
  

 

 

Tilburg University

A boundary mixture approach to violations of conditional independence

Braeken, J.

Published in:
Psychometrika

DOI:
10.1007/s11336-010-9190-4

Publication date:
2011

Document Version
Publisher's PDF, also known as Version of record

Link to publication in Tilburg University Research Portal

Citation for published version (APA):
Braeken, J. (2011). A boundary mixture approach to violations of conditional independence. Psychometrika,
76(1), 57-76. https://doi.org/10.1007/s11336-010-9190-4

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 17. aug.. 2022

https://doi.org/10.1007/s11336-010-9190-4
https://research.tilburguniversity.edu/en/publications/fa57bf9c-2908-4ef4-9c04-35d334ef6942
https://doi.org/10.1007/s11336-010-9190-4


PSYCHOMETRIKA—VOL. 76, NO. 1, 57–76
JANUARY 2011
DOI: 10.1007/S11336-010-9190-4

A BOUNDARY MIXTURE APPROACH TO VIOLATIONS OF CONDITIONAL
INDEPENDENCE

JOHAN BRAEKEN

TILBURG UNIVERSITY

Conditional independence is a fundamental principle in latent variable modeling and item response
theory. Violations of this principle, commonly known as local item dependencies, are put in a test infor-
mation perspective, and sharp bounds on these violations are defined. A modeling approach is proposed
that makes use of a mixture representation of these boundaries to account for the local dependence prob-
lem by finding a balance between independence on the one side and absolute dependence on the other
side. In contrast to alternative approaches, the nature of the proposed boundary mixture model does not
necessitate a change in formulation of the typical item characteristic curves used in item response theory.
This has attractive interpretational advantages and may be useful for general test construction purposes.

Key words: Fréchet–Hoeffding bounds, copula function, local item dependencies, conditional indepen-
dence.

1. Introduction

Item response theory makes use of statistical probability models to explain the pattern of
observed item responses on a test. The key property of these item response models is that both
persons as well as items have a position on a latent dimension underlying the test. A fundamental
principle behind most item response models is that this latent dimension is considered suffi-
cient to explain the heterogeneity among sample units, as well as the homogeneity among item
responses. In other words, the latent proficiency explains why there are individual differences
between persons in test performance and why the item responses of a given person interrelate.

The local stochastic or conditional independence assumption (LSI) formalizes this principle
into the statistical model.

Definition 1 (LSI).

Pr(Yp = yp|θp) =
I∏

i=1

Pr(Ypi = ypi |θp). (1)

Let Ypi be the outcome on item i (i = 1, . . . , I ) of person p, then, given θp the position of this
person on the latent dimension, the item responses can be assumed to be independent. Hence, the
joint conditional probability of the item response pattern Yp = [Yp1, . . . , Ypi, . . . , YpI ] can be
conveniently factorized in a mathematical sense and written as a simple product of the marginal
conditional probabilities of the individual items Pr(Ypi = ypi |θp).

However, this assumption formulates such a strict requirement—conditional upon θp there
is no remaining dependence between the item responses—that it is unlikely to be met completely
in most applications. In practice some subsets of items appeal to the same specific background
theme, use the same stimulus material, are subquestions of the same problematic case, or in other

Requests for reprints should be sent to Johan Braeken, Department of Methodology and Statistics, Tilburg Univer-
sity, Tilburg, The Netherlands. E-mail: j.braeken@uvt.nl

© 2010 The Psychometric Society
57

mailto:j.braeken@uvt.nl


58 PSYCHOMETRIKA

words, share some common ground that is not directly relevant to the more general construct
underlying the whole test. It can be expected that responses on such subset items will partially
show dependence due to their shared idiosyncratic features and not only because they relate to
the skill or ability intended to be measured by the test as a whole (Ferrara, Huynh, & Michaels,
1999). Such residual local item dependencies (LID) indicate that the model fails to correctly
account for the item dependence structure, resulting in an unwanted negative impact on model
results and related inferences.

1.1. Organization of the Paper

In the remainder of the paper, the nature of the LID problem is explicitly situated within an
information perspective, theoretical boundary cases for LID are defined, and a model approach
to account for the LID problem is presented based upon a mixture representation of these bound-
aries.

Note that this paper can be seen as a more accessible prequel to Braeken, Tuerlinckx, and
De Boeck (2007), yet the concepts and statistics used are perhaps more fundamental, but also
more primitive than in the latter paper. It makes the transition to the bigger class of copula mod-
els by making use of boundary distributions and traditional mixture techniques everyone can
relate to, instead of using specific copula functions that arise less naturally. By making this con-
nection to copula functions as an aside, the previous paper will hopefully be partially demystified.
After all, copula functions are merely just another tool to build multivariate distributions, mixing
distributions is yet another, and the proposed approach in this paper can be seen as the result of
either or both techniques. The distinguishing feature of the model approach is that it changes the
formulation of the joint conditional model, yet leaves the traditional item characteristic curves of
IRT, i.e., the marginal conditional model part, intact.

The primary goal of the paper is to illustrate the attractive interpretational properties of such
a marginal modeling approach for existing residual dependencies (i.e., LID) above the depen-
dence induced by the latent trait of focus. With this purpose the key differences with a well-
known alternative, the testlet model (Wainer, Bradlow, & Wang, 2007), are briefly illustrated.
The testlet model belongs to the bigger class of factor analytic models such as the bifactor model
(Gibbons & Hedeker, 1992) and multidimensional IRT models, which all rely on the introduction
of additional latent traits in the traditional item characteristic curves of IRT, thus changing the
marginal conditional model part. It will be shown that this also has consequences for compara-
bility and interpretation that people are often not aware of or that are simply overlooked.

2. LID and Information Redundancy

The key problem with locally dependent items can be made more explicit when one recog-
nizes that this is in essence an information issue. This aspect is also more clearly pronounced in
an equivalent definition of the LSI assumption given by Lazarsfeld (1950).

Definition 2 (LSI).

Pr(Ypi = ypi |θp) = Pr
(
Ypi = ypi |θp,Ypj ; ∀j �= i, j ∈ [1, . . . , I ]). (2)

Conceptually, if the latent proficiency θp is known, one cannot learn anything more from
Ypj (the response on item j ) about Ypi (the response on item i). All information is sufficiently
summarized in θp .

Statistically, the information provided by a response pattern yp on the latent trait θp is related
to the Fisher information, which is reciprocal to the variance of an estimate, in our case of θ̂p . The
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latter variance is denoted by se2(θ̂p). Samejima (1969, 1972) offers the most general applicable
definition of information in the context of item response theory. A response pattern information
function can be formulated as

Iy(θp) = − ∂2

∂θ2
p

log Pr(Y p = y|θp) = 1/se2(θ̂p).

The expected value of this response pattern information function is then known as the test infor-
mation function:

I (θp) =
∑

y∈ω

Iy(θp)Pr(Y p = y|θp),

where the sum is over all possible item response patterns for the test.

Given the simple factorization of the joint conditional probability provided by LSI, it can be
shown that the test information is a simple sum over the item information functions

I (θp) =
I∑

i=1

Ii(θp),

and hence, each item is assumed to provide unique information on the latent trait. LSI has the
practical implication that each response pattern information function is equivalent, and hence
corresponds to its expected value, the test information function

Iy(θp) ≡ I (θp); ∀y ∈ ω.

In sum, given LSI the contribution of each item to the test information does not depend on other
items.

However, for items i and j of a locally dependent subset, one can still learn something extra
about the response on one item from the response on the other item. Their interdependency is not
fully captured by θp alone. Hence, the information provided by locally dependent items i and j

is not simply additive. From a conceptual perspective, the item subset Js = {i, j} provides not
only unique item information parts, denoted by I ∗

i (θp) and I ∗
j (θp), but also an overlapping re-

dundant part I ∗
ij (θp) due to the irrelevant subset-specific common ground. When this redundancy

is ignored, the subset information Iij (θp) falsely adds up to

Ii(θp) = I ∗
i (θp) + I ∗

ij (θp),

Ij (θp) = I ∗
j (θp) + I ∗

ij (θp), (3)

Iij (θp) = I ∗
i (θp) + I ∗

j (θp) + 2I ∗
ij (θp).

This double counting of information in the locally dependent items inflates the reliability of the
test (see e.g., Junker, 1991). Hence, measurement of the latent proficiency θp is artificially more
precise than the test instrument allows for.1

To further illustrate the misspecification issue, consider the extreme example of three dupli-
cate item responses Ypi , Ypj , and Ypk , such that ypi = ypj = ypk = yp∗ always. By definition
these items provide the exact same information and adding up their information would lead to an
artificially high share and, thus, artificial increase in the test information. The joint conditional

1For negative local dependence the effects reverse: information gain instead of redundancy.
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probability of these duplicate responses is, of course, not the product of the marginal conditional
probabilities as a conditional independence model would state, but merely equals the conditional
probability of a single duplicated item:

Pr(Ypi = yp∗, Ypj = yp∗, Ypk = yp∗|θp) = Pr(Ypi = yp∗|θp)

= Pr(Ypj = yp∗|θp)

= Pr(Ypk = yp∗|θp)

�= Pr(Ypi = yp∗|θp) × Pr(Ypj = yp∗|θp)

× Pr(Ypk = yp∗|θp). (4)

In reality, the local dependence is of course less extreme, but the misspecification of the joint
conditional model might still potentially bias the model parameters and inferences. This is espe-
cially an issue for the discrimination parameters, the standard errors of the latent trait estimate
and related test reliability (see e.g., Sireci, Thissen, & Wainer, 1991; Chen & Thissen, 1997;
Masters, 1988; Yen, 1984).

3. Boundaries to LID

Assessing the degree of violation of the LSI assumption requires knowledge about the
boundaries between which the local item dependence can vary. An obvious choice would be
to adopt a dependence measure, such as the correlation coefficient or odds ratio, of which
the boundaries are known, and try to incorporate this into the item response model to as-
sess the severity of the LID. Unfortunately, in the case of discrete item responses, bound-
aries of traditional dependence measures are a function of the marginal distributions of the
individual items. For instance, the default definition of a correlation states that it can take
values throughout the [−1,1] interval, however for categorical variables possible values for
a correlation are often constrained to a much narrower interval (see e.g., Cureton, 1959;
Joe, 1997, p. 210). Considering the role of these margins, boundary cases of local item depen-
dence can be established by making use of a fundamental result in the study of multivariate
distributions with given margins.

Definition 3 (Fréchet–Hoeffding bounds). Let F(FXi
∀i ∈ [1, . . . , I ]) be a Fréchet class (see

e.g., Joe, 1997, p. 57), a class of distributions containing every possible multivariate distribution
FX(x) of a set of variables X, of which each individual variable Xi is necessarily fixed to be
distributed according to FXi

(xi). The limiting boundary distributions, WX(x) and MX(x), for
the Fréchet class F(FXi

∀i ∈ [1, . . . , I ]) are given by the inequalities

WX(x) < ΠX(x) < MX(x),

WX(x) ≤ FX(x) ≤ MX(x).

The function Π is the product function and merely defines the independence case

ΠX(x) =
I∏

i=1

FXi
(xi). (5)

The functions M and W are known as the Fréchet–Hoeffding bounds (Fréchet, 1951; Hoeffding,
1940), and demarcate the dependence space that is possible given the set of margins FXi

(xi); M
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is the upper bound to monotone increasing (i.e., positive) dependence

MX(x) = min
(
FXi

(xi); ∀i ∈ [1, . . . , I ]), (6)

and W is the lower bound to monotone decreasing (i.e., negative) dependence

WX(x) = max

(
I∑

i=1

FXi
(xi) − I + 1,0

)
. (7)

The upper bound M is always a proper multivariate distribution, yet the lower bound W is only
guaranteed to be a proper distribution in the bivariate case, but not necessarily in the multivariate
case. In any case, these bounds are sharp, thus every multivariate distribution FX(x) of a set of
variables X, of which each individual variable Xi is fixed to be distributed according to FXi

(xi),
will be necessarily located in between these boundaries.

In the case of item response models, the margins of the multivariate distribution are the
cumulative distributions based upon the conditional item probabilities, with FYpi |θp (ypi) =
Pr(Ypi ≤ ypi |θp). The distribution defined by the product function Π is then the regular con-
ditional independence model. The joint distribution defined for a locally dependent subset
Js = {i, j} consisting of two duplicate items i and j can then be formulated in terms of the
Fréchet–Hoeffding upper bound M = min(FYpi |θp (ypi); ∀i ∈ Js). Hence, making use of simple
quadrant rules2 (see e.g., Mood, Graybill, & Boes 1974), this gives rise to the following subset
response pattern probabilities when FYpi |θp (0) < FYpj |θp (0):

Pr(0,0|θp,M) = min
(
FYpi |θp (0),FYpj |θp (0)

)
,

= FYpi |θp (0),

Pr(0,1|θp,M) = FYpi |θp (0) − min
(
FYpi |θp (0),FYpj |θp (0)

)
,

= 0,

Pr(1,0|θp,M) = FYpj |θp (0) − min
(
FYpi |θp (0),FYpj |θp (0)

)
,

= FYpj |θp (0) − FYpi |θp (0),

Pr(1,1|θp,M) = 1 − FYpi |θp (0) − FYpj |θp (0) + min
(
FYpi |θp (0),FYpj |θp (0)

)
,

= 1 − FYpj |θp (0),

1∑

ypi=0

1∑

ypj =0

Pr(ypi, ypj |θp,M) = 1.

The corresponding subset response pattern information functions are then

Iy(s)=(0,0)(θp) = Ii(θp),

Iy(s)=(0,1)(θp) = 0,

Iy(s)=(1,0)(θp) = Ii(θp) + Ij (θp),

Iy(s)=(1,1)(θp) = Ij (θp)

2E.g., FYpi |θp (0) = Pr(Ypi = 0|θp) = Pr(Ypi = 0, Ypj = 0|θp) + Pr(Ypi = 0, Ypj = 1|θp).
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such that the subset information under maximal positive local dependence simplifies to

I(s)(θp) = Ii(θp)
[
Pr

(
Y (s)

p = (0,0)|θp

) + Pr
(
Y (s)

p = (1,0)
)]

+ Ij (θp)
[
Pr

(
Y (s)

p = (1,1)|θp

) + Pr
(
Y (s)

p = (1,0)
)]

= Ii(θp)Pr(Ypj = 0|θp) + Ij (θp)Pr(Ypi = 1|θp).

Thus, the information provided by the easier item j (i.e., the item less likely to be correctly
answered) is downweighted by the probability of correctly answering the more difficult item i

(i.e., the item more likely to be correctly answered), and the information provided by the more
difficult item i is downweighted by the probability of incorrectly answering the easier item j .
Note that this exact relation only holds when item discriminations are equal within the subset,
otherwise the weighting process is a bit less insightful. The corresponding subset response pattern
information functions remain the same except for Iy(s)=(1,0)(θp), which unfortunately is not a
straightforward function of Ii(θp) and Ij (θp).

In this paper the focus is on the upper bound because it is always guaranteed to be a proper
multivariate distribution and because negative dependence in the multivariate case does not have
a straightforward interpretation. In practice, severe negative local item dependencies are also
more indicative of more general scale problems (e.g., items not at all measuring something in
common).

4. Boundary Mixture Model for LID

The theoretical results on the LID boundary distributions can be used to formulate a model
that can accommodate local item dependencies within an information-oriented interpretational
framework.

4.1. Model

A new item response model can be constructed by redefining F
Y

(s)
p |θp

(y
(s)
p ), the joint dis-

tribution of the response vector of an LID subset Js , as a mixture of the joint distribution under
independence (i.e., Π ) and the joint distribution under absolute monotone increasing dependence
(i.e., M), such that

Π
Y

(s)
p |θp

(
y(s)

p

) =
∏

i∈Js

FYpi |θp (ypi),

M
Y

(s)
p |θp

(
y(s)

p

) = min
(
FYpi |θp (ypi); ∀i ∈ Js

)
, (8)

F
Y

(s)
p |θp

(
y(s)

p

) = δ
(s)
0 Π

Y
(s)
p |θp

(
y(s)

p

) + δ
(s)
1 M

Y
(s)
p |θp

(
y(s)

p

)
,

where the usual mixture constraints hold,
∑1

k=0 δ
(s)
k = 1 and δ

(s)
k ∈ [0,1]. The parameter set

δ(s) = [δ(s)
0 , δ

(s)
1 ] can be seen as weights balancing the two boundary distributions, conditional

independence and absolute positive conditional dependence.
Besides being a mixture distribution, the resulting joint conditional distribution is also an

instance of the model class proposed by Braeken et al. (2007), in which copula functions are
proposed as a tool to deal with LID without having to change the formulation of the marginal
conditional distributions, that is, the item response functions characterizing the traditional IRT
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models (e.g., 1-, 2-, or 3-parameter logistic models) (see also Braeken & Tuerlinckx, 2009). Both
boundary distributions Π and M are in fact copula functions, and any convex sum of copula
functions can be shown to be a copula itself (see e.g., Nelsen, 1998). Hence, this mixture always
results in a valid multivariate distribution. Both mixing distributions and copula functions are
common techniques to build multivariate distributions, and the proposed modeling approach can
be seen as resulting from either of these two techniques. As such it provides a more gentle and
intuitive introduction to the latter technique by presenting a natural arising copula function.

It can be seen that copulas are essentially a class of multivariate cumulative distributions
with uniform univariate margins that, after transformation by means of an inverse cumulative
distribution function, result in multivariate distributions with given margins and a whole range
of dependence properties varying according to which copula was used to construct this new joint
distribution. In our specific case, the copula function looks like

(
1 − δ

(s)
1

) ∏

i∈Js

ui + δ
(s)
1 min(ui; ∀i ∈ Js),

where the uniform univariate margins are given by ui = FYpi |θp (ypi) (i.e., uniform in the sense

that the variable is defined on the interval [0,1]), and the multivariate cdf is then F
Y

(s)
p |θp

(y
(s)
p ).

The copula multivariate construction method and the related theorem that states that any exist-
ing multivariate distribution FX(x) can be reformulated as a copula of its univariate margins
FX1(x1), . . . ,FXI

(xI ) (Sklar, 1959),

FX(x) = C
(
FX1(x1), . . . ,FXI

(xI )
)
,

C
(
FX1(x1), . . . ,FXI

(xI )
) = FX(x),

are fundamental to the use of copula functions in multivariate modeling and the study of de-
pendence. An extensive review, background and theory on copula functions can be found in the
reference works by Joe (1997) and Nelsen (1998).

The modeling approach requires partitioning of the item set {1, . . . , I } into S + 1 disjoint
subsets Js , of which J0 gathers the locally independent items, and the other subsets gather mutual
locally dependent items such that the joint probability under the conditional independence model
(see Equation (1)) is redefined as

Pr(Yp = yp|θp) =
∏

i∈J0

Pr(Ypi = ypi |θp)

S∏

s=1

Pr
(
Y (s)

p = y(s)
p |θp, δ(s)

)
, (9)

where Pr(Y (s)
p = y

(s)
p |θp, δ(s)) is the joint probability derived from the joint cumulative distri-

bution in the boundary mixture formulation of Equation (8) with parameters δ(s). Conditional
independence holds between the S + 1 subsets and within subset J0, while local dependence is
allowed for within each of the other subsets Js . Notice that subset sizes can be larger than 2, yet
within a subset s exchangeability holds, hence the conditional in/dependence is considered to be
homogeneous among all items within this subset. These are similar restrictions as in the testlet
model (Wainer et al., 2007).

4.2. Estimation

In contrast to for instance latent classes, the mixture concept leads in this case to fairly
straightforward model optimization, because each component in the convex sum of distributions
is built up based upon the same conditional marginal distributions and parameters; this signifi-
cantly reduces the estimation problem. Hence, model fitting can be done using a common full
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information marginal maximum likelihood estimation approach. The parameters to be estimated
can be divided into three groups: η, the parameters of the latent distribution for θp; β , the I

sets of item parameters defining the marginal conditional probability function of items within
the item response model; and δ, the S sets of weights of the convex sum defining the boundary
mixture distributions of the S locally dependent disjoint item subsets. The full model likelihood
is given by

likelihood(β, δ, σθ ;Y )

=
P∏

p=1

∫

θp

∏

i∈J0

Pr(Ypi = ypi |θp)

S∏

s=1

Pr
(
Y (s)

p = y(s)
p |θp, δ(s)

)
h
(
θp;σ 2

θ

)
dθp.

In the application a 2PL model (Birnbaum, 1968) is chosen as model for the individual items, the
distribution of the latent proficiency h(θp;σ 2

θ ) is chosen to be a standard normal distribution (i.e.,
mean zero and fixed variance σ 2

θ = 1), and the intractable integral with respect to this distribution
is approximated using non-adaptive Gauss–Hermite quadrature (20 points). The joint probability
under the boundary-mixture formulation can be evaluated using a recursive quadrant-rule func-
tion (see Appendix Equation (10)); alternatively a direct formulation of the joint probability can
be written out for small subset sizes (e.g., Is ≤ 4, larger subsets might lead to impractically long
equations) to avoid the recursion. Optimization of the model likelihood is done using a quasi-
Newton method within the open-source software environment R.3 Note that when the initial
value of a redundancy parameter δ

(s)
1 is chosen too close to the limiting values zero or one, diver-

gence of the likelihood estimate of this parameter can occur, such that the optimization algorithm
remains stuck in that limit even when it is not the optimal value. Hence, it is recommended to
generate initial values from a uniform distribution between 0.2 and 0.8 to avoid such a local
maximum problem.

4.3. Interpretation

The main change in the item response model is only in the formulation of the joint con-
ditional distribution, while the marginal conditional part of the model (i.e., the formula for the
item response function) is left intact. This in contrast to other approaches such as the testlet
models (Wainer et al., 2007) and conditional interaction models (Hoskens & De Boeck, 1997;
Verhelst & Glas, 1993) that accommodate for local item dependence by changing the marginal
conditional formulation of the model by either adding additional latent traits or higher order
terms into the formula for the item response function. This difference in the way of tackling the
LID problem—changing the joint or the marginal conditional model—will also show itself in
differences in the interpretation of the common item parameters in these different types of item
response models.

The parameter δ
(s)
1 can be seen as a threshold on a uniform scale going from conditional

independence to absolute positive dependence for given item margins. As such, this parameter
can be seen as a margin-free effect size measure of LID. From the margin-dependent perspective,
the boundary mixture allows for a type of conditional dependence for which the conditional odds
ratio of two locally dependent items increases with larger absolute values of the latent trait θp . In
other words, it gets more likely for high proficiency persons to score all subset items correct, and
for low proficiency persons to score all subset items wrong. From a substantive perspective, this
appears quite intuitive and attractive. Notice the subtlety, the conditional dependence measured
by a statistic that does not account for the margins is a function of the marginal conditional

3Pending a fully documented and user-friendly R-package, R-code can be requested from the author by e-mail.
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probabilities—and hence of θp—yet the degree of conditional dependence given these margins

remains constant (cf. δ
(s)
1 parameter).

To further illustrate the interpretation of the boundary-mixture model, it will be compared
to a testlet model (Wainer et al., 2007). While it can be anticipated that the two models will
not differ too much in performance of dealing with the LID problem, they will differ largely in
interpretation and consequences for further applications, equating and test construction. This will
be clarified in more practical terms with an example in the application section, yet let us briefly
outline the theoretical interpretational differences that are brought along by the introduction of
an additional random effect/latent trait to account for the LID as in the testlet model.

The likelihood of a traditional 2PL testlet model can be defined as

likelihood(α,β,σ ;Y )

=
P∏

p=1

∫

θp

∏

i∈J0

Pr(Ypi = ypi |θp)

S∏

s=1

∫

ζps

Pr
(
Y (s)

p = y(s)
p |θp, ζps

)
h
(
ζps;σ 2

s

)
dθph

(
θp;σ 2

θ

)
dθp

=
P∏

p=1

∫

θp

∏

i∈J0

Pr(Ypi = ypi |θp)

S∏

s=1

∫

ζps

∏

i∈Js

Pr(Ypi = ypi |θp, ζps)

× h
(
ζps;σ 2

s

)
dθph

(
θp;σ 2

θ

)
dθp

with

Pr(Ypi = ypi |θp) = exp(ypiαi[θp − βi])
1 + exp(αi[θp − βi]) if i ∈ J0,

Pr(Ypi = ypi |θp, ζps) = exp(ypiαi[θp − βi + ζps])
1 + exp(αi[θp − βi + ζps]) if i ∈ Js.

The item response function for non-subset items remains the same as in a regular 2PL model,
but for subset items an additional random effect ζps has been added. Hence, the original fixed
item effect βi is now decomposed into a fixed part β∗

i and a random part ζps common to the
subset. In practice it is easily overlooked that the item parameter βi in the testlet model is in
fact this item parameter β∗

i , and hence adjusted for individual unobserved heterogeneity on the
subset level (i.e., the person-specific subset effect ζps ). To sum it up, βi and β∗

i are using a
different reference frame due to conditioning on either θp or on both θp and ζps . In fact a duality
arises, the mixing distributions h(ζps;σ 2

s ) and h(θp;σ 2
θ ) give rise to a different compound logit-

normal link that is used for subset items rather than for the non-subset items; the normal part
follows a different scale—either σ 2

θ +σ 2
s or σ 2

θ . In a similar fashion, the traditional interpretation
of the discrimination parameter αi for subset items is affected as well by the incorporation of the
additional random effect ζps and the corresponding difference in reference frame/link function.
These interpretational differences are often mistakenly ignored in practice, where the testlet item
parameters are confounded with the traditional item parameters. This makes comparison between
testlet and non-testlet items less straightforward; the same can be said for anticipating the use of
a testlet item within a testlet context or separated from its testlet context.

In contrast, the alternative construction method, using boundary mixtures or copula func-
tions, benefits from its marginal reproducibility property when it concerns interpretation. Item
parameters can be interpreted in a traditional fashion, without the disturbance of confounding
reference frames. Preservation of the univariate conditional margins based upon the joint con-
ditional distribution (i.e., reproducibility) is easily shown as follows for the example with two
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locally dependent items i and j :

F
Y

(s)
p |θp

(1,0) = Pr(0,0|θp) + Pr(1,0|θp)

= δ
(s)
1 FYpi |θp (0) + δ

(s)
0 Pr(Ypi = 0|θp)Pr(Ypj = 0|θp)

+ δ
(s)
1

(
FYpj |θp (0) − FYpi |θp (0)

) + δ
(s)
0 Pr(Ypi = 1|θp)Pr(Ypj = 0|θp)

= δ
(s)
1 FYpj |θp (0) + δ

(s)
0 Pr(Ypj = 0|θp)

= F
Y

(s)
pj |θp

(0),

F
Y

(s)
p |θp

(0,1) = Pr(0,0|θp) + Pr(0,1|θp)

= δ
(s)
1 FYpi |θp (0) + δ

(s)
0 Pr(Ypi = 0|θp)Pr(Ypj = 0|θp)

+ δ
(s)
1 0 + δ

(s)
0 Pr(Ypi = 0|θp)Pr(Ypj = 1|θp)

= δ
(s)
1 FYpi |θp (0) + δ

(s)
0 Pr(Ypi = 0|θp)

= F
Y

(s)
pi |θp

(0)

with F
Y

(s)
p |θp

(ypi, ypj ) being the boundary mixture distribution as defined in Equation (8).

For the testlet model, the original conditional margins are not preserved but are instead put
within a different reference frame/scale as implied by the integral over the testlet latent trait ζps

F
Y

(s)
p |θp

(1,0) =
∫

ζps

Pr
(
Y (s)

p = 0,0|θp, ζps

)
h
(
ζps;σ 2

s

)
dζps

+
∫

ζps

Pr
(
Y (s)

p = 1,0|θp, ζps

)
h
(
ζps;σ 2

s

)
dζps

=
∫

ζps

F
Y

(s)
pj |θp,ζps

(0)h
(
ζps;σ 2

s

)
dζps,

F
Y

(s)
p |θp

(0,1) =
∫

ζps

Pr
(
Y (s)

p = 0,0|θp, ζps

)
h
(
ζps;σ 2

s

)
dζps

+
∫

ζps

Pr
(
Y (s)

p = 0,1|θp, ζps

)
h
(
ζps;σ 2

s

)
dζps

=
∫

ζps

F
Y

(s)
pi |θp,ζps

(0)h
(
ζps;σ 2

s

)
dζps.

To further illustrate the boundary-mixture implied local dependence structure from a margin-
dependent viewpoint, the conditional log odds ratios log(OR(θp)) for two locally dependent
items were computed under both a boundary mixture model and a testlet model,

log
(
OR(θp)

) = Pr(Ypi = 0, Ypj = 0|θp)Pr(Ypi = 1, Ypj = 1|θp)

Pr(Ypi = 0, Ypj = 1|θp)Pr(Ypi = 1, Ypj = 0|θp)
,

ranging over θp values between −2.5 and 2.5, with the item response functions taken to be one-
parameter logistic functions with difficulty parameter equal to 0, such that the local dependence
was only a function of the latent trait (FYpi |θp (0) = FYpj |θp (0) = [1 + exp(θp)]−1).
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FIGURE 1.
Conditional odds ratios for 2 neutral locally dependent items (αi = αj = 1;βi = βj = 0) under the boundary-mixture

model (C) and the testlet random effect model (RE). Increasing parameter values of both δs
1 and σ 2

s correspond to higher
log odds ratio lines.

For the boundary mixture model, the dependence threshold parameter δ
(s)
1 varied between

0.10 and 0.90. Each line in the left panel of Figure 1 represents the conditional log odds ratio
function under a boundary mixture model with fixed value of the dependence parameter δ

(s)
1 .

Notice the typical flat-U shape of the function and that the log odds ratio increases with increasing
δ
(s)
1 illustrating its function as a dependence parameter. The right panel of Figure 1 contains a

similar graphic for the testlet model. To allow this model to span a similar range of dependence
given the neutral item characteristics, the variance σ 2

s of the testlet-specific latent trait needed
to vary from 0.5 to 100. The log odds ratio remained relatively constant over the latent trait of
focus θp , except for large values of σ 2. Note that to compute log(OR(θp)) the testlet specific
latent trait ζp needed to be integrated out using Gauss–Hermite quadrature. This means that the
interpretation of the odds ratio in principle is only applicable for an individual p with an average
value on this testlet specific latent trait ζp , whereas in the boundary-mixture case the model-
implied conditional odds ratio applies to the whole population. This is similar to the distinction
between fixed and random effects in multilevel modeling. The fact that the testlet model appears
to result in a near-constant conditional odds ratio might appear as a nice characteristic of the
model, yet matters are a bit more complex. Notice that for similar conditional margins, the testlet
model has to rely on extreme testlet variances σ 2

s compared to the variance of θp (which is
fixed at 1) to account for conditional odds ratios that are as high as those for a similar boundary
mixture model. In practice the testlet model will account for a local dependence problem by also
making changes to the marginal conditional probabilities through the item parameters, whereas
the boundary mixture accounts for the local dependence by merely changing the joint conditional
probability by means of the δ

(s)
1 parameter (see further illustrations in the application section).

Thus, the difference in model building strategy will also surface here!

4.4. Information

Let se(θ̂p;Π) be the standard error of the estimated value θ̂p of the latent trait for person p

under the conditional independence model Π (i.e., ignoring LID). Let se(θ̂p;C) be the standard
error of the estimated value θ̂p of the latent trait for person p under the boundary mixture model
(denoted by C). To assess the misspecification error of ignoring the LID in terms of estimation
precision, these two quantities (or the width of related confidence intervals based upon these
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standard errors) can be compared. Large differences indicate more severe impact of ignoring
the LID issues. Let se(θ̂p;Π |C) be the standard error of the estimated value θ̂p of the latent
trait for person p under a conditional independence model with item parameters fixed at the
values obtained under the boundary mixture model (denoted Π |C). A comparison of the two
quantities se(θ̂p;C) and se(θ̂p;Π |C) can be seen as comparing the test with the LID subsets
with an equivalent test not suffering from LID issues, hence it is a comparison to the ideal case
scenario. Large differences indicate more severe impact of the LID issues on the efficiency of the
test. These comparisons offer a proper framework to assess the consequences of LID in terms of
test precision/information and might prove useful to support an informed decision on the degree
of LID violation and for general test construction purposes. Note that the diagnostic value of
these quantities is conditional upon the adequacy of the defined boundary mixture model C for
dealing with the most severe LID issues in the test. Further studies need to evaluate the usefulness
of such diagnostics in practice.

5. Application

As an illustration of the boundary mixture approach to LID modeling, a dataset from a small
reading test, previously analyzed in Tuerlinckx and De Boeck (2001) and Braeken et al. (2007), is
re-examined. The data are binary coded responses from a group of high school students interested
in studying law in college (P = 441) on items (I = 6) referring to a text on the president and the
separation of powers in the United States of America.

5.1. LID Screening

As a starting point, a one-subset boundary mixture 2PL model is fitted repeatedly with each
possible item pair functioning in turn as the potential LID affected subset. Because the boundary
mixture model is permutation symmetric, results for subset Js = {i, j} are equivalent to results
for subset Js = {j, i}, the results for each of these I ∗ (I − 1)/2 models with respect to the δ

(s)
1

redundancy parameter can be summarized in the upper-triangle of an I -by-I matrix

log(likelihood) \ δ1

⎛

⎜⎜⎜⎜⎜⎝

. 0.000 0.000 0.000 0.000 0.453∗∗∗
1555 . 0.000 0.267∗ 0.494∗∗∗ 0.000
1555 1555 . 0.230∗ 0.213∗ 0.000
1555 1553 1553 . 0.267∗∗∗ 0.000
1555 1549 1553 1549 . 0.000
1536 1555 1555 1555 1555 .

⎞

⎟⎟⎟⎟⎟⎠

∗∗∗: p < .0001 and ∗: p < .05,

supported by a lower-triangle containing the loglikelihood of the corresponding one-subset
boundary mixture models. This matrix provides helpful information to support a specification
search. Patterns of highly redundant item pairs can direct the researcher in choosing a more
complete model. Alternatively a variety of diagnostics are also available to support this type of
specification search (for an overview see, e.g., Tate, 2003). In either case, when looking at LID
diagnostics, one has to be aware of the problem of safeguarding the type-I error rate in this type
of multiple testing situation. With respect to the improvement in model likelihood the item sub-
sets {1,6}, {2,5}, and {4,5} stand out, with the first two sets showing the largest redundancy
parameter δ

(s)
1 -values.
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TABLE 1.
Model fit results from a range of boundary mixture models.

Π {1,6} {2,5} {4,5} {1,6} {1,6} {1,6}
{2,5} {4,5} {2,4,5}

α1 2.133 1.114 2.373 2.882 1.152 1.114 1.240
α2 0.498 0.666 0.357 0.419 0.487 0.666 0.465
α3 0.963 1.090 0.928 0.851 1.126 1.090 1.248
α4 1.640 2.173 1.533 1.121 2.354 2.172 1.723
α5 1.542 2.130 1.331 1.208 1.863 2.131 1.465
α6 1.610 0.779 1.758 1.875 0.816 0.779 0.909
β1 −0.215 −0.308 −0.209 −0.195 −0.303 −0.308 −0.292
β2 1.581 1.229 2.156 1.851 1.615 1.230 1.690
β3 −0.011 −0.008 −0.013 −0.014 −0.008 −0.008 −0.008
β4 −0.937 −0.826 −0.973 −1.160 −0.803 −0.826 −0.918
β5 −1.055 −0.908 −1.149 −1.208 −0.960 −0.908 −1.061
β6 −0.017 −0.047 −0.018 −0.016 −0.045 −0.047 −0.039

J1 : δ(1)
1 0.453 0.494 0.267 0.446 0.453 0.425

J2 : δ(2)
1 0.413 0.001 0.213

log(l) 1554.9 1535.7 1548.7 1549.2 1532.4 1535.7 1534.0
AIC 3133.8 3097.4 3123.4 3124.4 3092.8 3099.4 3096.0

TABLE 2.
Mean precision of θp empirical Bayes estimates for the locally dependent test under the regular conditional independence
model (Π ) and the boundary mixture alternative (C), and for an equivalent test for which conditional independence does
hold (Π |C).

Π C : J1 = {1,6}, J2 = {2,5} Π |C
Sp θp 95% interval width θp 95% interval width θp 95% interval width

0 −1.606 [−2.842,−0.369] 2.473 −1.572 [−2.785,−0.360] 2.425 −1.632 [−2.845,−0.420] 2.425
1 −1.056 [−2.155, 0.044] 2.199 −1.093 [−2.191, 0.005] 2.196 −1.142 [−2.233,−0.051] 2.183
2 −0.649 [−1.695, 0.396] 2.091 −0.726 [−1.814, 0.361] 2.175 −0.751 [−1.814, 0.311] 2.125
3 −0.248 [−1.292, 0.795] 2.087 −0.370 [−1.499, 0.759] 2.258 −0.355 [−1.452, 0.742] 2.195
4 0.128 [−0.966, 1.222] 2.188 0.015 [−1.200, 1.230] 2.430 0.058 [−1.120, 1.237] 2.357
5 0.580 [−0.622, 1.782] 2.404 0.446 [−0.887, 1.779] 2.666 0.520 [−0.779, 1.819] 2.598
6 1.173 [−0.214, 2.559] 2.773 1.067 [−0.441, 2.575] 3.016 1.148 [−0.317, 2.612] 2.929

5.2. LID Modeling

Guided by this matrix, a series of models of interest was defined, of which the model fit
results are shown in Table 1. The model that takes into account the local dependence between the
item pairs {1,6} and {2,5} gives rise to the largest increase in model fit. Also notice that when
the LID in item pair {1,6} was already accounted for, a boundary mixture for the item pair {4,5}
no longer resulted in an improved model fit. Extending the subset J2 to three items {2,4,5} also
did not lead to a superior model fit. Thus, taking into account the LID in the two most seriously
affected item pairs, seems to lead to a sufficient handling of the LID issue in the data; and, hence,
the model of choice is the boundary mixture 2PL model with J0 = {3,4}, J1 = {1,6}, and J2 =
{2,5} (further referred to as model C). This conclusion is supported by a likelihood ratio test
between the standard conditional independence model Π and this model C, LR = 45 ∼ χ2

df =2,

p < .0001, and the comparison of AIC values across models. The redundancy parameters δ
(s)
1

for the two subsets are equal to about 0.4.
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TABLE 3.
Item parameter estimates under conditional independence after item elimination compared to parameter estimates of the
testlet model (RE) and the boundary mixture model (C).

RE C Π without Π without Π without Π without
i = 6,2 i = 1,5 i = 1,2 i = 5,6

α1 2.66 1.15 1.16 . . 1.13
α2 0.60 0.49 . 0.50 . 0.57
α3 1.11 1.13 1.12 1.11 1.16 1.07
α4 2.32 2.35 2.23 2.37 2.37 2.41
α5 3.52 1.86 2.07 . 1.89 .

α6 1.12 0.82 . 0.89 0.85 .

β1 −0.81 −0.30 −0.31 . . −0.32
β2 0.84 1.61 . 1.57 . 1.41
β3 −0.01 −0.01 −0.01 −0.01 −0.01 −0.01
β4 −1.87 −0.80 −0.82 −0.81 −0.80 −0.81
β5 −3.36 −0.96 −0.92 . −0.96 .

β6 −0.04 −0.05 . −0.04 −0.04 .

J1 : δ(1)
1 . 0.45 . . . .

J2 : δ(2)
1 . 0.41 . . . .

J1 : σ1 1.30 . . . . .

J2 : σ2 0.78 . . . . .

log(l) 1533.8 1532.4 . . . .

5.3. Precision and Interpretation

The following results illustrate the precision artifact in estimating θp in the regular model
(Π ) that ignores the LID, and the correction by means of the boundary mixture model of choice.
Table 2 contains for each of the seven possible sum scores Sp = ∑I

i=1 Ypi , the mean width
of the 95% confidence intervals around the resulting empirical Bayes estimates of θp for the
students in the sample with that score. Taking into account the LID by means of the boundary
mixture model, the width of the confidence intervals get upward corrected up to 10%, although
for response patterns resulting in a sum score below 2 (i.e., Sp ≤ 1) confidence intervals are
roughly equal. This is as expected, as sum scores above 1 correspond to areas on the latent trait
scale where the test has more coverage, and hence the inflated precision artifact will be more
pronounced; in contrast differences in precision will fade away when reaching areas of the scale
where coverage is limited. Compared to an equivalent test for which conditional independence
would hold (i.e., Π |C in Table 2), the width of the confidence intervals are about 3% larger
(differences again fade out in latent trait scale areas with no coverage). So in sum, in terms of
impact, ignoring the LID issue in this small test would result in it being artificially 10% more
precise than is warranted, and in terms of efficiency, the LID test is 3% less precise than an
equivalent LSI test.

To try to increase the efficiency of the test (see e.g., Chapter 6 in Lord, 1980), one could
decide to redesign the test by eliminating items, such that only one item of each of the severe
LID item pairs is left. For instance, one could opt to eliminate items 2 and 6, and refit the item
response model under conditional independence. The resulting item parameter estimates are dis-
played in Table 3. Notice how the item parameters of the boundary mixture model closely ap-
proximate the item parameters of the conditional independence models in which the major LID
issues are removed. These compatibility features of the model offer promise for applications in
which different test forms are included and for general test construction and evaluation purposes.
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FIGURE 2.
Conditional odds ratios for the 2 locally dependent subsets J1 and J2 under the boundary-mixture model (C) and the
testlet random effect model (RE).

Item elimination appears to be a quite straightforward strategy to counter LID, but unfor-
tunately (among other things) it decreases the differentiation power of the test; and, in practice,
eliminating items is not always an option because of reasons of face and construct validity, or
external obligations. Hence, modeling the LID by means of this boundary mixture approach can
offer a good alternative. A more accurate picture of the item characteristics and the test pre-
cision is obtained than if LID issues were to be simply ignored, and at the same time the test
composition can be left intact.

The results displayed in Table 3 also allow the illustration of the difference in construction
method between the boundary-mixture model and the testlet model. Whereas the item parame-
ters under the boundary-mixture model are consistent with the item parameters for the models in
which the local item dependence issue was solved by item elimination, this is not the case for the
testlet model. This holds both for subset and non-subset items. For instance, the item difficulty
β5 (i.e., part of LID subset J2) for the testlet model (RE) is three times as large as under the
boundary mixture or item-eliminated models, and the item difficulty β4 (i.e., part of the condi-
tionally independent items in J0) is two times as large. It is obvious that if one does not take
into account the differences in reference frame (i.e., compound link function) for the items, one
is comparing apples to oranges. For further illustration of the difference in construction method
between the boundary-mixture model and the testlet model, Figure 2 presents similar graphics
of conditional log odds ratios as presented earlier in Figure 1, but now based upon the estimated
item parameters under both models for the two locally dependent subsets. The boundary mix-
ture model is still characterized by a U-shaped conditional log odds ratio function, in contrast to
the testlet model for which the shape depends on the particular subset and corresponding item
parameters (see Figure 2). Hence, in practice the testlet model accounts for a local dependence
problem by also making changes to the marginal conditional probabilities through the item pa-
rameters, whereas the boundary mixture accounts for the local dependence by merely changing
the joint conditional probability by means of the δ

(s)
1 parameter.

5.4. Model Evaluation

To further assess the model approach and the performance of the chosen model, compared
to the regular conditional independence alternative, a parametric bootstrap was set up. For both



72 PSYCHOMETRIKA

TABLE 4.
Recovery Monte Carlo simulation for the chosen boundary mixture model.

(a) Data condition: Conditional Independence

True MCest MLSE MCSE RMSE

α1 2.13 2.13 0.38 0.32 0.40
α2 0.50 0.50 0.07 0.11 0.14
α3 0.96 0.99 0.17 0.14 0.18
α4 1.64 1.75 0.19 0.27 0.38
α5 1.54 1.58 0.17 0.20 0.24
α6 1.61 1.55 0.27 0.23 0.28
β1 −0.21 −0.22 0.07 0.06 0.08
β2 1.58 1.73 0.21 0.44 0.61
β3 −0.01 −0.01 0.11 0.09 0.11
β4 −0.94 −0.93 0.09 0.11 0.13
β5 −1.06 −1.05 0.09 0.10 0.13
β6 −0.02 −0.01 0.08 0.07 0.10

J1 : δ(1)
1 0.00 0.04 0.00 0.05 0.08

J2 : δ(2)
1 0.00 0.07 0.00 0.07 0.12

(b) Data condition: Conditional Dependence

True MCest MLSE MCSE RMSE

α1 1.15 1.18 0.18 0.17 0.21
α2 0.49 0.51 0.07 0.14 0.17
α3 1.13 1.12 0.21 0.18 0.22
α4 2.35 2.62 0.38 0.69 1.69
α5 1.86 1.94 0.24 0.33 0.44
α6 0.82 0.81 0.14 0.12 0.16
β1 −0.30 −0.29 0.09 0.09 0.11
β2 1.61 1.78 0.21 0.55 0.77
β3 −0.01 −0.03 0.10 0.08 0.11
β4 −0.80 −0.80 0.07 0.09 0.11
β5 −0.96 −0.96 0.08 0.12 0.14
β6 −0.04 −0.05 0.11 0.11 0.14

J1 : δ(1)
1 0.45 0.46 0.06 0.05 0.07

J2 : δ(2)
1 0.41 0.42 0.13 0.13 0.15

True parameter value from Table 1; 100 replications in each data condition.
MCest: Monte Carlo parameter estimate.
MLSE: Original Maximum Likelihood standard error.
MCSE: Monte Carlo standard error.
RMSE: Monte Carlo root mean squared error.

the conditional independence model (Π ) and the chosen conditional dependence model C, the
estimated maximum likelihood (ML) parameters were used to generate 100 replicated datasets.
Table 4 shows the results of a small Monte Carlo recovery study when refitting the conditional
dependence model on both types of data. The recovery of the true parameter values is quite
accurate and the Monte Carlo standard error (MCSE) is quite close to the ML standard error
(cf. Table 1), and this with only a small number of replications. Notice that in the conditional
independence condition, the subset redundancy parameter δ1 indeed reduces to near-zero values,
whereas in the conditional dependence condition, the non-zero redundancy is picked up.
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To be able to compare models on observable data properties, the unconditional pairwise item
odds ratios were considered. The odds ratio between item i and item j is defined as

ORij = n11n00

n10n01
,

where n10 is the frequency of occurrence of the response vector (Ypi = 1, Ypj = 0), and n00,
n11, and n01 are defined in similar fashion. The item-by-item predicted odds ratio matrix under
the conditional independence model (ORΠ ) shows large deficiencies for the pairs {1,6}, {4,5},
and {2,5} compared to the observed odds ratios (ORobs), whereas the predictions under the
conditional dependence model (ORC ) are much more accurate (Mean squared error, MSEΠ =
2.44 vs. MSEC = 0.11).

ORobs =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

j\i 1 2 3 4 5 6
1 . 1.60 2.39 3.70 3.65 8.24
2 . . 1.37 2.56 4.00 1.22
3 . . . 3.69 3.54 2.18
4 . . . . 7.12 3.03
5 . . . . . 2.43
6 . . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

ORΠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

j\i 1 2 3 4 5 6
1 . 1.87 2.99 5.25 4.88 4.78
2 . . 1.52 1.87 1.86 1.74
3 . . . 2.79 2.67 2.54
4 . . . . 4.05 4.24
5 . . . . . 4.01
6 . . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

,

ORC =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

j\i 1 2 3 4 5 6
1 . 1.54 2.32 3.93 3.42 8.84
2 . . 1.57 2.05 4.29 1.43
3 . . . 3.76 3.37 1.93
4 . . . . 6.41 2.77
5 . . . . . 2.56
6 . . . . . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

Notice that the conditional dependence model only explicitly accounts for the subsets {1,6} and
{2,5}, yet improves upon all three of the largest deficiencies under the conditional independence
model, including the odds ratio for the item pair {4,5}.

6. Discussion

The above illustrated level difference between the unconditional observed data part and the
conditional latent aspect of item response models is the key problem with which LID detec-
tion methods are confronted, and is similar in nature to the problem of specification searches in
structural equation models (SEM; for an interesting discussion see Steiger, 1990; Salhi, 1998;
MacCallum, 1986).

Hence, LID modeling strategies necessarily involve issues such as LID screening (see e.g.,
Chen & Thissen, 1997), subset definition and selection, multiple hypothesis testing (see e.g., Ip,
2001; Shaffer, 1995), and model comparison. As a reviewer rightly pointed out, each of these
components constitutes a subject of research on its own. Hence, in practice it is recommended
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to take a holistic approach and support substantive motivations (see e.g., Yen, 1993) with a com-
bination of various LID detection methods and explicit LID modeling. The proposed modeling
approach should be viewed in this perspective as one potential tool or element in the larger con-
text of available methods and approaches.

The approach has some attractive characteristics. The technical feature that the formulas
for the item characteristic curves of single items do not need to be changed with the proposed
model makes for straightforward communication. As mentioned earlier, the compatibility fea-
tures of the model together with the interpretational information framework also offer promise
for applications in which different testlet and non-testlet test forms are included and for general
test construction and evaluation purposes. Furthermore, the conceptual idea behind the method,
balancing two extreme situations (i.e., independence and complete dependence), is also rather
intuitive and appealing.

Further research might want to investigate the limitations of disjoint subsets and non-
exchangeable within-subset dependence. An approach for such overlapping subsets will need
to establish which conditions and inequalities are needed to result in a proper multivariate distri-
bution. These complexities might be costly in terms of model interpretation and clarity.

The fact that the boundary mixture approach readily fits within the copula class illustrates
the generality of the latter class of models and suggests a thorough comparison of available LID
approaches in search of commonalities and differences on the latent and observed data level, and
a way of selecting between the different alternatives. Perhaps an equivalent marginal reformula-
tion of the testlet model is even within reach. The fact that different types of copula functions are
available makes it possible to investigate different LID dependence types in a similar way as the
random effect in a testlet model does not necessarily have to be normally distributed. This issue
of potentially different LID dependence types and the robustness of LID models to misspeci-
fication is for now relatively unexplored territory. Based upon Zeger, Liang, and Albert (1988)
a conjecture is made that a marginal modeling approach such as the copula functions might be
more robust to misspecification than a conditional approach such as the testlet model. Of course,
in any case modeling the true dependence structure will increase statistical efficiency of para-
meter estimates. As such, finding a comprehensive and reliable way to define the dependence
structure of a test (i.e., dimensionality and LID assessment) should remain a key research area
within psychometrics.

Appendix: Recursive Formula to Compute Probabilities Based upon Cumulative Probabilities

For a subset Js = {i, j, k} with cardinality Is = 3, the joint conditional probabilities can be
computed using principles similar to the quadrant rules. The following general formulation is
useful for this purpose

Pr
(
Y (s)

p = y(s)
p |θp, δ(s)

)

=
1∑

m1=0

. . .

1∑

mIs =0

(−1)m1+···+mIs F
Y

(s)
p |θp

(yp1 − m1, . . . , ypIs − mIs ), (10)

where the arguments ypi − mi of the conditional cumulative item probabilities stem from the
definition of the distribution functions FYpi |θp (ypi)

FYpi |θp (ypi) =
⎧
⎨

⎩

0 for ypi < 0,
Pr(Ypi = 0|θp) for ypi = 0,
1 for ypi = 1.
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Note that similar algorithms exist in multivariate probit analysis (see e.g., Ashford & Sowden,
1970)

For notational clarity let F
Y

(s)
p |θp

(ypi, ypj , ypk), the conditional joint cumulative probability

of the subset response vector Js , be written in the shorthand F(ypi, ypj , ypk); then the resulting
computations for the joint probabilities of each trivariate subset response pattern are given by the
following set of expressions

Pr(0,0,0|θp) = F(0,0,0) − F(0,0,−1) − F(0,−1,0) + F(0,−1,−1)

− F(−1,0,0) + F(−1,0,−1) + F(−1,−1,0) − F(−1,−1,−1)

= F(0,0,0),

Pr(0,0,1|θp) = F(0,0,1) − F(0,0,0) − F(0,−1,1) + F(0,−1,0)

− F(−1,0,1) + F(−1,0,0) + F(−1,−1,1) − F(−1,−1,0)

= F(0,0,1) − F(0,0,0),

Pr(0,1,0|θp) = F(0,1,0) − F(0,1,−1) − F(0,0,0) + F(0,0,−1)

− F(−1,1,0) + F(−1,1,−1) + F(−1,0,0) − F(−1,0,−1)

= F(0,1,0) − F(0,0,0),

Pr(1,0,0|θp) = F(1,0,0) − F(1,0,−1) − F(1,−1,0) + F(1,−1,−1)

− F(0,0,0) + F(0,0,−1) + F(0,−1,0) − F(0,−1,−1)

= F(1,0,0) − F(0,0,0),

Pr(0,1,1|θp) = F(0,1,1) − F(0,1,0) − F(0,0,1) + F(0,0,0)

− F(−1,1,1) + F(−1,1,0) + F(−1,0,1) − F(−1,0,0)

= F(0,1,1) − F(0,1,0) − F(0,0,1) + F(0,0,0),

Pr(1,0,1|θp) = F(1,0,1) − F(1,0,0) − F(1,−1,1) + F(1,−1,0)

− F(0,0,1) + F(0,0,0) + F(0,−1,1) − F(0,−1,0)

= F(1,0,1) − F(1,0,0) − F(0,0,1) + F(0,0,0),

Pr(1,1,0|θp) = F(1,1,0) − F(1,1,−1) − F(1,0,0) + F(1,0,−1)

− F(0,1,0) + F(0,1,−1) + F(0,0,0) − F(0,0,−1)

= F(1,1,0) − F(1,0,0) − F(0,1,0) + F(0,0,0),

Pr(1,1,1|θp) = F(1,1,1) − F(1,1,0) − F(1,0,1) + F(1,0,0)

− F(0,1,1) + F(0,1,0) + F(0,0,1) − F(0,0,0).
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