integral equation for the unknown d<j>/dn
on C. The integral is replaced by a sum and d<j)/dn determined at a number of points
of the boundary. Equation (5.10) then yields a numerical value of 0 at any interior
point of interest. Alternatively, if d<f>/dn is given on C, then (5.11) may be treated as an
integral equation to determine 0 on C. Once this has been done equation (5.10)
yields 0 at any interior point.

6. A numerical example

To demonstrate the numerical procedure, consider the following boundary value
problem. Find a solution to

£K[£h
which is valid in the square l < x < 2 , l < y < 2 , and is subject to the boundary
conditions

<p = y, on x = 1,

<t> = y, on x = 2,
(6.2)

0 = 1 , on y = 1,

0 = 2, on y = 2.

This problem admits the analytical solution 4> = y which may be obtained from
(3.21) by putting 5 = 0, /? = h0 = 1 and Q>0 = i.

For the particular equation (6.1), K(x) = x" 2 , so that the integral equation (5.10)
for the numerical solution of the problem is

, b) = - a [ x ~ 2W; 0'" ̂  0 ] ds, (6.3)

where X = 1 if (a,b)eR and 0 < X < 1 if (a, b)eC, and where the arbitrary constant
h0 has been put equal to one. With K(x) = x~2 it follows (see Section 3) that the
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constants hn in the series (5.2) are given by

h0 = 1, hi = - - and hn = 0 for n ^ 2.

Hence the function <f>' in (6.3) is given, from (5.2), by

4>'{x,y) = ^ { x l o g ( z - z 0 ) - ( z - z 0 ) l o g ( z - z 0 ) + z -z jog ( -z 0 )} . (6.4)

Elementary differentiation now yields the normal derivative in the form

( 6 5 )

In the integral in (6.3) the only unknown is the normal derivative d(p/dn. To obtain
this derivative it is convenient first to let </> = 1 in (6.3) to obtain

so that (6.3) may be written in the form

-\<t>{x,y)-<t>{a,b)-]d-^ds. (6.7)

This equation may be employed to obtain numerical values of d<t>/dn on various
points on C (see Clements and King [2] for details of the numerical procedure). Once
this has been done, equations (6.3) with X = 1 yields (j> at all interior points.

Values of d<t>/dn calculated from (6.7) are given in Table 1 for the case when each
side of the square is divided into two segments. It is apparent that for this simple

TABLE 1

Comparison of analytical and numerical solution for eight segments

Position
(x,y)

(1, 1.75)
(1, 1.25)
(1.25, 1)
(1.75, 1)
(2, 1.25)
(2, 1.75)
(1.75, 2)
(1.25, 2)

Analytical
solution

0
0

- 1
- 1

0
0
1
1

Numerical
solution

0.006
-0.006
-1.001
-0.998

0.001
-0.001

0.998
1.001
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problem the numerical results obtained from (6.7) compare favourably with those
obtained from the analytical solution even though the number of boundary
segments is small.

Although only the case K(x) = x~2 has been considered in this example, it is clear
that the case K(x) = (/foe + S)~2 may be treated in a very similar way with only minor
modifications being needed in (6.4) and (6.5). Further, the case K(x) = (ax + /?)2

would lead to even simpler forms for the auxiliary function $' and its normal
derivative. Both of these forms for K(x) contain two parameters which may be used
to fit them to discrete numerical values of K(x).

7. Evaluation of </>'

The example considered in the previous section does not provide any substantial
information about how the auxiliary function (f>' should be evaluated numerically
for more general forms for K(x). We now consider this question and first examine the
integral in (5.2). This may be written in the form

i I(z-z0)-(t-z0)y-llog(t-z0)dt
0

l)\ {z~?+i{(z~z°r' 'og(z~ *6>-(-*or

-{r+\)-\z-zoy
+l+{r + irl{-Zoy+l}- (7-1)

Thus the integral in (5.2) may be replaced exactly by a finite sum which may be
evaluated in a straightforward way for particular numerical values of z, zQ and n.

Consider next the evaluation of hn(x). If K(x) = (ax + /?)p, then the explicit forms
given in (3.24) for hn(x) are relevant and the numerical evaluation of this function
presents no special problem. When simple analytical expressions cannot be
obtained for the hn{x), the derivatives in (3.7) may be replaced by appropriate finite
difference formulas. Equation (3.7) then readily provides numerical values of hn+ ,(x)
at a discrete set of points in the interval of interest.

Thus, if numerical values of K(x) are given and no analytical form is known, then it
is possible to proceed in two different ways. Firstly, an attempt may be made to fit
one of the three parameter forms (ax + PY to the numerical data. If this can be done
sufficiently accurately then the analytical forms (3.24) are available for the hn(x).
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Secondly, from (3.3) we have

1 d2K 1 fdK\2 ._..
{ (72)

The derivatives on the right side may be replaced by finite difference formulas and
hence numerical values of A(x) obtained. Numerical values of hn(x) are then obtained
from (3.7) by replacing the derivatives by finite difference formulas.
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