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Summary. A simple, analytical model for mantle convection with mobile 
surface plates is presented. Our aim is to determine under what conditions 
free convection can account for the observed plate motions, and to evaluate 
the thermal structure of the mantle existing under these conditions. 
Boundary layer methods are used to represent two-dimensional cellular con- 
vection at large Rayleigh and infinite Prandtl numbers. The steady-state 
structure consists of cells with isentropic interiors enclosed by thermal 
boundary layers. Lithospheric plates are represented as upper surfaces on 
each cell free to move at a uniform speed. Buoyancy forces are concentrated 
in narrow rising and decending thermal plumes; torques imparted by these 
plumes drive both the deformable mantle and overlying plate. Solutions are 
found for a comprehensive range of cell sizes. We derive an expression for the 
plate speed as a function of its length, the mantle viscosity and surface heat 
flux. Using mean values for these parameters, we find that thermal convection 
extending to 700 km depth can move plates at 1 cm yr-’, while convection 
through the whole mantle can move plates at 4-5 cm yr-’. Analysis of the 
steady-state temperature field, for the case of heating from below, shows that 
the upper thermal boundary layer develops a complex structure, including an 
‘asthenosphere’ defined by a local maximum in the geotherm occurring at 
depths of 50-1 50 km. 

1 Introduction 

We present here an analytical, boundary layer theory to describe the interaction of mantle 
convection with surface plates. Our chief purpose is to address the following question: 
Can lithospheric plates be moved at their observed speeds by the action of mantle con- 
vection? It seems that past studies have not paid sufficient attention to this question, and 
this is perhaps partly responsible for the current lack of agreement on the r6le played by 
free convection in plate tectonics. 
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Faced with phenomena as complex as plate motions, it is not possible for any individual 
study to explain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall observations or to include all possible complicating effects. With these 
limitations in mind, we restrict attention to the question of whether mantle convection can 
reasonably achieve the surface speeds and stresses to move the plates, Boundary layer theory 
is in some respects well suited to this task since it becomes an increasingly accurate approxi- 
mation in the limit of large Rayleigh numbers, and it is in this limit that substantial 
convective velocities occur. 

On the other hand, an analytical approach restricts consideration to very idealized 
conditions; namely steady-state, two-dimensional flows with constant transport properties. 
Nevertheless, with the boundary layer formulation this ideal case can be analysed so 
succinctly that we are encouraged to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthink that it can be profitably used on more elaborate 
two-dimensional and even three-dimensional problems. 

The plan of this presentation is as follows: Section 2 is devoted to a review of previous 
work, Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 gives a physical description of the problem, in Sections 4 and 5 the velocity 
and temperature fields are found, in Section 6 these two fields are matched and Section 7 
presents the main results as well as a brief discussion of the thermal structure of the mantle 
in light of these results. 

The analysis is confined to Sections 4-6, so the reader not interested in all details may 
pass quickly over these sections. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOlson and G. M. Corcos 

2 Previous work 

Foundations for the boundary layer approach were fEst developed by Turcotte zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Oxburgh 
(1967); see also Turcotte (1967). This work demonstrated that for steady cellular 
convection in a horizontal layer at large Rayleigh numbers each cell develops an isothermal 
core surrounded by thin thermal boundary layers. As long as the transport properties remain 
constant, the convection is simply a Stokes flow driven by buoyancy of the thermal layers. 
Turcotte & Oxburgh presented a simplified analysis of the problem, which among other 
things ignored the heat transferred by buoyant plumes, and which treated the upper surface 
as a free boundary. Later, Robinson (1967) presented an improved version of the boundary 
layer structure, but did not carry through a complete calculation of the flow at infinite 
Prandtl number, which is the limit of interest in mantle dynamics. 

Since then, the emphasis has been on numerical finite difference methods which have the 
capability of including three space dimensions, time dependence as well as variable transport 
properties. 

Moore & Weiss (1973) performed numerical experiments on convection driven by heat 
supplied from below in square domains over a wide range of Prandtl numbers. At infinite 
Prandtl number, they obtained steady solutions for Rayleigh numbers up to 2 lo6 which 
represented roughly the limiting value of this parameter imposed by their choice of grid size. 
Extensive calculations on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthe same domain were carried out by McKenzie, Roberts & Weiss 
(1 974). 

Both of the above studies included free upper boundaries plus constant transport 
properties with the result that the upper surface of each cell did not behave like a plate. The 
presence of plates, that is an upper surface which moves with a piece-wise constant velocity, 
is an essential feature of mantle convection, and there have been numerous investigations 
which in one way or another have sought to incorporate this. Houston & DeBremacker 
(1975) studied convection in layers with strongly temperature and pressure dependent 
viscosity. While the variable viscosity strongly affected the flow (for example they obtained 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/6
2
/1

/1
9
5
/6

2
0
8
2
6
 b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Mantle convection model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA197 

the surprising result that elongated cells with aspect ratios up to 8.6 were stable), the upper 
surface did in no case become a moving plate. Evidently the existence of moving, discrete 
plates implies a complicated rheological behaviour that is not justifiably represented by 
viscosity alone, even if it is dependent on state variables. The rheological contrast between 
the plates and underlying mantle also means among other things that the stability of a 
particular configuration of trenches and ridges is not wholly a fluid mechanics problem. 
Though this point has long been recognized, most geophysicists are still inclined to use 
results from the theory of thermal instability in homogeneous layers to predict the scales of 
motion, simply because of a lack of alternatives. 

Recently there have been some attempts to include effects of this inhomogeneity by 
representing plate motions as a kinematic condition along the upper surface of the 
convecting domain. Parmentier zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Turcotte (1978) investigated, numerically, convection 
beneath a uniformly translating upper boundary. They found that for even small rates of 
translation and vigorous heating, the circulation is dominated by the moving boundary, and 
that smaller scale flows driven by interior buoyancy play a secondary r61e. One difficulty 
in interpreting these results is the fact that the surface velocity is externally prescribed 
rather than determined by the energetics of a closed system. In this paper, the deformable 
mantle and overlying plate will be taken to be a single system and the plate motion will be 
a result of interior, thermally induced buoyancy forces. This point of view is similar to that 
adopted by Lux, Davies & Thomas (1979) who used numerical methods to determine 
translation speeds for a free drifting plate overlying a convecting layer. 

Finally, we note that there has been some iniiial work on the very difficult problem of 
three-dimensional convection in a spherical domain (Schubert & Young 1976). At least in 
principle, the methods developed in the present study can be extended to three-dimensional 
flows. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A limitation in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall the above mentioned finite difference approaches is that at large 
Rayleigh numbers the temperature field becomes confiied to thin layers which are not 
adequately resolved by a uniform mesh. This problem is avoidable using boundary layer 
analysis, in which the heat and momentum equations are solved over separate domains, and 
their solutions can be matched by simple quadrature. The methods we develop here are an 
improvement upon the coarse approximations used by Turcotte & Oxburgh. We derive 
analytic expressions for temperature and velocity fields, and present solutions for a wide 
range of cell sizes. In principle, the accuracy of this method is limited only by the approxi- 
mations of boundary layer theory. Numerical results for viscous BBnard convection using 
boundary layer approximations are given by Roberts (1979), and our analytical results agree 
with his in order of magnitude. 

3 Formulation of problem 

The system to be considered is a layer of fluid with infiiite Prandtl number bounded by 
horizontal surfaces zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ = 0, D which are kept at temperatures zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATo and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATI respectively. We zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill 
investigate steady motions in the form of two-dimensional rolls of width AD, arranged 
periodically in the X direction (see Fig. 1). 

By choice, the lower boundary is taken to be stress free; other conditions are easily 
handled. Because of low temperatures, the upper surface remains undeformed and is free to 
move only at a constant speed. The speed is determined by specifying the net shear stress 
on the plate: in this work we take the plate to be horizontal with no net stress acting on it; 
however, applied net stresses can be included if desirable. Because of its si-nplicity, we will 
mainly be concerned with convection in the absence of internal heat sources, in which case 
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198 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOlson and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. M. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACorcos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt- 

i 
T = To zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAD 

Figwe 1. coordinate system used in analysis, with uppel an& 1~we1 sulkceskept at temperatxm T an6 
T,,, respectively. Circulation is clockwise. 

m H e o t e d  U C o o l e d  

Figure 2. Sketch of circulation showing streamlines plus hot and cold thermal boundary layers and 
plumes. 

the heat flux across the lower surface equals the flux across the upper one. In addition to the 
results with a moving plate, we include the solution for convection in a homogeneous fluid 
with both boundaries stress free (the Rayleigh-BBnard problem). This allows comparison 
between our asymptotic results and numerical simulations carried out at large but finite 
Rayleigh numbers. 

Fig. 2 is a sketch of the interior structure when all heat is supplied from below. At large 
Rayleigh numbers, all heat entering through the lower boundary is swept into a thin thermal 
boundary layer and delivered to thermal plumes which form along vertical planes between 
cells. Throughout we refer to the vertical thermal layers as ‘plumes’, the horizontal thermal 
layers are simply called ‘boundary layers’. Since all the heat is transported within thermal 
boundary layers, the circulating mantle material enclosed within the layers is shielded from 
temperature fluctuations, and with time any existing non-adiabatic temperature anomalies 
become reduced by diffusion. In steady state, the interior is isentropic. The temperature 
field in the boundary layers is best understood by following a small control volume of the 
boundary layer material. As it circulates about the cell it is alternatingly heated at the lower 
surface, cooled at the upper one, and insulated in the plumes. Hence the parcel is subjected 
to periodically varying temperatures at its outer edge; the resulting temperature profile is 
oscillatory with an exponentially decreasing amplitude away from the cell edge. 

To a good approximation, the behaviour can be represented as follows. The ascending 
plume arrives at the upper surface, and spreads out to form a hot layer between the cold 
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Mantle convection model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA199 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
material immediately adjacent to the free surface and the warm, isentropic interior. This hot 
layer is defined by a local maximum in the boundary layer temperature profile. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs Fig. 2 
indicates, the hot layer gradually erodes downstream so that the boundary layer becomes 
very nearly (but not exactly) self-similar as it approaches the descending plume. The lower 
layer has structure conjugate to the upper one. In this arrangement, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall buoyancy is 
concentrated in narrow plumes, and the entire flow is a two-dimensional Stokes flow driven 
at its edges by buoyancy forces. 

If all hesrt is produced by internal volumetric sources, there is no ascending plume and no 
hot layer below the upper surface. In place of the ascending plume is a broad ascending 
region extending over most of the cell, and in this case the interior is no longer adiabatic: 
a small subadiabatic gradient develops as the plume material becomes reheated during its 
gradual ascent. 

Since we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfur the plume positions and assume a steady state, we cannot decide exactly 
which cell sizes are stable and which are unstable, The question of stability in subsolidus 
convection has proven to be troublesome, largely because we lack an adequate rheological 
description for surface plates. However, we find that the behaviour of the lower boundary 
layer can be used as a stability criteria since its thickness and hence its stability depends 
strongly on the width of the cell. 

Finally, we note that the choice of rectangular shaped cells is a matter of convenience. It 
is a straightforward matter to apply this analysis to a cylindrical annular domain; this would 
simulate the effects of curved level surfaces; for @stance the plates would then move with 
constant angular velocities. 

4 Equations of motion; the stream-function 

In this section the stream-function for the flow is obtained. The equations of motion, with 
Boussinesq approximation are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-- - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkV28 t H. de 

d t  

Here u(= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZu t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAiW) is velocity, PI is reduced pressure, (Y is thermal expansion, g is accelera- 
tion of gravity, v is kinematic viscosity, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk is thermal diffusivity, H i s  specific heat source 
density, pm is mean density, and 

is the deviation of temperature from its mean value. 
The boundary conditions on horizontal surfaces are 

w = auiaz = 0. 

w = cau/az) = o 
onZ=D, 

8 = - AT12 
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where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( ) denotes horizontal average. For the case of a homogeneous fluid, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwith no surface 
plate, the boundary condition (2b) becomes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR Olson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand G. M. Corcos 

onZ=D.  

For both cases, we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
U = O  o n X =  0, AD. 

Turcotte & Oxburgh (1967) and Roberts (1977) have shown that these conditions may be 
applied directly to the interior flow. The remaining, non-homogeneous conditions will be 
derived later in this section. 

In distinguishing between dimensional and dimensionless variables, the following notation 
convention is adhered to. Initially, we define non-dimensional variables with asterisks; this 
convention is dropped when the non-dimensional equations have been formulated, since 
non-dimensional equations are dealt with exclusively throughout the remainder of this 
section and the next one. However, the final parts, Sections 7-8, include discussion of 
formulae with both dimensional and non-dimensioned variables, and there we return to the 
convention of denoting dimensionless quantities with asterisks. 

Our choice of scaling is such as to make the velocity 0(1) throughout the domain. 
Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

X = DX* 

u = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuou , * where uo = kR213/D (3) 

e =  AT^* 

kATR'13 
H = -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH* 

D2 

where Cp is specific heat, and R is the Rayleigh number, defmed below. With these the 
equations of motion (1) become 

where Pr = v/k is the Prandtl number, and 

agD3 
R=- AT 

kv 

is the Rayleigh number. The Boussinesq approximation we have adopted here is valid if the 
dissipation number Di = agD/C, is less than unity (Turcotte et al. 1974). Using values 
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Mantle zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAconvection model 20 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

from Table 2, we have Di zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA ti 113 for D = 2900 km, so that this approximation is at least 
formally valid, This is helpful because it allows us to carry out the computation assuming 
incompressibility, and then simply add adiabatic increases to our computed temperature 
profiles to produce model geotherms. With the Boussinesq approximation, and the 
effectively infinite Prandtl number (for the mantle P r =  loz4, so the left-hand side of 
equation (4a) is neghgible) only two parameters are left: R and the cell width A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAll 
variables can be expressed in terms of these two quantities. 

Note that the energy equation (4c) is scaled on the layer depth D .  This is not appropriate 
within the thermal layers since there the conductive and advective terms must be of the same 
order. These two terms balance in the thermal layers only if the boundary layer thickness 6 
is 0(DR-”3),  or in dimensionless terms, 6” - Rd113. This means that the Nusselt number is 

NU - 116” - R113. 

Our scaling then yields the following two functional relationships 

Nu = qD/KAT = al(A)R1l3 (5 a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k 

D 
V =  a2(A) - R2’3 

where Y is the plate speed, q is surface heat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflux and K is thermal conductivity and a$, a2 
are geometrical factors. These two may be usefully combined to eliminate the temperature 
increment AT (Elsasser, Olson & Marsh 1979). The result is an expression for the plate 
velocity in terms of the convecting layer thickness and some geophysically measurable 
parameters: 

Here zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp is dynamic viscosity, and the factors a ,  and a2 are functions of the cell aspect ratio A 
which will be determined in the subsequent analysis. Use of formula (6)  is made in Section 7. 

It is important to note that the Rayleigh and Nusselt numbers as defined here play 
different r6les depending on whether the heat is generated internally or supplied from 
below. For the case of heating from below, R is fured and Nu depends on it, but if all heat 
is internally generated q is fixed while AT, the temperature rise across the layer and hence R 
are variable. 

Now it is possible to derive the remaining, non-homogeneous boundary conditions which 
are to be applied along vertical edges of the cell. Let y be that fraction of the heat carried 
by the plume at X =  0; when heat is supplied entirely from below y = 112. The heat trans- 
ferred by both plumes may be equated to the heat entering or leaving the cell to yield zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6: being the plume thickness, and 0; the temperature in the cell’s interior. Within the 
plumes, the momentum equation (4a) can be integrated once to yield 
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202 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In the limit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACQ, 6; + 0, in which case equations (7) and (8) combine to yield 

P. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOlson and G. M. Corcos 

(1 -y )ANu 
at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX* = A. - - 

R 1 /3  

These non-homogeneous boundary conditions determine the interior flow. 
Equation (8) implies that each plume acts as a source of vorticity whose strength is U(1). 

This vorticity can be compared with vorticity induced by temperature anomalies in the cell 
interior. When R is large, and away from boundaries, equation (4c) reduces to 

-- - 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd0 * 
dt* 

or 

e* = 0*(l)*) 

l) * being the stream-function. Because of the boundary conditions on temperature (equations 
2), O* approaches a constant in the interior, 07 Referring to equation (4c), the interior is 
isentropic to U(R-2 /3 )  for heat from below, and is isentropic to U(R-"3) for heat generated 
internally. The curl of equation (4a) yields 

where a* is vorticity. When the heating is from below, the right-hand side of equation (12) 
vanishes to U(R-'l3) and plume sources of vorticity are large compared with internal 
sources. If all heat is produced internally, then the right-hand side of equation (12) vanishes 
to U(1) in which case the plumes and interior contribute to the vorticity in roughly equal 
amounts, and the boundary layer method breaks down. 

Thus for heating from below only, equation (12) reduces to 

(13) T*2a* = V*4$* = 0 

where I)* is defined by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu* = -P x V*$* and the flow governed by equation (13) is driven 
by the plumes' buoyancy as expressed in equation (9). This analysis indicates that in the 
presence of internal heat sources, the flow cannot be accurately computed by considering 
buoyancy forces in the plumes only. For basal heating, the problem is now reduced to a 
Stokes flow subject to boundary data which are expressed in terms of the surface heat 
flux. From equations (2), (9) and (13) we have (dropping the asterisk notation now that the 
problem is formulated in dimensionless terms) 

v4l) = 0 

subject to 

o n Z = Q ,  
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Mantle convection model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
- = constant o n Z =  1, 
a9 
az 

($)=o o n Z =  1, 

a$ a2$ - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyANu/R1I3 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ax ax2 (1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY)A.NNU/R~,'~ A' 

- o n X  = 

203 

(15d) 

The general solution to equation (1 4) in a rectangular domain is 

$ = Fl(X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa) t F2(X - iZ) t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2 t iX)F3(X + iZ) + (Z - iX)F4(X- iZ) 

where F1-F4 are arbitrary functions of their arguments. A solution which satisfies equation 
(15a-e)is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9 = 9f t 9 p ,  

cosh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,- [ (X- A/2) cosh a, sinh &]/(A/2 sinh a,) 

cosh a, ctnh a,, 1 A sinnnZ 
9 f =  y g T ) ( ( B n  +Dn)[ 

I1 sinh p, - [(X- A/2)'sinh o!, cosh &]/(A/2 cosh a,) 

tanh a, sinh a, 

where 

4M 2I, 
A , = - - -  

nnP, AP, 

* '" sinw,XdX 
I n =  s, azlz=l 
P, = sinh wn(l + w, tanh an) - a, cosh a, 

q,  = - w, sinh wn tanh on (3 
f- 1.s;. 
n = l  p n  

E -  
M=- 

,= l nrP, 

2qn ' 

The coefficients B, and D, are available to satisfy the remaining two conditions (1 5f). 
The full solution, $ = $ f +  $, is the stream-function when a surface plate is present. The 

first term only, $ = $f is the stream-function for a homogeneous fluid bounded by two free 
surfaces. 
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204 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR Olson and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM. Corcos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
. 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3. Contours of stream-function $ for cells of width A = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.4. Top figure shows circulation driven by 
equally strong ascending and descending plumes. Lower figure shows circulation driven by a single 
descending plume. 

The non-linear character of equation (15f) does not permit the coefficients B, and D, 
to be evaluated analytically. Instead, we set out in Section 6 a recursive algorithm with 
which they can be found. 

As a preliminary illustration, contours of the stream-function with a surface plate present 
are shown in Fig. (3) for a cell with aspect ratio A = 2.4. 

Two cases are illustrated. In the upper diagram, the ascending and descending plumes 
have equal strength (7 = 1 /2) and the stream-function is symmetrical about a vertical plane 
through the cell's midpoint. In the lower figure, there is only a descending plume (y= 0) and 
its buoyancy causes the streamlines to crowd toward the right-hand side of the cell. Because 
of the surface plate, the velocity field, and hence the local heat transfer, is not the same 
along the upper and lower boundaries. This means that the interior temperature zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOf is not 
necessarily the average temperature of the two boundaries, and for the same reason the two 
plumes may not have the same strength. The two sets of contours in Fig. (3) represent the 
extremes in the range of possible plume strengths. In fact, we show in Section 6 that for all 
cell widths 0.2 d A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs 4.0, the proper configuration has two plumes with nearly equal 
strength. 

With the stream-function found, all that remains is to evaluate the Nusselt number, which 
will allow definite values of the stream-function to be assigned to the contours in Fig. (3). 

Our approximation to the stream-function is weakest in the corners where the circulation 
is a Stokes flow only for very large values of R. This can be seen from the following 
dimensional arguments. 

The equation of motion in the corners is, from equation (12), 

If we denote by E the length scale of the corner region, then in order of magnitude this 
becomes 
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Mantle convection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmodel 205 

Since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ/ increases by an amount zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR-'I3 across the corners, equation (1 7) yields zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR-219 

Hence the corners contribute to the buoyancy force an amount e2R1I3 = R-lJ9. Recalling 
that the plumes' contribution to the buoyancy force is 0(1), it is clear that at finite 
Rayleigh numbers the corners may contribute to the driving force a small but non-negligible 
amount. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPlumes and thermal boundary layers 

In this section the thermal boundary layers are analysed in order to relate the surface heat 
flux to the motion. The key requirement here is that the temperature field be periodic 
around the cell edges. Because of this periodicity requirement the easiest starting points are 
the plumes, which are most nearly self-similar. 

The heat equation in the plumes is 

8 = o .  
a2  1 ( a  a x  a z  ax2 

a 
- t W-- 1 1 ~ 2 1 3  - 

Also, from equation (7), we have the integral condition at X = 0 

where 7) is the boundary layer coordinate. Since W is, to 0(6,),  only a function of Z in the 
plume, equation (18) can be written as 

with W' = a W/aZ. We seek solutions to equation (20) of the form 

where Oo is the temperature on the plume axis and is scaled so that 

IOwf (7)) dv = 1 .  

Substituting equation (2 1) into equation (20) yields 

f " t xR2/3(12f '  t f )  = 0, 

h a constant, plus an equation for the thickness: 

W' 

W 
YZ(6;)' t - 6 ;  - X/W = 0. 

Using the constraint (22), solutions to equations (23) and (24) are 

f(v) = exp (- nv2/4), 
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206 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K O  being a constant of integration. The flux integral (19) can be applied to equation (26) 
at the plumes’ 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0 to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfix KO: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOlson and G. M. Corcos 

y 2A2Nu2 
KO= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(e; - o ~ ) ~ R ~ ‘ ~  

where e t = e  (X=O, Z=O). The first term in equation (26) represents a displacement thick- 
ness, the second a diffusion thickness. In this case they are of the same order of magnitude. 
Combining equations (19)-(26), the temperature along the plume axis (X = 0) is 

J O  

This result illustrates that temperature along the plume axis decreases only slowly with 
height, as anticipated in Section 3. For example, approximating W by 0.3 (1 - Z)Z,NU/R”~ 
by 0.15, setting y = 0.5, Bi = 0, and A = 2.0, equation (28) yields 

0,(Z = 1) 

0: 
-= 0.6 

so that the central temperature in the plume is reduced only to about 60’per cent of its 
initial value before reaching the opposite surface. 

The terminus of this plume forms the initial temperature profile for the boundary layers. 
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) is a sketch of an ascending plume incident upon the upper surface Z = 1. It is useful 
to divide the upper surface into two segments, as shown. The segment 0 4 X G XI lies 
directly above the plume in the stagnation region and the heat flux there is controlled by the 
high temperatures of the plume. The approgriate heat equation is 

a a a* 
- W - - 11~2 ’3  - ) e  = o  ( ax az az 

XI 

-- - I---- ---_ .----- 

I sp 

--x 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. Sketch showing detail of thermal phime incident on upper surface: -- strcmhies: - - - - 

isotherms: 6 p  is plume (half) thickness. 
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Mantle convection model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA207 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
OO(O) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdefined by equation (28) evaluated at 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1 - Z = 0. The solution to equations (30) 
and (31) is 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X 

= 1 1 ~ 3  S, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdx'. 

The local Nusselt number is given by 

Beyond Xl, the accelerating flow draws the plume material into a horizontal sheet, so that 
the highest temperatures occur within the boundary layer rather than at its base. This 
behaviour is illustrated in Fig. (2) .  The first task is thus to construct a profde with these 
characteristics which can be used as initial data, and then follow the layer as it evolves 
downstream. 

The portion of this initial profile due to the hot plume material, say Op, is just a continua- 
tion of the plume around the corner: 

ep = ei zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt [e,(o) - e,) [exp (- ~ $ / 4 )  - I], (34) 

here 

%(X,) [eo(o) - e,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR ~ / ~  
17= 

yANu 
(35) 

The remaining part is the contribution from the boundary layer above the plume, given by 
equation (32). Equations (32) and (34) give in combination the composite profile at A',: 

ec = [e,(o) - e j ]  [exp (- nv2/4) - 11 - '/LL t 

The boundary layer can now be evaluated over the segment X1 G X G A by solving equation 
(30) subject to the conditions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e = - M  o n Z = O  

+e, a s Z - z ~  

= B c  on X = X , .  

(37) 

Equation (30) can be transformed into a standard one-dimensional heat equation with the 
help of the Von Mises transformation. In terms of new independent variables (cl, I)), where 

X 
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208 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOlson zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. M. 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11, is the stream-function, it is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ae aze 

a l l  a v  
-=- 

Corcos 

(38) 

and the local heat flux is given by 

where 

h(Xl)  = u(Xl) / [ 1” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu dXI1”,  
‘ 0  

l (Xl )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[&,(O) - Oi] R1l3u (Xl)/-yWu, 

?) = J//2&. 

M + eo(o> u(XJ 

The expression for the heat flux (equation 40) becomes simpler in two limits: at X = Xl it is 

” [ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1;; dX’] ‘ I2 

in agreement with equation (33). At the other extreme, as X +  00. equation (40) becomes 

% t ei U 

’n [ 1; u dX’] ‘ I2 

which is the heat transfer from a self-similar boundary layer and indicates that the tempera- 
ture profile achieves similarity at extreme distances from the hot plume, as anticipated at 
the beginning of this section. 

The total heat flux from the layer is 

ANu = s,’..i (X) dX (41) 

the integrand being expression (33) for 0 G zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX G X1, and expression (40) for Xl G X G 4. 
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Mantle convection model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA209 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMatching solutions zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In Sections 4 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 the stream-function and temperature field for the interior and the 
boundary layers, respectively, have been determined to within constant factors. In this 
section these two solutions are matched. To accomplish this it is necessary to fmd a 
coefficient for the stream-function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$, the value of the interior temperature Bi, and values 
for the plume strength zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy which equate the heat transfer in the plumes (equation 15f) and in 
the boundary layers (equation 41). There exist two additional constraints, as yet not used, 
which make this possible. 

First, heat must leave the system at the same rate it enters, or 

Nu(2 = 0) = Nu(Z= 1). (42) 

A second constraint is on temperature in the cell interior. If ub and 6b denote velocity and 
temperature along the streamline which bounds the cell, and dl denotes a segment of that 
streamline, then the interior temperature is 

Qeb ub dl 
J 

ej = 

j U b  dl 

(43) 

This result is derived in Corcos & Olson (1980). 
The following sequence of steps allows 9 and Nu to be found, subject to constraints 

(42) and (43), plus the requirement that the heat flux computed by equations (41) and 
(1 5f) be equal. 

First, choose a value for y and set 

-y=- 2 - ::Ix=; 

2 :;lx=A* 
O < y <  1,whichmeans 

1 -7= -  - 

Then the non-linear condition (15f) can be enforced, to within a constant multiple, by 
forming an iterative sequence of functions $", zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm = 1 . . . M of the form given by equation 
(1 6 )  and subject to 

Summing the series (16) to N =  30 produces a stream-function everywhere convergent to 
within 0.1 per cent; application of the iterative sequence (44) to M =  5, using trapezoidal 
rule integration over 35 points, makes the products 
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210 

constant to within zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 per cent at all points zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ .  Next, provisional values of Nu for top and 
bottom boundaries can be computed using I J I M  in equation (41) with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABi set to zero. The 
integrals (33), (40) and (41) were evaluated using the trapezoidal rule over unequally spaced 
points. Convergence to 0.1 per cent was obtained with 35 points in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX and 20 in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. We 
denote by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%(O), &(l) the values obtained this way. Condition (42) is then met by 
requiring the interior temperature to be 

R Olson and G. M. Corcos 

34 [ G ( O )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- a( l)] 

ei(yy A) = G ( 0 )  t G(1) 

in which case the value of Nu, top and bottom, resulting from equation (45) becomes 

E =  ,, 
2 G ( O ) G ( l )  

Nu(0) t G ( 1 )  * 

(45 1 

Finally, the stream-function can be rescaled to make plume and boundary layer heat 
transfers equal. Multiplying the stream-function GM by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa constant C makes the plume heat 
flux, given by equation (44), equal to C2, while the heat flux through the boundary layers 
becomes C1I2E (by equations 40 and 46). Equating these two fluxes yields 

C=EU3 

so 

We now use the constraint (43) to find the proper value of y. For the case of a homogeneous 
layer, by symmetry y = 1/2 and Bi = 0. For the case of a surface plate Bi # 0 necessarily, 
but we have two constraints on Bi. namely equations (43) and (45). These constraints are 
compatible only for the correct value of the plume strength y. In general it is necessary to 
compute, $(y, A) and &(y, A) over a range of values y to fmd the intersection of the curves 
(43) and (45). We found that 0.5 G y G 0.52 and 0 G B i  G 0.02 for all cells 0.2 G A s 4.0. 
The a priori assumption that the interior temperature is the mean of the boundary tempera- 
tures, while not precisely correct, results in a negligible error. 

The computation outlined in this section has been carried out for cells of width 
0.2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs A G 4.0 and results are presented in the following section. Computations for one cell 
require less than 5 s of CPU time on a DEC-10 computer. 

7 Discussion of results 

Using the methods outlined in the preceding three sections, we have determined the field 
of motion and thermal structure for convection in cells with different aspect ratios A. We 
exhibit results for a homogeneous layer with free surfaces and for a layer with surface plates. 
In all cases the heat is supplied from below. Figs (5)-(9) illustrate results for convection 
with plates; these will be discussed fiist. 

Fig. (5) shows the variation of Nusselt number and plate speed with cell width. There is 
a maximum heat transfer at A = 0.8, and for long cells Nu - A-213. The maximum plate 
speed occurs at A = 1.8 and decreases as U - A-116 for elongate cells. It has been argued 
heuristically (Malkus & Veronis 1958) that at finite amplitude the stable configuration is 
the one which maximizes the heat transfer. Certainly more considerations than just heat 
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Mantle convection model zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA21 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Nu 
R’b 

so. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
.05 - 

- .06 

- .04 

Figure 5. Non-dimensional surface heat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflux and plate speed as a function of cell width A, for heat 
supplied from below. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAScaling for plate speed V is as in Table 1. 

-1.0- &:k, , , , ,-\ 

0.4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.2 

0 .2 .4 Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.6 .8 I 

Figure 6 

Figures 6-8. Non-dimensional plate speed, shear stress on plate, surface heat flux and stream-function 
contours for cells of widths 4 = 1 , 2 ?  3, driven by heat from below. Scaling is as in Table 1 .  
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Table zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. 

Position 
Stxeam-function 
Velocity 
Shear s ~ e s s  
Temperature 
Heat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflux 
Plate length 

Table 2. 

Mantle Viscosity 
Thermal conductivity 
Thermal diffusivity 
Temperature scale height 
Mean mantle heat zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAflux 
Mean plate speed 
Mean plate length 
Depth of convecting layer 

Quantity Scaling 

X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD X* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
$ kR"'$* 

paufaZ ( l ~ k R ~ ~ ~ f D ~ )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAau*/aZ * 
T, 8 A T ( T * , O * ) ; A T = T , - T ,  

U (kR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 3  fD)u* 

4 
L 

Quantity 

K 
k 

4 
V 
L 
D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC*l% 

. .  

K A T N U ~ D  

D A  

Adopted value 

1OZ2poise 
2.5 x lo5 erg cm-l deg-' 
6 X cmz s-' 
10 000 km 
55 erg cm-'s-l 
1.25 X 10-7cm s-' (4 cm yr-') 
6900 km 
2900 km 

transfer enter into determining stable configurations (c-f Busse 1967) but as we show later, 
this behaviour serves as a rough guide. 

Figs (6)-(8) show calculable quantities for cells of widths 1, 2 and 3 respectively. The 
stream-function, surface heat flux, plate speed and shear stress on the plate are all shown in 
terms of scaled variables. For converting to dimensional quantities, Table 1 gives the scaling 
used in each case. 

The most noticeable feature of the stream-function is the development of a broad 
velocity minimum, in the mid-region of the cell, as the width increases. At A = 3 it is likely 
that only the stabilizing influence of the plate prevents development of three distinct circula- 
tions. Fig. (9) shows the detailed boundary layer structure along the lower boundary for a 
plate of length A = 4. The vertical scale measures the boundary layer coordinate and is 
stretched out for emphasis. The bulge in the isotherms represents a source of vorticity for 
any finite value of R ,  and is likely to be the seat of instability. 

Some information on stability can be gotten from the boundary layers, since for these 
steady solutions to be stable, their boundary layers must be stable. The stability of the 
thermal layers depends on a local Rayleigh number, Rs,  which can be expressed in terms of 
the global Rayleigh number, the boundary layer thickness and the cell depth: 

R S 3  
Rs =-(-). 2 0  

Since SlD a: R-'I3, Rs is independent of R and is a function only of position X and cell 
width A. Fig. (1 4) shows the dependence of Rs on A at the point X = A12 for the lower 
thermal layer. The layerwill be stable only for Rs 5 lo3, so the results in Fig. (14) imply that 
the lower boundary layer is unstable for both elongate (A > 1) and narrow (A e 1) cells. 
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X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 9. Streamlines - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand isotherms - - - - within lower boundary layer for cell of width A = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 
driven by heat from below. Horizontal scale is non-dimensional coordinate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX ,  vertical scale is non- 
dimensional boundary layer coordinate 7) = ZR This illustrates development of an incipient plume off 
the lower free surface. Flow is left zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto right. 

Figs (5)-(8) indicate that the plate speed is not very sensitive to the cell length. Com- 
paring the plate speeds obtained here with. results from similar calculations carried out with 
a free upper boundary (see Fig. lo), the plate surface translates with a speed which is 
roughly the mean velocity at a free boundary. 

Shear stresses on the plate are nowhere very large (with a viscosity of 102*poise, all 
stresses in Figs (6)-(8) are less than 40 bars) although the computed values where the 
plumes form are probably not too reliable since the motion there is not a Stokes flow. It is 
enough to note that the plates are under tension near upwelling plumes (ridges), are under 
compression near descending plumes (trenches) and are subject to only small stresses in 
between. 

Fig. (10) shows the variation of Nu and mean surface velocity for the case of a 
homogeneous layer with stress-free surfaces. The Nusselt numbers shown here are about 20 
per cent lower than those computed at finite R using grid methods (see Moore & Weiss 
1973, for example). We attribute this discrepancy to effects at finite values of R which are 
felt most strongly in the corner regions, and where the convergence of our method is the 
slowest. 

A stated purpose of this calculation is to compare the speed of plates driven by thermal 
convection with observed rates of seafloor spreading. Formula ( 6 )  is convenient as it 
expresses the plate speed in terms of several parameters for which independent geophysical 
measurements exist (Elsasser et aZ. 1979), plus the convecting layer depth. There is still no 
agreement among geophysicists on the question of how deep convective motion penetrates 
into the mantle, although only two hypotheses are widely discussed: convection limited to 
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Figure 10. Non-dimensional average surface heat flux and average surface velocity as a function of cell 
width, for Rayleigh-BBnard convection. 

the mantle’s upper 600-700 km and convection extending all the way to the mantle’s 
base. Here, we will adopt these two values as representative limits. To evaluate equation 
(6), we take zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = 1022P, L = 6900 km as an average plate length (which implies zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA = 2.4 
for D=2900 and A =  10 for D=700), q=55mW m-’ as an average mantle heat flux, 
d w g  = 3.2 x lo4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAan1’’ as a mean value computed from earth model 1066B of Gilbert 
& Dziewonski (1975) using methods of either Verhoogen (1951) or Stacey (1977). (Table 2 
gives values of parameters adopted in this calculation.) 

With these values plus the values of al(A) and az(A) from Fig. (5) (which are extrapo- 
lated to A = 10 for D = 700 km), formula (6) predicts a mean plate speed of about 
1 cm yr-’ for a 700 km deep convecting layer and about 4 cmyr-‘ for convection extending 
through the whole mantle. Some estimates of mean plate speeds are 3.6 cm yr-I (Forsyth & 
Uyeda 1975) and 4.4 cm yr-’ (Solomon & Sleep 1974). Thus we conclude that from what is 
known about the mantle’s behaviour, thermal convection, especially whole mantle 
convection, is marginally able to account for the observed plate speeds. We say ‘marginally’ 
to emphasize that this conclusion is based on a highly idealized model of mantle convection; 
our system is steady, two-dimensional with constant transport properties and for example 
does not include a very faithful representation of the subduction process. Also, the same 
calculation done with motions driven by internal heating would yield somewhat smaller 
velocities than those calculated here for cells heated from below. In spite of all these 
deficiencies it is still gratifying that such a simple model can account for the observed plate 
speeds without violating crucial observational constraints such as surface heat flow and 
mantle viscosity and without relying on external, unspecified sources of energy. 

Results from a specific case can now be compared with some existing data. Because deep 
mantle convection involves cells of reasonable aspect ratio, we take the cell depth to be 
2900 km and consider a plate 6900 km long, which is representative of plate dimensions. We 
adopt a value of 10’’ P for the viscosity and fix the plate speed at 4 cm yr-’. By choosing 
these parameters, all others are specified. Contours of the stream-function in this case are 
the same as in Fig. (3). Fig. (1 1) shows the surface heat flux as a function of age, with data 
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1 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP 

I, 

T e m p e r a t u r e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(*CI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 12. Near surface geotherms taken at  various distances zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX along a plate 
A = 2.4, moving at  4 cm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyr-', driven by heat from below. Included is an 
deg km-'. Note the local maximum at depths of 50-150 km. 

of length 
adiabatic zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAD = 6900 km, 

increase of 0.3 

from the North Pacific (Parsons & Sclater 1977) included for comparison. There is fair agree- 
ment everywhere except immediately at the ridge crest, where local effects must be taken 
into account (Yuen, Tovish & Schubert 1978). Fig. (12) shows a sequence of geotherms at 
various intervals between ridge and trench. These include an adiabatic gradient of 0.3 
deg km-'. As a result of the hot rising plume, the temperature profile develops a local 
maximum which is most shallow and pronounced near the ridge and gradually diniinishes 
and recedes from the surface with increasing age. It is widely believed that low seismic 
velocities and low Q values observed at depths of 50-150 km are due to high temperatures 
(Anderson & Minster 1979) and that this zone defines the asthenosphere. The present study 
indicates that the existence of an asthenosphere could be a consequence of large scale 
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Tempero ture  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA("C) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
10001 / 

20001 

Qj' ( x I O - ~ )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 13. (a) Laterally averaged mantle geotherms: curve a is profile calculated with Boussinesq approxi- 
mation; b is as a, with 200°C increase across phase transitions and adiabat added on. @) Profiie of shear 
wave attenuation, expressed as Qj' from Anderson & Hart (1978). 

convection and not a cause, and its depth is defined by a local maximum in the boundary 
layer geotherm. Admittedly the situation illustrated by Fig. (12) represents an extreme case 
in which all heating comes from below; the maxima become less pronounced as a greater 
fraction of the heat is produced internally, However, while it is likely that mantle radio- 
activity supplies much of the internal energy to drive the flow, recent work on the dynamo 
(Busse 1975; Loper 1978) suggests that a measurable fraction of the observed surface heat 
flux is extracted by the mantle from the core, and so it is at least plausible that these local 
geotherm maxima exist. 

Finally, Fig. 13(a) represents horizontally averaged geotherms through the mantle. Curve 
a is the temperature profie calculated using the Boussinesq approximation. Curve b is the 
same profde with adiabatic increases added on, including a 2OO0C increase across the phase 
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6C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 c  

4 c  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
rc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

LL - 
0 
D 0 
- 

3 0  

2 0  

10 

I I I 

I I I 
1.0 2.0 3 0  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA14. Maximum Rayleigh number of lower thermal layer, versus cell width A. 

transition region centred at 500 km depth. The adiabatic gradient has been calculated using 
data from earth model 1066B. It is interesting to note how similar in form the geotherm 
with upper and lower thermal layers is to recent estimates of mantle shear wave attenuation. 
Fig. 13(b) shows for comparison the distribution of Qj' from model (SL8) of Anderson & 
Hart (1978). This similarity suggests that a plausible interpretation of the observed high 
attenuation at the base of the mantle is that it is due to a hot thermal boundary layer. 

8 Conclusions 

We have analysed the fine structure of steady, two-dimensional thermal convection with 
moving surface plates using boundary layer methods. The analysis reveals several distinctive 
properties of thermal convection which are relevant to the question of driving forces for 
plate motions. 

For a layer heated from below, steady solutions were found for all cell sizes A. With a 
surface plate, the heat flux reaches a maximum at A = 0.8 and decreases as for A > 1. 
The drift speed of a surface plate was found to be not very sensitive to its length, decreasing 
only slightly with increasing length, and having a maximum at A = 1.8. For a homogeneous 
layer with free surfaces (the Rayleigh-BCnard case), the heat flux is maximum at A = 0.7 
and decreases as A-' for elongate cells. 

By scaling our results and using published values for global heat flow and mantle 
viscosity, we find that steady convection driven by heat from below can move plates at 
about 1 or 4 cm yr-' if the depth of circulation is 700 or 2900 km, respectively. In all cases, 
local stresses on drifting plates are small except near leading and trailing edges which are 
under compression and tension, respectively. 

If a significant amount of the heat which drives the motion comes from below the 
convecting domain, then there should be a hot thermal boundary layer at its base and a cold 
one at its top. The boundary layers have a complex structure which includes, in the case of 
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the upper cold one, a local interior maximum in the temperature profile. Scaled to mantle 
conditions, this maximum should occur at depths of 50-15Okm which suggests that it 
might define the depth to the low-velocity zone. 
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