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ABSTRACT.  Let   A(G, E) denote the set of functions / from a Hausdorff

topological group G to a Banach space E such that the range of / is relative-

ly compact in  E and <t> ° / is in  A(G, C) for each  <j> in the dual of E, where

A(G, C) is a translation-invariant C* algebra of bounded, continuous, complex-

valued functions on G with respect to the supremum norm and complex conjuga-

tion.  A(G, E) has the bounded difference property if whenever F: G —»Eisa

bounded function such that   ¿i(i) = "fît*) - F(x) is in A(G, E) for each  t in

G, then  F is also an element of A(G, E). A condition on A(G, C) and a condi-

tion on E are given under which A(G, E) has the bounded difference property.

The condition on A(G, C) is satisfied by both the class of almost periodic func-

tions and the class of almost automorphic functions.

I. Introduction. The prototype of the results of this paper is the classical

theorem of H. Bohr [3] which states that if a complex-valued almost periodic

function defined on the real line has a bounded primitive, then the primitive is

itself almost periodic.

If G is a Hausdorff topological group, R. Doss [5] showed that if F is a

bounded complex-valued function on G and A(F(x) = F(tx) - F(x) is almost peri-

odic for each t in G, then  F is almost periodic.  This result generalizes Bohr's

theorem.

Let G be a Hausdorff topological group, C the complex numbers, E a Banach

space, and E* the dual of E. A(G, C) will denote a translation-invariant C*

algebra with identity of bounded, continuous, complex-valued functions on G with

respect to the supremum norm and complex conjugation.  M(A) will denote the

maximal ideal space for A(G, C). A function f: G —* E will be said to belong to

A(G, E) in case: (1) the range of / is relatively compact in E, and (2) for each
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50 W. P. VEITH

<f> £ E*, the function cf>° f belongs to A(G, C). Our problem is to give conditions

on C, E, and the algebra A(G, C) so that the following bounded difference prop-

erty holds:

Definition 1.1. The class of functions A(G, E) has the bounded difference

property (BDP) if whenever F: G —» E is a bounded function such that à(F(x) =

F(tx) - F(x) is in A(G, E) fot each  t in G, then  F is also an element of A(G, E).

Since (BDP) fails to hold even for the almost periodic functions from the

reals into c (the space of convergent real sequences) [1, p. 53], but does hold in

case E is reflexive [10], it is clear that additional hypotheses will be needed.

When G is the real line, A(G, C) has (BDP) when A is either the almost

periodic or almost automorphic functions [2]. However, when A is the set of

functions which have a limit at infinity, A{G, C) does not have the bounded

difference property.

We shall show that G operates on M(A). In this way, we are able to define

a classification of algebras A(G, C) which distinguishes the almost automorphic

and almost periodic functions from the functions which have a limit at infinity.

Definition 1.2. If the orbit of each element of M(A) under the action of G is

dense in M, we shall say that A(G, C) has the orbit property (0).

We can now state our principal result.

Theorem 1.3.  // A{G, C) has the orbit property and if E contains no sub-

space isomorphic to c, then A(G, E) has (BDP).

We remark that the first hypothesis concerns only A(G, C), while the second

hypothesis refers only to E. Examples of algebras A(G, C) which satisfy this

first hypothesis are the almost periodic functions and the almost automorphic

functions.

The last section contains further results on the orbit property.

II. The maximal ideal space of A(G, C). Let M{A) denote the set of all

algebra homomorphisms of A(G, C) onto C. We define a function y from G into

M by the formula yig)(f) = /(g) for each f£A(G, C). With each function / in

A{G, C) we associate a complex-valued function / on M(A) by the rule /(f ) =

Í(f) fot £ £M(A).

M(A) is given the weakest topology such that / is continuous on M(A) tot

each / in A(G, C). A special case of a theorem  proved in Loomis [7, p. 88]   is

that    : A(G, C) —» C(M(A)) is an isometry of A(G, C) onto C(M(A)). The function

y: G —» M(A) is continuous, and so y{G) must be dense in M(A). Otherwise there

would be a nonzero continuous function / on M(A) whose correspondent / on G

is identically zero, in contradiction to the result that " is an isometry onto

C(M{A)).
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A DIFFERENCE PROPERTY FOR BANACH-VALUED FUNCTIONS 51

Theorem 2.1. Suppose f is a function on G with values in a Banach space E.

Then f is in A(G, E) if and only if there is a continuous function f: M(A) —» E

such that f(y(x)) = f(x) for each x in G.

Proof.  Suppose / is in  A(G, E). Then <f> ° / is in  A(G, C) for each <f> e E*,

and the range of / is relatively compact in E. If x and y ate two elements in G

such that y(x) equals y(y), then cf>(f(x)) equals <f>(f(y)) fot each <f> in E*. By

the Hahn-Banach theorem, /(*) equals f(y).

This shows that / can be considered as a function on y(G). Call this new

function /. Let ta,  ta be two nets in y(G) converging to <f in  M(A). f(ta) and

/(/a) are two nets in the relatively compact range of /, so each net has at least

one cluster point. Since for each <£ in  E*, <f> ° f is in A(G, C), it has a continu-

ous extension ((f) ° /)    to all of A1(A), and the equalities:

lim <f>(f(ta)) = (<f> °f)(&    and    lim <p(f(t')) =  (<f> ° f)~(&
a. a1

show that the two nets f(ta) and /(r0) each have only one cluster point, hence

are convergent. Moreover, the above equalities combined with the Hahn-Banach

theorem show that the two nets f(ta) and f(t'a) converge to the same limit.

Hence / is continuously extensible to M(A).

Conversely, suppose there is a continuous function /: M(A) —» E such that

f(y(x)) = /(*) for each * in G. The range of / is contained in the compact range

of / , hence is relatively compact in E. Also, for each <f> in E* and * in G, the

equality <f> ° f(x) = <fa ° f(y(x)), shows that 0 ° / is in A(G, C), due to the iso-

metry of C(M(A)) and A(G, C).

Since y(G) is dense in M(A), when F is a function on y(G) with values in a

Banach space E, we can determine when F is continuously extensible to M(A)

by using the following definition:

Definition 2.2. Suppose F is a function defined on y(G) with values in E.

For ¿; in M(A), we define the oscillation of F at ¿T as follows: osc(f, F) =

sup \b e R : for each e > 0 and each neighborhood V of ¿;, there exists £  , f " in

V ny(G) such that ||F(£') - F(£")|| > b - (\.

We shall say F is continuous at a point £ in M(A) if and only if osc(£, F)

is zero. Moreover, the set of all £ with osc(£, F) > \/n is closed.

III. The orbit property. In this section, we shall develop a condition on

A(G, C) which we shall call the orbit property.

Lemma 3.1. Suppose ly(/a)laeA is a net in y(G) converging to ¿; in M(A),

and that h is an element of G.   Then y(ht a) z's a convergent net in M.

Proof. In order for \y(hta)\aeii to be convergent in M(A), it is necessary and

sufficient that f(y(hta)) converges for each / in A(G, C), where / is the continuous
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function on M{A) associated with /. This last statement also means fÁtJ =

f(hta) converges for each / in A(G, C). Since A(G, C) is translation invariant,

fh is in A(G, C) fot each h £ G and / in A(G, C). Thus, fhUa) converges to

/¿(f), and it follows that \yihta)\aeX converges in M{A) whenever \y(ta)\aeK

converges in M(A).

Moreover, if \yitß)\ßeJii is another net in y(G) converging to f in M(A),

then fh(tß) also converges to /¿(f), for / £ A(G, C) and h in G. This shows

that the element if of M(A) is well defined by the following definition:

Definition 3.2. If f is in M(A) and h is in G, the element if of M(A) is

defined by

if.limiyiirJl^A,
a

where |falaeA is any net in G such that y(fa) converges to f in M(A).

In this way, G operates on M{A) by h in G carrying f to if. We denote

the orbit of f by orb(f ), where orb(f ) is the set {if: i eGl.

In [4], Carroll showed that a bounded function /: G —» C, each of whose left

differences A(f is almost periodic, can be considered as a function on y{G) in

M{A), the almost periodic compactification of G. Here A denotes the almost

periodic functions. This proof holds as well for any algebra A(G, C) of the type

we are discussing. In fact, if /: G —» E is a bounded function each of whose left

differences is in A{G, E), E a Banach space, then / can be considered as a

function / on y(G). This is since <f> ° f satisfies the hypotheses of the Carroll

lemma for each <p~ in E*, so if y{x) equals y{y), <f> ° f(x) equals <f> ° f{y) tot

each <b in  E*. By the Hahn-Banach theorem, fix) equals f(y).

Thus, if /: G —» E is a bounded function and At/ is in A(G, E) for each t

in G, then there is a function /: y(G) —» E such that fiyix)) equals fix) tot

each x in G.

To show that A{G, E) has the bounded difference property, it is enough to

show that for such a function /, osc(f, f) is zero for each f in M{A).

Our analysis will be based primarily on the following theorem:

Theorem 3.3. Suppose f: G —♦ E is a bounded function each of whose left

difference is in A{G, E). If f is an element of M{A) such that orb (f ) is dense

in M{A), and if there exists a point n of M{A) such that osc(r/> /) is zero, then

osc (f, f) is zero.

Proof. Choose e > 0 arbitrarily. 0( = \r¡' £ M(A): osc in', f) < e 1 is a non-

empty open subset of M(A). Choose i in G such that if is in the intersection

of 0( and orb (f ). We shall show that f is in 0{. Let /., r;-   be two nets in G

such that yit) and )At') converge to f in the topology of M(A). In the inequality:
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||/(y(fy))-/(y(/';.))«

- ||/(y(/.)) - f(yihtj)) + Kyibt.)) - ¡(yibt'p + ](y(ht'¡>) - /(yO'.))«

< IlAhf(tj) - \f(t'}n + ||/(y(*',» - Í(yibt'¡>n

the first term can be made arbitrarily small as t., t-   approach £, by the fact that

A¿ / is in A(G, E), hence is continuously extensible from y(G) to M(A) by

Theorem 2.1. The second term is eventually less than e because h¿; is in 0(.

Thus, ç is in 0(. Since e is arbitrary, osc(£ /) is zero.

Because of this last result, we make the following definition:

Definition 3.4. We say A(G, C) has the orbit property if orb(£) is dense in

M(A) for each f in M(A).

IV. The proof of Theorem 1.3. In this section we shall prove that A(G, E)

has (BDP) whenever A(G, C) has property (0) and E contains no subspace iso-

morphic to c. In view of Theorem 3-3, it is sufficient to prove:

Theorem 4.1. If F: G —» E is bounded and A(/ is in A(G, E) for each t in

G, and if E contains no subspace isomorphic to c, then F is continuous at y(e),

where e is the identity of G.

Before presenting the proof of Theorem 4.1, we state a lemma due to

Peíczynski [8].

Lemma 4.2. Let E he a Banach space.  Suppose there is a divergent series

2X,   in E such that all finite sums of its terms are uniformly bounded, ||2X. || <

A < oo. Then E contains a subspace isomorphic to c.

Proof of Theorem 4.1. We proceed by contradiction. Suppose osc(y(e), F) is

not zero. We shall show that there is a divergent series in E all finite sums of

whose terms are uniformly bounded. This is contrary to Lemma 4.2, and will com-

plete the proof.

Without loss of generality, we may assume F(e) is zero. Since osc(y(e), F)

is not zero, we can find a real number a greater than zero and a sequence

\y(tn)\ in y(G) such that ||fXy(rn))|| > a> 0 for each »£«, and WA^KtJ -

A^FU)!! < 2~n, for a any product of elements of a subset of {ij, t2, • •• , f    , |.

We shall now show that the divergent series S F(y(tJ) has a bound of K+ 1

for all finite sums of its terms, where K is the bound for F.

Let »"j, t2, ... , Tm be any finite set of terms of the sequence If |. We use

the identity:
m m— 1

-Ertrp-  £   \^p(rn+l)-A(TF(e)},
1=1 n = l " n
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where a   = fj, r,, • • • , r    to show:

l'ai

Z Hr ru + 1 < K+ 1.

V. Related results. In this section, we shall apply the result of §4 to al-

most periodic and almost automorphic functions and present some related results

and comments.

Definition 5.1. Let G be a topological group and let E be a Banach space.

F: G —» E is an almost periodic function if it is a bounded continuous function

and \f(: f((x) = f{tx)\ is a relatively compact set in the space of bounded contin-

uous functions from G to E with supremum norm.

Definition 5.2. Let G be a topological group and let E be a Banach space.

We shall say that a function f: G —»Eis almost automorphic if it is continuous,

and if each net \Xai \aie A»   in  G contains a subnet  \Xa\a£/L such that

lim^ limoeA/(Xä Xßt) = fit) holds for each  t in G.

Clearly the almost periodic functions are also almost automorphic.

Theorem 5.3. Let A(G, C) be the set of almost automorphic functions from

G to C.  Then A(G, C) has the orbit property.

Proof. Let f be an arbitrary element of M(A).  // e denotes the identity of

G, it is easy to see that y(G) is contained in the closure of orb(f) if y(e) is

in the closure of orb(f). Since y(G) is dense in M(A), it is sufficient, for the

proof of this theorem, to show that y(e)  is in the closure of orb(f ).

Let /j, /,♦ * * * » fn De elements of A(G, C), and let e be an arbitrary posi-

tive number.  A typical basic neighborhood of y(e) in  MÍA) is:

U = ¡r/ e M(A): \f.(r)) - f.(e)\ < e, £-1,2.«I,

where /; denotes the continuous function on M(A) associated with f.. Take any

net a. = 1^1^ of elements of G such that yit,) converges to f in the topology

of M{A). Without loss of generality, we may assume litn ^^lim ßejif {t~ ltgx) =

fix) holds for each x in G and fell, 2, - - - , «1.  In particular, fitZ f) con-

verges to ¡¿(e) tot 1 < i' < 72. Choose ßQ so that ß finer than ßQ   implies:

\f{itß 'f) - ftke)\ <c fot I <i<n.  Then, taking / = r^,   if is in U, so orb(f )

intersects U. Since U was an arbitrary basic neighborhood of y(e), y(e) is in

the closure of orb(f ).

The proof of Theorem 5.3 in the case of almost periodic functions is similar.

Theorem 5.4.  Let R  be the real line.  Suppose A(R, C) has the orbit property.

Then A(R, C)  contains no nonconstant functions which have a limit at positive

infinity.
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Proof. Suppose there exists a function / in A(R, C) which is continuous at

+ », and / is not a constant function. Without loss of generality, we may assume

f(0) is one and /(+ ~) equals zero. Define U by: U = {£ e M(A): |/(cf) _/(o)| < Jft

U is a neighborhood of y(0) in M(A). Consider the sequence N.  The correspond-

ing sequence {y(«)t^_j in y(R) is a sequence in the compact set M(A), hence

has a convergent subnet \ta\ converging to some element £ in M(A). We shall

show that the orbit of £ is not dense by showing its orbit to be outside of U.

For 2 in  R, the equation:

J(t + 0 = um f(t + ta) =   lim  fit + n) = 0,
a n-. cxj

shows orb(f) is in the complement of U.

In particular, consider CJ.R), the set of continuous functions on R which

have a limit at infinity. This algebra of functions does not have the orbit property.

Furthermore, this algebra does not have (BDP), for the function on R with values

in C defined by:   F(x) = sin (|x|   ) is a bounded function each of whose differences

is in  CÍR), but is not itself in  Cc(R).

In view of Theorem 5.3 and Theorem 4.1, whenever A(G, E) is either the

almost automorphic or almost periodic functions with values in a Banach space

E, then A(G, E) has (BDP) if E contains no subspace isomorphic to c. The

next example shows that this latter condition is also necessary for these two

classes of functions to have (BDP) for an arbitrary group G.

Example 5.5. Let Q be the rational numbers, and let c be the space of con-

vergent real sequences with supremum norm. Define f: Q —► c by / = {/  j, and

/„(*) = sin(2z772!x)  for each x in  Q.  Then, for each x in Q, there exists }(x) so

that / > j(x) implies f(x) - 0.  Thus, / is clearly a function into c; in fact, at

each point, / defines a zero sequence.

Let h be an element of Q, and write h = p/q, where h is in this way written

in lowest terms. (Note that }(h) is less than or equal to  q.) Since the equality:

/(* + h) - f(x) = i/jOc + h) - fx(x), ..., fJ(h)(x + h)- fJ(h)(x), 0, 0, ... ¡

holds for each h, &h f is continuous for each h in Q.  In fact, A, / is almost

periodic, for only finitely many of the almost periodic projections of A, / are

nonzero, and finitely many almost periodic functions are equi-almost periodic.

We shall now show that / is not almost automorphic by showing that it is

not even continuous at zero. Note that /(0) is the sequence which is zero at

each index. Consider the sequence X    = l/4ml. Since we have:

\\f(Xm)\\>fm(Xm)=sin((2nml)/4m\)=l,

Xm converges to zero, but f(X  ) does not converge to /(0).
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In summary, the condition that E contains no copy of c is sufficient for

AiG, E) having (BDP) whenever A{G, C) has the orbit property. It is a necessary

condition if A is the class of almost periodic or almost automorphic functions.

The algebra C [R) possesses neither the orbit property nor (BDP). It is possible

that the condition that E contains no copy of c is equivalent to A(G, E) having

(BDP) if and only if A(G, C) has the orbit property, when G is an arbitrary group.

Further investigation is required to determine whether this latter statement holds.
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