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Abstract

Max-convolution is an important problem closely resembling standard convolution; as such, max-
convolution occurs frequently across many fields. Here we extend the method with fastest known
worst-case runtime, which can be applied to nonnegative vectors by numerically approximating
the Chebyshev norm ‖ · ‖∞, and use this approach to derive two numerically stable methods based
on the idea of computing p-norms via fast convolution: The first method proposed, with runtime
in O(k log(k) log(log(k))) (which is less than 18k log(k) for any vectors that can be practically re-
alized), uses the p-norm as a direct approximation of the Chebyshev norm. The second approach
proposed, with runtime in O(k log(k)) (although in practice both perform similarly), uses a novel
null space projection method, which extracts information from a sequence of p-norms to estimate
the maximum value in the vector (this is equivalent to querying a small number of moments from
a distribution of bounded support in order to estimate the maximum). The p-norm approaches
are compared to one another and are shown to compute an approximation of the Viterbi path in
a hidden Markov model where the transition matrix is a Toeplitz matrix; the runtime of approxi-
mating the Viterbi path is thus reduced from O(nk2) steps to O(nk log(k)) steps in practice, and
is demonstrated by inferring the U.S. unemployment rate from the S&P 500 stock index.

Keywords: Bayesian inference, maximum a posteriori, fast Fourier transform, max-convolution,
p-norm, Lp space, hidden Markov model, null space projection, polynomial matrix

1. Introduction

Max-convolution occurs frequently in signal processing and Bayesian inference: it is used in image
analysis (Ritter and Wilson, 2000), in network calculus (Boyer et al., 2013), in economic equilibrium
analysis (Sun and Yang, 2002), and in a probabilistic variant of combinatoric generating functions,
wherein information on a sum of values into their most probable constituent parts (e.g., identifying
proteins from mass spectrometry (Serang et al., 2010; Serang, 2014)). Max-convolution operates
on the semi-ring (max,×), meaning that it behaves identically to a standard convolution, except
it employs a max operation in lieu of the + operation in standard convolution (max-convolution is
also equivalent to min-convolution, also called infimal convolution, which operates on the tropical
semi-ring (min,+)). Due to the importance and ubiquity of max-convolution, substantial effort has
been invested into highly optimized implementations (e.g., implementations of the quadratic method
on GPUs; Zach et al., 2008).
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Max-convolution can be defined using vectors (or discrete random variables, whose probability
mass functions are analogous to nonnegative vectors) with the relationship M = L+ R. Given the
target sum M = m, the max-convolution finds the largest value L[ℓ]×R[r] for which m = ℓ+ r.

M [m] = max
ℓ,r:m=ℓ+r

L[ℓ]R[r]

= max
ℓ

L[ℓ]R[m− ℓ]

= (L ∗max R) [m]

where ∗max denotes the max-convolution operator. In probabilistic terms, this is equivalent to
finding the highest probability of the joint events Pr(L = ℓ, R = r) that would produce each
possible value of the sum M = L + R (note that in the probabilistic version, the vector M would
subsequently need to be normalized so that its sum is 1).

Although applications of max-convolution are numerous, only a small number of methods exist
for solving it (Serang, 2015). These methods fall into two main categories, each with their own draw-
backs: The first category consists of very accurate methods that are have worst-case runtimes either
quadratic (Bussieck et al., 1994) or slightly more efficient than quadratic in the worst-case (Brem-
ner et al., 2006). Conversely, the second type of method computes a numerical approximation to
the desired result, but in O(k log2(k)) steps; however, no bound for the numerical accuracy of this
method has been derived (Serang, 2015).

While the two approaches from the first category of methods for solving max-convolution do so
by either using complicated sorting routines or by creating a bijection to an optimization problem,
the numerical approach solves max-convolution by showing an equivalence between ∗max and the
process of first generating a vector u(m) for each index m of the result (where u(m)[ℓ] = L[ℓ]R[m− ℓ]
for all in-bounds indices) and subsequently computing the maximum M [m] = maxℓ u

(m)[ℓ]. When
L and R are nonnegative, the maximization over the vector u(m) can be computed exactly via the
Chebyshev norm

M [m] = max
ℓ

u(m)[ℓ]

= lim
p→∞

‖u(m)‖p

but requires O(k2) steps (where k is the length of vectors L and R). However, once a fixed p∗-norm
is chosen, the approximation corresponding to that p∗ can be computed by expanding the p∗-norm
to yield

lim
p→∞

‖u(m)‖p = lim
p→∞

(

∑

ℓ

(

u(m)[ℓ]
)p

)
1
p

≈
(

∑

ℓ

(

u(m)[ℓ]
)p∗

)
1
p∗

=

(

∑

ℓ

L[ℓ]
p∗

R[m− ℓ]
p∗

)
1
p∗

=

(

∑

ℓ

(

Lp∗

)

[ℓ]
(

Rp∗

)

[m− ℓ]

)
1
p∗

=
(

Lp∗ ∗ Rp∗

)
1
p∗

[m]
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where Lp∗

= 〈 (L[0])
p∗

, (L[1])
p∗

, . . . , (L[k − 1])
p∗

〉 and ∗ denotes standard convolution. The
standard convolution can be done via fast Fourier transform (FFT) in O(k log2(k)) steps, which is
substantially more efficient than the O(k2) required by the naive method (Algorithm 1).

To date, the numerical method has demonstrated the best speed-accuracy trade-off on Bayesian
inference tasks, and can be generalized to multiple dimensions (i.e., tensors). In particular, they
have been used with probabilistic convolution trees (Serang, 2014) to efficiently compute the most
probable values of discrete random variables X0, X1, . . . Xn−1 for which the sum is known X0+X1+
. . . Xn−1 = y (Serang, 2014). The one-dimensional variant of this problem (i.e., where each Xi is a
one-dimensional vector) solves the probabilistic generalization of the subset sum problem, while the
two-dimensional variant (i.e., where each Xi is a one-dimensional matrix) solves the generalization
of the knapsack problem (note that these problems are not NP-hard in this specific case, because
we assume an evenly-spaced discretization of the possible values of the random variables).

However, despite the practical performance that has been demonstrated by the numerical method,
only cursory analysis has been performed to formalize the influence of the value of p∗ on the accuracy
of the result and to bound the error of the p∗-norm approximation. Optimizing the choice of p∗

is non-trivial: Larger values of p∗ more closely resemble a true maximization under the p∗-norm,
but result in underflow (note that in Algorithm 1, the maximum values of both L and R can be
divided out and then multiplied back in after max-convolution so that overflow is not an issue).
Conversely, smaller values of p∗ suffer less underflow, but compute a norm with less resemblance
to maximization. Here we perform an in-depth analysis of the influence of p∗ on the accuracy of
numerical max-convolution, and from that analysis we construct a modified piecewise algorithm,
on which we demonstrate bounds on the worst-case absolute error. This modified algorithm, which
runs in O(k log(k) log(log(k))) steps, is demonstrated using a hidden Markov model describing the
relationship between U.S. unemployment and the S&P 500 stock index.

We then extend the modified algorithm and introduce a second modified algorithm, which not
only uses a single p-norm as a means of approximating the Chebyshev norm, but instead uses a
sequence of p-norms and assembles them using a projection as a means to approximate the Chebyshev
norm. Using numerical simulations as evidence, we make a conjecture regarding the relative error
of the null space projection method. In practice, this null space projection algorithm is shown to
have similar runtime and higher accuracy when compared with the piecewise algorithm.

2. Methods

We begin by outlining and comparing three numerical methods for max-convolution. By analyzing
the benefits and deficits of each of these methods, we create improved variants. All of these methods
will make use of the basic numerical max-convolution idea summarized in the introduction, and as
such we first declare a method for computing the numerical max-convolution estimate for a given
p∗ as numericalMaxConvolveGivenPStar (Algorithm 1).

Algorithm 1 Numerical max-convolution given a fixed p∗, a numerical method to estimate
the max-convolution of two PMFs or nonnegative vectors. The parameters are two nonnegative
vectors L′ and R′ (both scaled so that they have maximal element 1) and the numerical value p∗

used for computation. The return value is a numerical estimate of the max-convolution L′ ∗max R′.

1: procedure numericalMaxConvolveGivenPStar(L′, R′, p∗)

2: ∀ℓ, vL[ℓ]← L[ℓ]p
∗

3: ∀r, vR[r]← R[r]p
∗

4: vM ← vL ∗ vR ⊲ Standard FFT convolution is used here
5: ∀m, M ′[m]← vM [m]

1
p∗

6: return M ′

7: end procedure
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2.1 Fixed Low-Value p∗ = 8 Method:

The effects of underflow will be minimal (as it is not very far from standard FFT convolution, an
operation with high numerical stability), but it can still be imprecise due to numerical “bleed-in”
(i.e., error due to contributions from non-maximal terms for a given u(m) because the p∗-norm is
not identical to the Chebyshev norm). Overall, this will perform well on indices where the exact
value of the result is small, but perform poorly when the exact value of the result is large.

2.2 Fixed High-Value p∗ = 64 Method:

As noted above, will offer the converse pros and cons compared to using a low p∗: numerical artifacts
due to bleed-in will be smaller (thus achieving greater performance on indices where the exact values
of the result are larger), but underflow may be significant (and therefore, indices where the exact
results of the max-convolution are small will be inaccurate).

2.3 Higher-Order Piecewise Method:

The higher-order piecewise method formalizes the empirical cutoff values found in Serang 2015;
previously, numerical stability boundaries were found for each p∗ by computing both the exact max-
convolution (via the naive O(k2) method) and via the numerical method using the ascribed value of
p∗, and finding the value below which the numerical values experienced a high increase in relative
absolute error.

Those previously observed empirical numerical stability boundaries can be formalized by using
the fact that the employed numpy implementation of FFT convolution has high accuracy on indices
where the result has a value ≥ τ relative to the maximum value; therefore, if the arguments L and R

are both normalized so that each has a maximum value of 1, the fast max-convolution approximation
is numerically stable for any index m where the result of the FFT convolution, i.e., vM [m], is ≥ τ .
The numpy documentation defines a conservative numeric tolerance for underflow τ = 10−12, which
is a conservative estimate of the numerical stability boundary demonstrated in Figure 1 (those
boundary points occur very close to the true machine precision ǫ ≈ 10−15).

Because Cooley-Tukey implementations of FFT-based convolution (e.g., the numpy implementa-
tion) are widely applied to large problems with extremely small error, we will make a simplification
and assume that, when constraining the FFT result to reach a value higher than machine epsilon (+
tolerance threshold), the error from the FFT is negligible in comparison to the error introduced by
the p∗-norm approximation. This is firstly because the only source of numerical error during FFT
(assuming an FFT implementation with numerically precise twiddle factors) on vectors in [0, 1]

k
will

be the result of underflow from repeated addition and subtraction (neglecting the non-influencing
multiplication with twiddle factors, which each have magnitude 1). The numerically imprecise rou-
tines are thus limited to (x+y)−x; when x >> y (i.e., y

x
< ǫ ≈ 10−15, the machine precision), then

(x+ y)− x will return 0 instead of y. To recover at least one bit of the significand, the intermediate
results of the FFT must surpass machine precision ǫ (since the worst case addition initially happens
with the maximum x = 1.0).

The maximum sum of any values from a list of k such elements can never exceed k; for this reason,
a conservative estimate of the numerical tolerance (with regard to underflow) of a DFT (discrete
Fourier transform) will be the smallest value of y for which y

k
> ǫ; thus, y > ǫk. This yields a

conservative estimate of the minimum value in one index at the result of an DFT convolution: when
the result at some index m is > ǫk, then the result should be numerically stable. We emphasize on
the very conservative nature of this estimate for a minimum stable value that is derived under the
assumption of a simple, naive implementation of a DFT. In general however, FFT (a special case
of DFT algorithms) implementations (especially well-proven implementations of the Cooley-Tukey
algorithm) tend to follow error bounds logarithmic in k (Schatzman, 1996), due to their divide-and-
conquer strategies, which perform fewer arithmetic operations. In practice, even for longer vectors
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Figure 1: Empirical estimate of τ to construct a piecewise method. For each k ∈
{128, 256, 512, 1024}, 32 replicate max-convolutions (on vectors filled with uniform values)
are performed. Error from two sources can be seen: error due to underflow is depicted in
the sharp left mode, whereas error due to imperfect approximation, where ‖ · ‖p∗ > ‖ · ‖∞
can be seen in the gradual mode on the right. Error due to p∗-norm approximation is sig-
nificantly smaller when p∗ is larger (thereby flattening the right mode), but larger p∗ values
are more susceptible to underflow, pushing more indices into the left mode. Regardless

of the value of k, error due to underflow occurs when (‖ · ‖p∗)
p∗

goes below ≈ 10−15; this
is approximately the numerical tolerance for τ described by the numpy documentation.
Therefore, at each index m we can construct a piecewise method that uses the largest
value of p∗ for which the FFT convolution result is not close to the machine precision
(i.e., (‖u(m)‖p∗)p

∗ ≥ τ for some τ > 10−15).
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(e.g., k = 1024 as shown in Figure 1), it is empirically demonstrated that the influence of the
length on the τ threshold is negligible. By using a numerical tolerance τ = 10−12, we ensure that
the vast majority of numerical error for the numerical max-convolution algorithm is due to the p∗-
norm approximation (i.e., employing ‖u(m)‖p∗ instead of ‖u(m)‖∞) and not due to the long-used
and numerically performant FFT result. Furthermore, in practice the mean squared error due to
FFT will be much smaller than the conservative worst-case outlined here, because it is difficult for
the largest intermediate summed value (in this case x) to be consistently large when many such very
small values (in this case y) are encountered in the same list. Although τ could be chosen specifically
for a problem of size k, note that this simple derivation is very conservative and thus it would be
better to use a tighter bound for choosing τ . Regardless, for an FFT implementation that isn’t as
performant (e.g., because it uses float types instead of double), increasing τ slightly would suffice.

Therefore, from this point forward we consider that the dominant cause of error to come from
the max-convolution approximation. Using larger p∗ values will provide a closer approximation;
however, using a larger value of p∗ may also drive values to zero (because the inputs L and R will
be normalized within Algorithm 1 so that the maximum of each is 1 when convolved via FFT),
limiting the applicability of large p∗ to indices m for which vM [m] ≥ τ .

Through this lens, the choice of p∗ can be characterized by two opposing sources of error: higher
p∗ values better approximate ‖u(m)‖p∗ but will be numerically unstable for many indices; lower
p∗ values provide worse approximations of ‖u(m)‖p∗ but will be numerically unstable for only few
indices. These opposing sources of error pose a natural method for improving the accuracy of this
max-convolution approximation. By considering a small collection of p∗ values, we can compute the
full numerical estimate (at all indices) with each p∗ using Algorithm 1; computing the full result
at a given p∗ is ∈ O(k log2(k)), so doing so on some small number c of p∗ values considered, then
the overall runtime will be ∈ O(ck log2(k)). Then, a final estimate is computed at each index by
using the largest p∗ that is stable (with respect to underflow) at that index. Choosing the largest
p∗ (of those that are stable with respect to underflow) corresponds to minimizing the bleed-in error,
because the larger p∗ becomes, the more muted the non-maximal terms in the norm become (and
thus the closer the p∗-norm becomes to the true maximum).

Here we introduce this piecewise method and compare it to the simpler low-value p∗ = 8 and
high-value p∗ = 64 methods and analyze the worst-case error of the piecewise method.

3. Results

This section derives theoretical error bounds as well as a practical comparison on an example for
the standard piecewise method. Furthermore the development of an improvement with affine scaling
is shown. Eventually, an evaluation of the latter is performed on a larger problem. Therefore we
applied our technique to compute the Viterbi path for a hidden Markov model (HMM) to assess
runtime and the level of error propagation.

3.1 Error and Runtime Analysis of the Piecewise Method

We first analyze the error for a particular underflow-stable p∗ and then use that to generalize to the
piecewise method, which seeks to use the highest underflow-stable p∗.

3.1.1 Error Analysis for a Fixed Underflow-Stable p∗:

We first scale L and R into L′ and R′ respectively, where the maximum elements of both L′ and R′

are 1; the absolute error can be found by unscaling the absolute error of the scaled problem:

|exact(L,R)[m]− numeric(L′, R′)[m]|
= max

ℓ
L[ℓ] max

r
R[r] |exact(L′, R′)[m]− numeric(L′, R′)[m]|.

6
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Algorithm 2 Piecewise numerical max-convolution , a numerical method to estimate the
max-convolution of nonnegative vectors (revised to reduce bleed-in error). This procedure uses a
p∗ close to the largest possible stable value at each result index. The return value is a numerical
estimate of the max-convolution L ∗max R. The runtime is in O(k log2(k) log2(p

∗
max)).

1: procedure numericalMaxConvolvePiecewise(L, R, p∗max)
2: ℓmax ← argmaxℓ L[ℓ]
3: rmax ← argmaxr R[r]
4: L′ ← L

L[ℓmax]

5: R′ ← R
R[rmax]

⊲ Scale to a proportional problem on L′, R′

6: allPStar ← [20, 21, . . . , 2

⌈

log2(p
∗

max)
⌉

]
7: for i ∈ {0, 1, . . . len(allPStar)} do
8: resForAllPStar[i]← fftNonnegMaxConvolveGivenPStar(L′, R′, allPStar[i])
9: end for

10: for m ∈ {0, 1, . . . len(L) + len(R)− 1} do
11: maxStablePStarIndex[m]← max{i : (resForAllPStar[i][m])allPStar[i] ≥ τ)}
12: end for

13: for m ∈ {0, 1, . . . len(L) + len(R)− 1} do
14: i← maxStablePStarIndex[m]
15: result[m]← resForAllPStar[i][m]
16: end for

17: return L[ℓmax]×R[rmax]× result ⊲ Undo previous scaling
18: end procedure

We first derive an error bound for the scaled problem on L′, R′ (any mention of a vector u(m) refers
to the scaled problem), and then reverse the scaling to demonstrate the error bound on the original
problem on L,R.

For any particular “underflow-stable” p∗ (i.e., any value of p∗ for which
(

‖u(m)‖p∗

)p∗

≥ τ),
the absolute error for the numerical method for fast max-convolution can be bound fairly easily by
factoring out the maximum element of u(m) (this maximum element is equivalent to the Chebyshev
norm) from the p∗-norm:

|exact(L′, R′)[m]− numeric(L′, R′)[m]|

= |‖u(m)‖p∗ − ‖u(m)‖∞|
= ‖u(m)‖p∗ − ‖u(m)‖∞

= ‖u(m)‖∞
(‖u(m)‖p∗

‖u(m)‖∞
− 1

)

= ‖u(m)‖∞
(

‖ u(m)

‖u(m)‖∞
‖p∗ − 1

)

= ‖u(m)‖∞
(

‖v(m)‖p∗ − 1
)

where v(m) is a nonnegative vector of the same length as u(m) (this length is denoted km) where
v(m) contains one element equal to 1 (because the maximum element of u(m) must, by definition,
be contained within u(m)) and where no element of v(m) is greater than 1 (also provided by the
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definition of the maximum). These observations result in the equation

‖v(m)‖p∗ ≤ ‖(1, 1, . . . 1)‖p∗

=

(

km
∑

i

1p
∗

)

1
p∗

= km
1
p∗ .

Thus, since ‖v(m)‖p∗ ≥ 1, the error is bounded:

|exact(L′, R′)[m]− numeric(L′, R′)[m]|
= ‖u(m)‖∞

(

‖v(m)‖p∗ − 1
)

≤ ‖v(m)‖p∗ − 1

≤ k
1
p∗

m − 1,

because ∀m, ‖u(m)‖∞ ≤ 1 for a scaled problem on L′, R′.

3.1.2 Error Analysis of Piecewise Method

However, the bounds derived above are only applicable for p∗ where ‖u(m)‖p
∗

p∗ ≥ τ . The piecewise
method is slightly more complicated, and can be partitioned into two cases: In the first case, the
top contour is used (i.e., when p∗max is underflow-stable). Conversely, in the second case, a middle
contour is used (i.e., when p∗max is not underflow-stable). In this context, in general a contour
comprises of a set of indices m with the same maximum stable p∗.

In the first case, when we use the top contour p∗ = p∗max, we know that p∗max must be underflow-
stable, and thus we can reuse the bound given an underflow-stable p∗.

In the second case, because the p∗ used is < p∗max, it follows that the next higher contour (using
2p∗) must not be underflow-stable (because the highest underflow-stable p∗ is used and because the
p∗ are searched in log-space). The bound derived above that demonstrated

‖u(m)‖p∗ ≤ ‖u(m)‖∞k
1
p∗

m

can be combined with the property that ‖ · ‖p∗ ≥ ‖ · ‖∞ for any p∗ ≥ 1 to show that

‖u(m)‖∞ ∈
[

‖u(m)‖p∗

k
1
p∗

m

, ‖u(m)‖p∗

]

.

Thus the absolute error can also be shown to be bounded using the fact that we are in a middle
contour:

= ‖u(m)‖p∗ − ‖u(m)‖∞

= ‖u(m)‖p∗

(

1− ‖u(m)‖∞
‖u(m)‖p∗

)

≤ ‖u(m)‖p∗

(

1− k
−1
p∗

m

)

< τ
1

2p∗

(

1− k
−1
p∗

m

)

.
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The absolute error from middle contours will be quite small when p∗ = 1 is the maximum

underflow-stable value of p∗ at index m, because τ
1

2p∗ , the first factor in the error bound, will

become
√
τ ≈ 10−6, and 1− k

−1
p∗

m < 1 (qualitatively, this indicates that a small p∗ is only used when
the result is very close to zero, leaving little room for absolute error). Likewise, when a very large

p∗ is used, then 1− k
−1
p∗

m becomes very small, while τ
1

2p∗ < 1 (qualitatively, this indicates that when
a large p∗ is used, the ‖ · ‖p∗ ≈ ‖ · ‖∞, and thus there is little absolute error). Thus for the extreme
values of p∗, middle contours will produce fairly small absolute errors. The unique mode p∗mode can
be found by finding the value that solves

∂

∂p∗mode

(

τ
1

2p∗
mode

(

1− k

−1
p∗
mode

m

))

= 0,

which yields

p∗mode =
log2(km)

log2(− 2 log2(k)−log2(τ)
log2(τ)

)
.

An appropriate choice of p∗max should be > p∗mode so that the error for any contour (both middle
contours and the top contour) is smaller than the error achieved at p∗mode, allowing us to use a single
bound for both. Choosing p∗max = p∗mode would guarantee that all contours are no worse than the
middle-contour error at p∗mode; however, using p∗max = p∗mode is still quite liberal, because it would
mean that for indices in the highest contour (there must be a nonempty set of such indices, because
the scaling on L′ and R′ guarantees that the maximum index will have an exact value of 1, meaning
that the approximation endures no underflow and is underflow-stable for every p∗), a better error
could be achieved by increasing p∗max. For this reason, we choose p∗max so that the top-contour error
produced at p∗max is not substantially larger than all errors produced for p∗ before the mode (i.e.,
for p∗ < p∗mode).

Choosing any value of p∗max > p∗mode guarantees the worst-case absolute error bound derived here;
however, increasing p∗max further over p∗mode may possibly improve the mean squared error in practice
(because it is possible that many indices in the result would be numerically stable with p∗ values
substantially larger than p∗mode). However, increasing p∗max >> p∗mode will produce diminishing
returns and generally benefit only a very small number of indices in the result, which have exact
values very close to 1. In order to balance these two aims (increasing p∗max enough over p∗mode but
not excessively so), we make a qualitative assumption that a non-trivial number of indices require
us to use a p∗ below p∗mode; therefore, increasing p∗max to produce an error significantly smaller
than the lowest worst-case error for contours below the mode (i.e., p∗ < p∗mode) will increase the
runtime without significantly decreasing the mean squared error (which will become dominated by
the errors from indices that use p∗ < p∗mode). The lowest worst-case error contour below the mode
is p∗ = 1 (because the absolute error function is unimodal, and thus must be increasing until p∗mode

and decreasing afterward); therefore, we heuristically specify that p∗max should produce a worst-case
error on a similar order of magnitude to the worst-case error produced with p∗ = 1. In practice,
specifying the errors at p∗max and p∗ = 1 should be equal is very conservative (it produces very large
estimates of p∗max, which sometimes benefit only one or two indices in the result); for this reason,
we heuristically choose that the worst-case error at p∗max should be no worse than square root of
the worst case error at p∗ = 1 (this makes the choice of p∗max less conservative because the errors
at p∗ = 1 are very close to zero, and thus their square root is larger). The square root was chosen
because it produced, for the applications described in this paper, the smallest value of p∗max for
which the mean squared error was significantly lower than using p∗max = p∗mode (the lowest value of
p∗max guaranteed to produce the absolute error bound). This heuristic does satisfy the worst-case
bound outlined here (because, again, p∗max > p∗mode), but it could be substantially improved if an
expected distribution of magnitudes in the result vector were known ahead of time: prior knowledge
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regarding the number of points stable at each p∗ considered would enable a well-motivated choice
of p∗max that truly optimizes the expected mean squared error.

From this heuristic choice of p∗max, solving

√

√
τ

(

1− 1

k

)

= k
1

p∗max − 1

(with the square root of the worst-case at p∗ = 1 on the left and the worst-case error at p∗max on the
right) yields

p∗max =
log2(k)

log2(1 +
√√

τ
(

1− 1
k

)

)

≈ log2(k)

log2(1 +
√√

τ)

for any non-trivial problem (i.e., when k >> 1), and thus

p∗max ≈ log
1+τ

1
4
(k),

indicating that the absolute error at the top contour will be roughly equal to the fourth root of τ .

3.1.3 Worst-case Absolute Error

By setting p∗max in this manner, we guarantee that the absolute error at any index of any unscaled
problem on L,R is less than

max
ℓ

L[ℓ] max
r

R[r] τ
1

2p∗
mode

(

1− k

−1
p∗
mode

m

)

where p∗mode is defined above. The full formula for the middle-contour error at this value of p∗mode

does not simplify and is therefore quite large; for this reason, it is not reported here, but this gives a
numeric bound of the worst case middle-contour error that is bound in terms of the variable k (and
with no other free variables).

3.1.4 Runtime Analysis

The piecewise method clearly performs log2(p
∗
max) FFTs (each requiring O(k log2(k)) steps); there-

fore, since p∗max is chosen to be log
1+τ

1
4
(k) (to achieve the desired error bound), the total runtime

is thus
O(k log2(k) log2(log1+τ

1
4
(k)).

For any practically sized problem, the log2(log1+τ
1
4
(k)) factor is essentially a constant; even when

k is chosen to be the number of particles in the observable universe (≈ 2270; Eddington, 1923), the
log2(log1+τ

1
4
(k)) is ≈ 18, meaning that for any problem of practical size, the full piecewise method

is no more expensive than computing between 1 and 18 FFTs.

3.2 Comparison of Low-Value p∗ = 8, High-value p∗ = 64, and Piecewise Method

We first use an example max-convolution problem to compare the results from the low-value p∗ = 8,
the high-value p∗ = 64 and piecewise methods. At every index, these various approximation results
are compared to the exact values, as computed by the naive quadratic method (Figure 2a).
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Figure 2: The accuracy of numerical fast max-convolution methods. (a) Different approx-
imations for a sample max-convolution problem. The low-p∗ method is underflow-stable,
but overestimates the result. The high-p∗ method is accurate when underflow-stable,
but experiences underflow at many indices. The piecewise method stitches together ap-
proximations from different p∗ to maintain underflow-stability. (b) Exact vs. piecewise
approximation at various indices of the same problem. A clear banding pattern is observed
with one tight, elliptical cluster for each contour. The slope of the clusters deviates more
for the contours using lower p∗ values.

3.3 Improved Affine Piecewise Method

Figure 2b depicts a scatter plot of the exact result vs. the piecewise approximation at every
index (using the same problem from Figure 2a). It shows a clear banding pattern: the exact and
approximate results are clearly correlated, but each contour (i.e., each collection of indices that use
a specific p∗) has a different average slope between the exact and approximate values, with higher p∗

contours showing a generally larger slope and smaller p∗ contours showing greater spread and lower

slopes. This intuitively makes sense, because the bounds on ‖u(m)‖∞ ∈ [‖u(m)‖p∗k
−1
p∗

m , ‖u(m)‖p∗ ]
derived above constrain the scatter plot points inside a quadrilateral envelope (Figure 3).

The correlations within each contour can be exploited to correct biases that emerge for smaller
p∗ values. In order to do this, ‖u(m)‖∞ must be computed for at least two points m1 and m2

within the contour, so that a mapping ‖u(m)‖p∗ ≈ f(‖u(m)‖p∗) = a‖u(m)‖p∗ + b can be constructed.
Fortunately, a single ‖u(m)‖∞ can be computed exactly in O(k) (by actually computing a single
u(m) and computing its max, which is equivalent to computing a single index result via the naive
quadratic method). As long as the exact value ‖u(m)‖∞ is computed for only a small number of
indices, the order of the runtime will not change (each contour already costs O(k log2(k)), so adding
a small number of O(k) steps for each contour will not change the asymptotic runtime).

If the two indices chosen are

mmin = argmin
m∈contour(p∗)

‖u(m)‖p∗

and
mmax = argmax

m∈contour(p∗)

‖u(m)‖p∗ ,

then we are guaranteed that the affine function f can be written as a convex combination of the
exact values at those extreme points (using barycentric coordinates):
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Figure 3: A single contour from the piecewise approximation. The cluster of points (one
point for each index in the previous figure) is bounded by the exact value (ideal approxi-
mation) and the approximation upper-bound for p∗ = 8 (worst-case approximation). The
points are well described by an affine function fit using the left-most and right-most points.
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Figure 4: Piecewise method with affine contour fitting. The approximate values at each index
of the max-convolution problem are almost identical to the exact result at the same index.

Algorithm 3 Improved affine piecewise numerical max-convolution, a numerical method to
estimate the max-convolution nonnegative vectors (further revised to reduce numerical error). This
procedure uses a p∗ close to the largest possible stable value at each result index. The return value
is a numerical estimate of the max-convolution L ∗max R. The runtime is in O(k log2(k) log2(p

∗
max)).

1: procedure numericalMaxConvolvePiecewiseAffine(L, R, p∗max)
2: ℓmax ← argmaxℓ L[ℓ]
3: rmax ← argmaxr R[r]
4: L′ ← L

L[ℓmax]

5: R′ ← R
R[rmax]

⊲ Scale to a proportional problem on L′, R′

6: allPStar ← [20, 21, . . . , 2

⌈

log2(p
∗

max)
⌉

]
7: for i ∈ {0, 1, . . . len(allPStar)} do
8: resForAllPStar[i]← fftNonnegMaxConvolveGivenPStar(L′, R′, allPStar[i])
9: end for

10: for m ∈ {0, 1, . . . len(L) + len(R)− 1} do
11: maxStablePStarIndex[m]← max{i : (resForAllPStar[i][m])allPStar[i] ≥ τ)}
12: end for

13: result←affineCorrect(resForAllPStar,maxStablePStarIndex)
14: return L[ℓmax]×R[rmax]× result ⊲ Undo previous scaling
15: end procedure

f(‖u(m)‖p∗) = λm‖u(mmax)‖∞ + (1− λm) ‖u(mmin)‖∞

λm =
‖u(m)‖p∗ − ‖u(mmin)‖p∗

‖u(mmax)‖p∗ − ‖u(mmin)‖p∗

∈ [0, 1]

Thus, by computing ‖u(mmin)‖∞ and ‖u(mmax)‖∞ (each in O(k) steps), we can compute an affine
function f to correct contour-specific trends (Algorithm 3).

3.3.1 Error Analysis of Improved Affine Piecewise Method

By exploiting the convex combination used to define f , the absolute error of the affine piecewise
method can also be bound. Qualitatively, this is because, by fitting on the extrema in the contour, we
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Algorithm 4 Subroutine for correcting errors in a contour, with an affine transformation
based on exact boundary points. It needs the results of the evaluation of the different p-norms as
well as the (index of the) maximum stable values of p∗ at every index.

1: procedure affineCorrect(resForAllPStar, maxStablePStarIndex)
2: ∀i, slope[i]← 1
3: ∀i, bias[i]← 0
4: usedPStar ← set(maxStablePStarIndex)
5: for i ∈ usedPStar do

6: contour ← {m : maxStablePStarIndex[m] = i}
7: mMin← argminm∈contourresForAllPStar[i][m]
8: mMax← argmaxm∈contourresForAllPStar[i][m]
9: xMin← resForAllPStar[i][mMin]

10: xMax← resForAllPStar[i][mMax]
11: yMin← maxConvolutionAtIndex(mMin)
12: yMax← maxConvolutionAtIndex(mMax)
13: if xMax > xMin then

14: slope[i]← yMax−yMin
xMax−xMin

15: bias[i]← yMin− slope[i]× xMin
16: else

17: slope[i]← yMax
xMax

18: end if

19: end for

20: for m ∈ {0, 1, . . . len(L) + len(R)− 1} do
21: i← maxStablePStarIndex[m]
22: result[m]← resForAllPStar[i][m]× slope[i] + bias[i]
23: end for

24: return result
25: end procedure
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are now interpolating. If the two points used to determine the parameters of the affine function were
not chosen in this manner to fit the affine function, then it would be possible to choose two points
with very close x-values (i.e., similar approximate values) and disparate y-values (i.e., different exact
values), and extrapolating to other points could propagate a large slope over a large distance; using
the extreme points forces the affine function to be a convex combination of the extrema, thereby
avoiding this problem.

f(‖u(m)‖p∗) = λm‖u(mmax)‖∞ + (1− λm) ‖u(mmin)‖∞

∈
[

λm

‖u(mmax)‖p∗

k
1
p∗

mmax

+ (1− λm)
‖u(mmin)‖p∗

k
1
p∗

mmin

,

λm‖u(mmax)‖p∗ + (1− λm) ‖u(mmin)‖p∗

]

⊆
[

λm

‖u(mmax)‖p∗

k
1
p∗

+ (1− λm)
‖u(mmin)‖p∗

k
1
p∗

,

λm‖u(mmax)‖p∗ + (1− λm) ‖u(mmin)‖p∗

]

=
[

k
−1
p∗

(

λm‖u(mmax)‖p∗ + (1− λm) ‖u(mmin)‖p∗

)

,

λm‖u(mmax)‖p∗ + (1− λm) ‖u(mmin)‖p∗

]

=
[

k
−1
p∗ ‖u(m)‖p∗ , ‖u(m)‖p∗

]

The worst-case absolute error of the scaled problem on L′, R′ can be defined as

max
m

| f(‖u(m)‖p∗)− ‖u(m)‖∞ |.

Because the function f(‖u(m)‖p∗) − ‖u(m)‖∞ is affine, it’s derivative can never be zero, and thus
Lagrangian theory states that the maximum must occur at a boundary point. Therefore, the worst-
case absolute error is

≤ max{‖u(m)‖p∗ − ‖u(m)‖∞, ‖u(m)‖∞ − ‖u(m)‖p∗k
−1
p∗ }

= ‖u(m)‖p∗ − ‖u(m)‖∞,

which is identical to the worst-case error bound before applying the affine transformation f . Thus
applying the affine transformation can dramatically improve error, but will not make it worse than
the original worst-case.

3.4 An Improved Approximation of the Chebyshev Norm

In order to improve the error of the piecewise numerical method, we consider the worst-case, when
u(m)

‖u(m)‖∞

= (1, 1, . . . 1). In this case, computing any two norms of u(m) (at p∗1 and p∗2) would be

sufficient to solve exactly for ‖u(m)‖∞, because

‖u(m)‖p
∗

1

p∗

1
∝ ‖u(m)‖p

∗

1
∞

‖u(m)‖p
∗

2

p∗

2
∝ ‖u(m)‖p

∗

2
∞ ,

where the proportionality constant is km = len(u(m)).
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Thus we see that although the p∗-norm approximation of the Chebyshev norm is a good approx-
imation, the curve of the norms (at various different p∗) values holds far more information than a
simple point estimate would. Therefore, we derive an improved algorithm by proceeding as follows:
First, we note that, rather than computing the p∗-norm of a vector u(m) by summing all elements
of u(m) taken to the power p∗, it is possible to equivalently sum over only the unique values of u(m)

(here denoted in β1, β2, . . .) taken to the p∗ where each term in the sum is weighted by the number
of occurrences of each (denoted h1, h2, . . ., respectively). For this reason, we can then use a sequence
of norms to compute a (potentially smaller) collection of approximate unique values α1, α2, . . . αr,
where once again, the p∗-norm is equal to the sum over those unique values to the p∗, where each
term in the sum is weighted by numbers of occurrences n1, n2, . . . nr. Therefore, given 2r different
norms of u(m), it is possible to project and estimate r unique αi values. The maximum of those
α1, α2, . . . αr values, (the α1, α2, . . . αr values can be thought of as projections of the true unique
values β1, β2, . . .) can then be used as an estimate of the true maximum element in u(m), which we
will now demonstrate.

Specifically, where km is the length of u(m) and where there are em ≤ km unique values (βi) in
u(m), we can model the norms perfectly with

‖u(m)‖p
∗

p∗ =

em
∑

i

hiβ
p∗

i

where hi is an integer that indicates the number of times βi occurs in u(m) (and where
∑

i hi = km =
len(u(m))). This multi-set view of the vector u(m) can be used to project it down to a dimension r:

















α
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‖u(m)‖p
∗

p∗

‖u(m)‖2p
∗

2p∗

‖u(m)‖3p
∗

3p∗

...

‖u(m)‖ℓp
∗

ℓp∗

















.

By solving the above system of equations for all αi, the maximum α̂ = maxi αi can be used to
approximate the true maximum maxi βi = ‖u(m)‖∞. This projection can be thought of as querying
distinct moments of the distribution pmfU(m) that corresponds to some unknown vector u(m), and
then assembling the moments into a model in order to predict the unknown maximum value in
u(m). Of course, when r, the number of terms in our model, is sufficiently large, then computing r

norms of u(m) will result in an exact result, but it could result in O(km) execution time, meaning
that our numerical max-convolution algorithm becomes quadratic; therefore, we must consider that
a small number of distinct moments are queried in order to estimate the maximum value in u(m).
Regardless, the system of equations above is quite difficult to solve directly via elimination for even
very small values of r, because the symbolic expressions become quite large and because symbolic
polynomial roots cannot be reliably computed when the degree of the polynomial is > 5. Even in
cases when it can be solved directly, it will be far too inefficient.

For this reason, we solve for the αi values using an exact, alternative approach: If we define a

polynomial γ(x) =
(

x− α
p∗

1

)(

x− α
p∗

2

)

· · ·
(

x− αp∗

r

)

, then x ∈ {αp∗

1 , α
p∗

2 , . . . αp∗

r } ⇔ γ(x) = 0. We

can expand γ(x) = γ0 + γ1x+ γ2x
2 + · · ·+ γrx

r, and then write
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]
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]
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which indicates that
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Furthermore, γ(x) = 0, x 6= 0 ⇔ xiγ(x) = 0, i ∈ N; therefore we can write
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Because the columns of
















α
p∗

1 α
p∗

2 αp∗

r

α
2p∗

1 α
2p∗

2 · · · α2p∗

r

α
3p∗

1 α
3p∗

2 α3p∗

r

...
...

...

α
ℓp∗

1 α
ℓp∗

2 αℓp∗

r

















must be linearly independent when α1, α2, . . . are distinct (which is the case by the definition of
our multiset formulation of the norm), then r = ℓ

2 will determine a unique solution; thus the
null space above is computed from a matrix with r + 1 columns and r rows, yielding a single
vector for (γ0, γ1, . . . γr). This vector can then be used to compute the roots of the polynomial

γ0 + γ1x + γ2x
2 + · · · + γrx

r, which will determine the values {αp∗

1 , α
p∗

2 , . . . αp∗

r }, which can each
be taken to the 1

p∗
power to compute {α1, α2, . . . , αr}; the largest of those αi values is used as

the estimate of the maximum element in u(m). When u(m) contains at least r distinct values (i.e.,
em ≥ r), then the problem will be well-defined; thus, if the roots of the null space spanning vector are
not well-defined, then a smaller r can be used (and should be able to compute an exact estimate of
the maximum, since u(m) can be projected exactly when r is the precise number of unique elements
found in u(m)).

To summarize, the null space projection method is performed as follows: First, standard FFT-
based convolution is used for each p∗ to compute the different norms at every index m. Then
those norms are used to populate and compute the null space of a matrix. Finally the roots of
the polynomial whose coefficients are given by the null space vector are computed to estimate the
different α1, α2, . . .. Note that this projection method is valid for any sequence of norms with even

spacing: ‖u(m)‖p
∗

0+p∗

p0+p∗ , ‖u(m)‖p0+2p∗

p0+2p∗ , ‖u(m)‖p0+3p∗

p0+3p∗ , . . . ‖u(m)‖p0+ℓp∗

p0+ℓp∗ .
The null space projection method can therefore be computed for an arbitrary r (i.e., it can be used

to project to an arbitrary number of unique elements in u(m)) by using linear algebra to compute
the null space and to compute the roots of the polynomial (for instance, using the numpy.roots

command in Python). For greater efficiency, setting r to a small constant allows us to precompute
closed-form solutions of both the null space and the polynomial roots. For instance, using r = 2
(which is equivalent to projecting each vector u(m) to two unique values) results in a R

3×2 null space
computation and computing roots of a quadratic polynomial, both of which can be done in closed
form Algorithm 5. Details of this r = 2 case can be found in Appendix 5. In this case, it is
possible to construct a series of powers of two with interleaved points, which guarantees that 4 evenly
spaced p∗ values exist (when the highest numerically stable p∗ is higher than 2), meaning that the
number of FFT calls is only 2× what would be used by the original piecewise method (rather than
4× the calls, which would be necessary if 4 evenly spaced points were placed at each considered p∗

in a naive scheme). From algebraic and empirical evidence, we conjecture that the relative error of

this r = 2 null space projection is bounded above by 1− 0.7
4
p∗ , where p∗ is the highest numerically

stable p∗ value.
This relative error is superior to the worst-case relative error when using a single p∗-norm estimate

of the maximum. The relative error using the null space projection decreases rapidly as p∗ is
increased, meaning that the same procedure can be used to achieve an absolute error bound:

α̂− ‖u(m)‖∞ < τ
1

2p∗

(

1− 0.7
4
p∗

)

,

which achieves a unique maximum at

p∗mode =
1.4267 ∗ log(τ)− 4.07094

(log(τ)− 2.8534)
(

log(1− 2.8534
log(τ) )

) ≈ 14.52.
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Algorithm 5 Piecewise numerical max-convolution with projection, a numerical method
to estimate the max-convolution of two PMFs or nonnegative vectors. This method uses a nullspace
projection to achieve a closer estimate of the true maximum. Depending on the number of stable
estimates, linear or quadratic projection is used. The parameters are two nonnegative vectors L′

and R′ (both scaled so that they have maximal element 1). The return value is a numerical estimate
of the max-convolution L′ ∗max R′.

1: procedure numericalMaxConvolvePiecewiseProjectionAffine(L′, R′, p∗)
2: ℓmax ← argmaxℓ L[ℓ]
3: rmax ← argmaxr R[r]
4: L′ ← L

L[ℓmax]

5: R′ ← R
R[rmax]

⊲ Scale to a proportional problem on L′, R′

6: allPStar ← [2−1, 20, 21, . . . , 2 + 2

⌊

log2(p
∗

max)
⌋

]
7: for h ∈ {0, 1, . . . len(allPStar)} do
8: allPStarInterleaved[2i]← allPStar[i]
9: allPStarInterleaved[2i+ 1]← 0.5× (allPStar[i] + allPStar[i+ 1])

10: end for

11: for i ∈ {0, 1, . . . len(allPStar)} do
12: resForAllPStar[i]← fftNonnegMaxConvolveGivenPStar(L′, R′, allPStarInterleaved[i])
13: end for

14: for m ∈ {0, 1, . . . len(L) + len(R)− 1} do
15: maxStablePStarIndex[m]← max{i : (resForAllPStar[i][m])allPStarInterleaved[i] ≥ τ)}
16: end for

17: for o ∈ {0, 1, . . . len(maxStablePStarIndex)} do
18: maxStablePStarIndex[o]− = maxStablePStarIndex[o]%2 ⊲ Restrict to powers of 2
19: end for

20: for p ∈ {0, 1, . . . len(maxStablePStarIndex)} do
21: maxP ← allPStarInterleaved[maxStablePStarIndex[p]]
22: spacing ← 0.25 ∗maxP
23: est4 ← resForAllPStar[maxStablePStarIndex[p]]
24: est3 ← resForAllPStar[maxStablePStarIndex[p]− 1]
25: if maxStablePStarIndex[p] < 5 then ⊲ Need 5 p∗ in sequence to get 4 evenly spaced
26: resForAllPStar[p]← maxLin(est3, est4)
27: else

28: est2 ← resForAllPStar[maxStablePStarIndex[p]− 2]
29: est1 ← resForAllPStar[maxStablePStarIndex[p]− 4] ⊲ Index - 4 is the next evenly spaced

point
30: resForAllPStar[p]← maxQuad(est1, est2, est3, est4, spacing)
31: end if

32: end for

33: result←affineCorrect(resForAllPStar,maxStablePStarIndex)
34: return L[ℓmax]×R[rmax]× result ⊲ Undo previous scaling
35: end procedure
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As before, the worst-case absolute error of the unscaled problem will be found by simply scaling the
absolute error at p∗mode:

max
ℓ

L[ℓ] max
r

R[r] τ
1

2p∗
mode

(

1− 0.7
4

p∗
mode

)

.

Because p∗mode (the value of p∗ producing the worst-case absolute error) for the null space projection
method it is invariant to the length of the list k (enabling us to compute a numeric value), and
because its numeric value is so small, even a fairly small choice of p∗max will suffice (now p∗max ∈ O(1)
rather than in O(log(k)) as it was with the original piecewise method).

The one caveat of this worst-case absolute error bound is that it presumes at least four evenly
spaced, stable p∗ can be found (which may not be the case by choosing p∗ from the sequence 2i

in cases when ‖u(m)‖∞ ≈ 0); however, assuming standard fast convolution can be performed (a
reasonable assumption given it is one of the essential numeric algorithms), then four evenly spaced
p∗ values could be chosen very close to 1; therefore, these values of p∗ could be added to the sequence
so that the algorithm is slightly slower, but essentially always yield this worst-case absolute error
bound.

In practice, we can demonstrate that the null space projection method is very accurate. First
we show the impact of using the quadratic (i.e., r = 2) projection method on unscaled single u(m)

vectors. The projection method was tested on vectors of different lengths drawn from different types
of Beta distributions and are compared with the results of the p-norms with the highest stable p

(Figure 5). The relative errors between the original piecewise method and the null space projection
method are compared using a max-convolution on two randomly created input PMFs of lengths 1024
(Figure 6). Note that the null space projection can also be paired with affine scaling on the back
end, just as the original piecewise method can be. In practice, the null space projection increases the
accuracy demonstrably on a variety of different problems, although the original piecewise method
also performs well.

Although the worst-case runtime of the null space projection method is roughly 2× that of the
original piecewise method, the error bound no longer depends on the length of the result k. Thus,
for a given relative error bound on the top contour (i.e., the equivalent of the derivation of p∗max in
the original piecewise algorithm), the value of p∗max is fixed and no longer ∈ O(log(k)). For example,
achieving a 0.5% relative error in the top contour would require

1− 0.7
4

p∗max ≤ 0.005 → p∗max ≥ 4
log(0.7)

log(0.995)
≈ 284.62,

meaning that choosing p∗max = 512 would achieve a very high accuracy, but while only performing
2 × 9 FFTs. For very large vectors, this will not be substantially more expensive than the original
piecewise algorithm, which uses a higher value of p∗max (in this case, p∗max = log1.005(k), which
continues to grow as k does) to keep the error lower in practice. As a result, the runtime of the
null space projection approximation is ∈ O(k log(k)) rather than O(k log(k) log(log(k))), despite the
similar runtime in practice to the original piecewise method (the null space projection method uses
2× as many FFTs performed per p∗ value, but requires slightly fewer p∗ values).

3.5 Practical Runtime Comparison

To compare the actual runtimes of the final algorithm developed in this manuscript with a naive
max-convolution and a previously proposed method from Bussieck et al. (1994), all methods were
run on vectors of different random (uniform in [0, 1]) composition and length (k). The first and
second input vector were generated seperately but are always of same length. Table 1 shows the
result of this experiment. All methods were implemented in Python, using numpy where applicable
(e.g., to vectorize). A non-vectorized version of naive max-convolution was included to estimate the
effects of vectorization. The approach from Bussieck et al. ran as a reimplementation based on the
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Figure 5: Relative errors on random vectors with and without null space projection. For
the two approximation methods (using the highest stable p∗-norm with the heuristically
chosen p∗max or using the null space projection with p∗max = 64), vectors of different lengths
are sampled (212 repetitions) from a variety of Beta distributions. The settings for the
parameters (α, β) of the Beta distribution that were used, as well as the lengths of the
generated vectors are shown in the titles of the subplots: α = 0.5, β = 0.5 (bimodal with
modes near zero and one); α = 0.1, β = 0.1 (uniform distribution); α = 10, β = 0.25 (with
a strong mode near one). The red area depicts the frequencies (y-axis) of the different
magnitudes of (relative) error (x-axis) when using the highest stable p∗-norm is used as
an approximation of the Chebyshev norm (p = ∞). The blue area shows the errors with
the method that performs a projection (either quadratic or linear depending on how many
numerically stable p∗ are available) to estimate the Chebyshev norm.
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Figure 6: Relative errors on large max-convolution with and without null space projec-
tion. Max-convolution between two randomly generated vectors (both uniform vectors
convolved with narrow Gaussians with uniform noise added afterward), performed with
the highest stable p∗-norm (using the heuristic choice of p∗max for problems of this size)
and with null space projection (using p∗max = 64). The left y-axis shows the relative error
at index m. Associated with that, you can see the red and blue curve depicting the errors
from the two different methods: Red describes the max-norm estimation using only the
highest stable p∗ while purple was generated using quadratic projection at the four highest
stable p∗ values (when at least four evenly spaced values are numerically stable) and linear
projection at the two highest stable p∗ values (when only two p∗ are numerically stable).
The results of both approaches are corrected with the affine transformation method pro-
posed in this manuscript. In the background the gray shaded curve shows the exact result
of the max-convolution at every index (to be used with the second y-axis on the right).
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k 26 27 28 29 210 211 212

Naive 0.0142 0.0530 0.192 0.767 3.03 12.1 48.2
Naive (vectorized) 0.0175 0.0381 0.0908 0.251 0.790 2.75 10.1

FILL1 (Bussieck et al., 1994) 0.0866 1.09 7.21 19.4 457 — —
Max. stable p∗, affine corrected 0.0277 0.0353 0.0533 0.0848 0.149 0.274 0.537

Projection, affine corrected 0.0236 0.0307 0.0467 0.0760 0.137 0.258 0.520

Table 1: Runtimes of different methods for max-convolution on uniform vectors of length
k. The runtimes were gathered using the timeit package in Python. They include all pre-
processing steps necessary for the algorithm (e.g., sorting prior to the FILL1 approach).
The values are total runtimes (in seconds) to run 5 repetitions on different, randomly gen-
erated vectors. FILL1 was not run on larger problems, because it ran substantially longer
than the non-vectorized naive approach. On the two approximation methods presented in
this manuscript, the highest stable p∗-norm approximation was run with the heuristically
chosen p∗max for problems of the appropriate size and the null space projection was run
with p∗max = 64.

pseudocode in their manuscript. From their variants of proposed methods, FILL1 was chosen because
of its use in their corresponding benchmark and its recommendation by the authors for having a
lower runtime constant in practice compared to other methods they proposed. The method is based
on sorting the input vectors and traversing the (implicitly) resulting partially ordered matrix of
products in a way that not all entries need to be evaluated, while only keeping track of the so-called
cover of maximal elements. FILL1 already includes some more sophisticated checks to keep the cover
small and thereby reducing the overhead per iteration. Unfortunately, although we observed that
the FILL1 method requires between O(n log(n)) and O(n2) iterations in practice, this per-iteration
overhead results in a worst-case cost of log(n) per iteration, yielding an overall runtime in practice
between O(n log(n) log(n)) and O(n2 log(n)). As the authors state, this overhead is due to the
expense of storing the cover, which can be implemented e.g., using a binary heap (recommended
by the authors and used in this reimplementation). Additionally, due to the fairly sophisticated
datastructures needed for this algorithm it had a higher runtime constant than the other methods
presented here, and furthermore we saw no means to vectorize it to improve the efficiency. For
this reason, it is not truly fair to compare the raw runtimes to the other vectorized algorithms
(and it is not likely that this Python reimplementation is as efficient as the original version, which
Bussieck et al., 1994 implemented in ANSI-C); however, comparing a non-vectorized implementation
of the naive O(n2) approach with its vectorized counterpart gives an estimated ≈ 5× speedup from
vectorization, suggesting that it is not substantially faster than the naive approach on these problems
(it should be noted that whereas the methods presented here have tight runtime bounds but produce
approximate results, the FILL1 algorithm is exact, but its runtime depends on the data processed).
During investigation of these runtimes, we found that on the given problems, the proposed average
case of O(n log(n)) iterations was rarely reached. A reason might be an unrecognized violation of
the assumptions of the theory behind this theoretical average runtime in how the input vectors were
generated.

In contrast to the exact method from Bussieck et al. (1994), the herein proposed approximate
procedure are faster whenever the input vectors are at least 128 elements long (shorter vectors are
most efficiently processed with the naive approach). The null space projection method is the fastest
method presented here (because it can use a lower p∗max), although the higher density of p∗ values
it uses (and thus, additional FFTs) make the runtimes nearly identical for both approximation
methods.

23



Pfeuffer and Serang

3.6 Demonstration on Hidden Markov Model With Toeplitz Transition Matrix

One example that profits from fast max-convolution of non-negative vectors is computing the Viterbi
path using a hidden Markov model (HMM) (i.e., the maximum a posteriori states) with an additive
transition function satisfying Pr(Xi+1 = a|Xi = b) ∝ δ(a − b) for some arbitrary function δ (δ can
be represented as a table, because we are considering all possible discrete functions). This additivity
constraint is equivalent to the transition matrix being a “Toeplitz matrix”: the transition matrix
Ta,b = Pr(Xi+1 = a|Xi = b) is a Toeplitz matrix when all cells diagonal from each other (to the
upper left and lower right) have identical values (i.e., ∀a, ∀b, Ta,b = Ta+1,b+1). Because of the
Markov property of the chain, we only need to max-marginalize out the latent variable at time i

to compute the distribution for the next latent variable Xi+1 and all observed values of the data
variables D0 . . . Di+1. This procedure, called the Viterbi algorithm, is continued inductively:

max
x0,x1,...xi−1

Pr(D0, D1, . . . Di−1, X0 = x0, X1 = x1, . . . , Xi = xi) =

max
xi−1

max
x0,x1,...xi−2

Pr(D0, D1, . . . Di−2, X0 = x0, X1 = x1, . . . , Xi−1 = xi−1)

Pr(Di−1|Xi−1 = xi−1) Pr(Xi = xi|Xi−1 = xi−1)

and continuing by exploiting the self-similarity on a smaller problem to proceed inductively with
variable fromLeft, revealing a max-convolution (for this specialized HMM with additive transi-
tions):

max
x0,x1,...xi−1

Pr(D0, D1, . . . Di−1, X0 = x0, X1 = x1, . . . , Xi = xi) =

max
xi−1

fromLeft[i− 1] Pr(Di−1|Xi−1 = xi−1)δ[xi − xi−1] =

(fromLeft[i− 1] likelihood[Di−1]) ∗max δ[xi − xi−1].

After computing this left-to-right pass (which consisted of n − 1 max-convolutions and vec-
tor multiplications), we can find the maximum a posteriori configuration of the latent variables
X0, . . . Xn−1 = x∗

0, . . . x
∗
n−1 backtracking right-to-left, which can be done by finding the variable

value xi that maximizes fromLeft[i][xi] × δ[x∗
i+1 − xi] (thus defining x∗

i and enabling induction
on the right-to-left pass). The right-to-left pass thus requires O(nk) steps (Algorithm 6). Note
that the full max-marginal distributions on each latent variable Xi can be computed via a small
modification, which would perform a more complex right-to-left pass that is nearly identical to the
left-to-right pass, but which performs subtraction instead of addition (i.e., by reversing the vector
representation of the PMF of the subtracted argument before it is max-convolved; Serang, 2014).

We apply this HMM with additive transition probabilities to a data analysis problem from
economics. It is known for example, that the current figures of unemployment in a country have
(among others) impact on prices of commodities like oil. If one could predict unemployment figures
before the usual weekly or monthly release by the responsible government bureaus, this would lead
to an information advantage and an opportunity for short-term arbitrage. The close relation of
economic indicators like market prices and stock market indices (especially of indices combining
several stocks of different industries) to unemployment statistics can be used to tackle this problem.

In the following demonstration of our method, we create a simple HMM with additive transitions
and use it to infer the maximum a posteriori unemployment statistics given past history (i.e., how
often unemployment is low and high, as well as how often unemployment goes down or up in a

24



Approximate Sub-Quadratic Max-Convolution

Algorithm 6 Viterbi for models with additive transitions, which accepts the length k vector
prior, a list of n binned observations data, a a × k matrix of likelihoods (where a is the number
of bins used to discretize the data) likelihoods, and a length 2k − 1 vector δ that describes the
transition probabilities. The algorithm returns a Viterbi path of length n, where each element in
the path is a valid state ∈ {0, 1, . . . k − 1}.
1: procedure ViterbiForAdditiveTransitions(prior, data, likelihood, δ)
2: fromLeft[0]← prior
3: for i = 0 to n− 2 do

4: fromLeft[i]← fromLeft[i]× likelihood[data[i]]
5: fromLeft[i+ 1]← fromLeft[i] ∗max δ
6: end for

7: fromLeft[n]← fromLeft[n]× likelihood[data[n]]
8:

9: path[n− 1]← argmaxj fromLeft[n− 1][j]
10: for i = n− 2 to 0 do

11: maxProdPosterior ← −1
12: argmaxProdPosterior ← −1
13: for l = k to 1 do

14: currProdPosterior ← fromLeft[i]× δ[l − path[i+ 1]]
15: if currProdPosterior > maxProdPosterior then

16: maxProdPosterior ← currProdPosterior
17: argmaxProdPosterior ← l
18: end if

19: end for

20: path[i]← argmaxProdPosterior
21: end for

22: return path
23: end procedure
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short amount of time) and current stock market prices (the observed data). We discretized random
variables for the observed data (S&P 500, adjusted closing prices ; retrieved from YAHOO! his-
torical stock prices: http://data.bls.gov/cgi-bin/surveymost?blsseriesCUUR0000SA0), and
”latent” variables (unemployment insurance claims, seasonally adjusted, were retrieved from the
U.S. Department of Labor: https://www.oui.doleta.gov/unemploy/claims.asp). Stock prices
were additionally inflation adjusted by (i.e., divided by) the consumer price index (CPI) (retrieved
from the U.S. Bureau of Labor Statistics: https://finance.yahoo.com/q?s=^GSPC). The inter-
section of both ”latent” and observed data was available weekly from week 4 in 1967 to week 52 in
2014, resulting in 2500 data points for each type of variable.

To investigate the influence of overfitting, we partition the data in two parts, before June 2005
and after June 2005, so that we are effectively training on 2000×100

2500 = 80% of the data points, and
then demonstrate the Viterbi path on the entirety of the data (both the 80% training data and the
20% of the data withheld from empirical parameter estimation). Unemployment insurance claims
were discretized into 512 and stock prices were discretized into 128 bins. Simple empirical models
of the prior distribution for unemployment, the likelihood of unemployment given stock prices, and
the transition probability of unemployment were built as follows: The initial or prior distribution
for unemployment claims at i = 0 was calculated by marginalizing the time series of training data
for the claims (i.e., counting the number of times any particular unemployment value was reached
over all possible bins). Our transition function (the conditional probability Pr(Xi+1|Xi)) similarly
counts the number of times each possible change Xi+1 −Xi ∈ {−511,−510, . . . 511} occurred over
all available time points. Interestingly, the resulting transition distribution roughly resembles a
Gaussian (but is not an exact Gaussian). This underscores a great quality of working with discrete
distributions: while continuous distributions may have closed-forms for max-convolution (which can
be computed quickly), discrete distributions have the distinct advantage that they can accurately
approximate any smooth distribution. Lastly, the likelihoods of observing a stock price given the
unemployment at the same time were trained using an empirical joint distribution (essentially a
heatmap), which is displayed in Figure 7.

We compute the Viterbi path two times: First we use naive, exact max-convolution, which
requires a total of O(nk2) steps. Second, we use fast numerical max-convolution, which requires
O(n k log(k) log(log(k)) steps. Despite the simplicity of the model, the exact Viterbi path (computed
via exact max-convolution) is highly informative for predicting the value of unemployment, even for
the 20% of the data that were not used to estimate the empirical prior, likelihood, and transition
distributions. Also, the numerical max-convolution method is nearly identical to the exact max-
convolution method at every index (Figure 8). Even with a fairly rough discretization (i.e., k =
512), the fast numerical method (via the original, simpler piecewise algorithm with p∗max = 8192)
used 141.4 seconds compared to the 292.3 seconds required by the naive approach. The higher-
precision projection algorithm (which uses a smaller p∗max, but calls FFT twice for each power of two
p∗) computes nearly identical result using p∗max = 64 for this problem in 136.6 seconds. The speedup
of both fast numerical algorithms relative to the naive quadratic max-convolution algorithm will
increase dramatically as k is increased.

4. Discussion

Both piecewise numerical max-convolution methods are highly accurate in practice and achieve a
substantial speedup over both the naive approach and the approach proposed by Bussieck et al.
(1994). This is particularly true for large problems: For the original piecewise method presented
here, the log2(log1+τ

1
4
(k)) multiplier may never be small, but it grows so slowly with k that it

will be < 18 even when k is on the same order of magnitude as the number of particles in the
observable universe. This means that, for all practical purposes, the method behaves asymptotically
as a slightly slower O(k log2(k)) method, which means the speedup relative to the naive method
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Figure 7: Heatmap for trained likelihood matrix. This heatmap depicts a joint empirical
distribution between the S&P 500 index and new unemployment claims, which share a
tenuous inverse relationship. Given Di, the discretized stock index value at time i, row Di

contains the likelihood table Pr(Di|Xi), which is denoted likelihood[data[i]] in the code.
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Figure 8: Viterbi analysis of employment given stock index values. The Viterbi path cor-
responding to the maximum a posteriori prediction of the number of new unemployment
insurance claims is produced for a model where the state transition probabilities are addi-
tive. The exact Viterbi estimate tracks well with the true unemployment values. Training
parameters were taken from only the true unemployment data to the left of the vertical
dotted line; however, the Viterbi paths to the right of the dotted line (where unemploy-
ment data were withheld from the likelihood, prior, and transition parameters) also track
well with the true unemployment statistics. The Viterbi path computed with fast numer-
ical max-convolution (via the null space projection piecewise approach) is nearly identical
to the result computed with the slower exact approach. Note that for this problem, the
original, simpler piecewise approach also produces very similar results.
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becomes more pronounced as k becomes large. For the second method presented (the null space
projection), the runtime for a given relative error bound will be in O(k log2(k)). In practice, both
methods have similar runtime on moderate or large problems.

The basic motivation of the first approach described—i.e., the idea of approximating the Cheby-
shev norm with the largest p∗-norm that can be computed accurately, and then convolving according
to this norm using FFT—also suggests further possible avenues of research. For instance, it may be
possible to compute a single FFT (rather than an FFT at each of several contours) on a more precise
implementation of complex numbers. Such an implementation of complex values could store not only
the real and imaginary components, but also other much smaller real and imaginary components
that have been accumulated through + operations, even those which have small enough magnitudes
that they are dwarfed by other summands. With such an approach it would be possible to numeri-
cally approximate the max-convolution result in the same overall runtime as long as only a bounded
“history” of such summands was recorded (i.e., if the top few magnitude summands—whether that
be the top 7 or the top log2(log1+τ

1
4
(k))—was stored and operated on). In a similar vein, it would

be interesting to investigate the utility of complex values that use rational numbers (rather than
fixed-precision floating point values), which will be highly precise, but will increase in precision (and
therefore, computational complexity of each arithmetic operation) as the dynamic range between
the smallest and largest nonzero values in L and R increases (because taking L′ to a large power p∗

may produce a very small value). Other simpler improvements could include optimizing the error
vs. runtime trade-off between the log-base of the contour search: the method currently searches
log2(p

∗
max) contours, but a smaller or larger log-base could be used in order to optimize the trade-off

between error and runtime.
It is likely that the best trade-off will occur by performing the fast p∗-norm convolution with a

number type that sums values over vast dynamic ranges by appending them in a short (i.e., bounded
or constant size) list or tree and sums values within the same dynamic range by querying the list or
tree and then summing in at the appropriate magnitude. This is reminiscent of the fast multipole
algorithm (Rokhlin, 1985). This would permit the method to use a single large p∗ rather than a
piecewise approach, by moving the complexity into operations on a single number rather than by
performing multiple FFTs with simple floating-point numbers.

The basic motivation of the second approach described—i.e., using the sequence of p∗-norms
(each computed via FFT) to estimate the maximum value—generalizes the p∗-norm fast convolution
numerical approach into an interesting theoretical problem in its own right: given an oracle that
delivers a small number of norms (the number of norms retrieved must be c ∈ o(k) to significantly
outperform the naive quadratic approach) about each vector u(m), amalgamate these norms in an
efficient manner to estimate the maximum value in each u(m). This method may be applicable to
other problems, such as databases where the maximum values of some combinatorial operation (in
this case the maximum a posteriori distribution of the sum of two random variables X+Y ) is desired
but where caching all possible queries and their maxima would be time or space prohibitive. In a
manner reminiscent of how we employ FFT, it may be possible to retrieve moments of the result
of some combinatoric combination between distributions on the fly, and then use these moments to
approximate true maximum (or, in general, other sought quantities describing the distribution of
interest).

In practice, the worst-case relative error of our quadratic approximation is quite low. For example,
when p∗ = 8 is stable, then the relative error is less than 2.3%, regardless of the lengths of the vectors
being max-convolved. In contrast, the worst-case relative error using the original piecewise method
would be ≤ k

1
16 −1, where k is the length of the max-convolution result (when n = 1024, the relative

error of the original piecewise method would be ≈ 54%).
Of course, the use of the null space projection method is predicated on the existence of at

least four sequential p∗ points, but it would be possible to use finer spacing between p∗ values
(e.g., p∗ ∈ (1, 1.01, 1.02, 1.03) to guarantee that this will essentially be the case as long as FFT
(i.e., p∗ = 1) is stable. But more generally, the problem of estimating extrema from p∗-norms (or,
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equivalently, from the p∗-th roots of the p∗-th moments of a distribution with bounded support),
will undoubtedly permit many more possible approaches that we have not yet considered. One that
would be compelling is to relate the Fourier transform of the sequential moments to the maximum
value in the distribution; such an approach could permit all stable p∗ at any index m to be used to
efficiently approximate the maximum value (by computing the FFT of the sequence of norms). Such
new adaptations of the method could permit low worst-case error without any noticable runtime
increase.

4.1 Multidimensional Numerical Max-Convolution

The fast numerical piecewise method for max-convolution (and the affine piecewise modification) are
both applicable to matrices as well as vectors (and, most generally, to tensors of any dimension). This
is because the p∗-norm (as well as the derived error bounds as an approximation of the Chebyshev
norm) can likewise approximate the maximum element in the tensor u(m1,m2,...) generated to find
the max-convolution result at index m1,m2, . . . of a multidimensional problem, because the sum

∑

i1,i2,...

(

u
(m1,m2,...)
i1,i2,...

)p∗

computed by convolution corresponds to the Frobenius norm (i.e., the “entrywise norm”) of the
tensor, and after taking the result of the sum to the power 1

p∗
, will converge to the maximum value

in the tensor (if p∗ is large enough).
This means that the fast numerical approximation, including the affine piecewise modification,

can be used without modification by invoking standard multidimensional convolution (i.e., ∗). Ma-
trix (and, in general, tensor) convolution is likewise possible for any dimension via the row-column
algorithm, which transforms the FFT of a matrix into sequential FFTs on each row and column. The
accompanying Python code demonstrates the fast numerical max-convolution method on matrices,
and the code can be run on tensors of any dimension (without requiring any modification).

The speedup of FFT tensor convolution (relative to naive convolution) becomes considerably
higher as the dimension of the tensors increases; for this reason, the speedup of fast numerical max-
convolution becomes even more pronounced as the dimension increases. For a tensor of dimension d

and width k (i.e., where the index bounds of every dimension are ∈ {0, 1, . . . k−1}), the cost of naive
max-convolution will be in O(k2d), whereas the cost of numerical max-convolution is O(kd log2(k))

(ignoring the log2(log1+τ
1
4
(k)) ≤ 18 multiplier), meaning that there is an O( kd

d log2(k)
) speedup from

the numerical approach. Examples of such tensor problems include graph theory, where adjacency
matrix representation can be used to describe respective distances between nodes in a network.

As a concrete example, the demonstration Python code computes the max-convolution between
two 256 × 256 matrices. The naive method required 494 seconds, but the numerical result with
the original piecewise method was computed in 3.18 seconds (yielding a maximum absolute error
of 0.0173 and a maximum relative error of 0.0511) and the numerical result with the null space
projection method was computed in 3.99 seconds (using p∗max = 512, which corresponds to a relative
error of < 0.1% in the top contour, yielding a maximum absolute error of 0.0141 and a maximum
relative error of 0.0227) and in 3.05 seconds (using p∗max = 64, which corresponds to a relative
error of < 2.5% in the top contour, yielding a maximum absolute error of 0.0667 and a maximum
relative error of 0.067). Not only does the speedup of the proposed methods relative to naive
max-convolution increase significantly as the dimension of the tensor is increased, no other faster-
than-naive algorithms exist for max-convolution of matrices or tensors.

Multidimensional max-convolution can likewise be applied to hidden Markov models with ad-
ditive transitions over multidimensional variables (e.g., allowing the latent variable to be a two-
dimensional joint distribution of American and German unemployment with a two-dimensional joint
transition probability).
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4.2 Max-Deconvolution

The same p∗-norm approximation can also be applied to the problem of max-deconvolution (i.e.,
solving M = L ∗max R for R when given M and L). This can be accomplished by computing
the ratio of FFT (Mp∗

) to FFT (Lp∗

) (assuming L has already been properly zero-padded), and
then computing the inverse FFT of the result to approximate Rp∗

; however, it should be noted
that deconvolution methods are typically less stable than the corresponding convolution methods,
computing a ratio is less stable than computing a product (particularly when the denominator is
close to zero).

4.3 Amortized Argument for Low MSE of the Affine Piecewise Method

Although the largest absolute error of the affine piecewise method is the same as the largest absolute
error of the original piecewise method, the mean squared error (MSE) of the affine piecewise method
will be lower than the square of the worst-case absolute error.

To achieve the worst-case absolute error for a given contour the affine correction must be neg-
ligible; therefore, there must be two nearly vertical points on the scatter plot of ‖u(m1)‖∞ vs.
‖u(m1)‖p∗ , which are both extremes of the bounding envelope from Figure 3. Thus, there must
exist two different indices m1 and m2 with vectors where ‖u(m1)‖p∗ ≈ ‖u(m1)‖∞ and where

‖u(m2)‖p∗ ≈ ‖u(m2)‖∞k
1
p∗

m2

(creating two vertical points on the scatter plot, and forcing that both cannot simultaneously be
corrected by a single affine mapping). In order to do this, it is required to have u(m1) filled with a
single nonzero value and for the remaining elements of u(m1) to equal zero. Conversely, u(m2) must
be filled entirely with large, nonzero values (the largest values possible that would still use the same
contour p∗). Together, these two arguments place strong constraints on the vectors L′ and R′ (and
transitively, also constrains the unscaled vectors L and R): On one hand, filling u(m1) with km1

− 1
zeros requires that km1

− 1 elements from either L or R must be zero (because at least one factor
must be zero to achieve a product of zero). On the other hand, filling u(m2) with all large-value
nonzeros requires that km2 elements of both L and R are nonzero. Together, these requirements
stipulate that both km1

− 1 + km2
≤ k, because entries of L and R cannot simultaneously be zero

and nonzero. Therefore, in order to have many such vertical points, constrains the lengths of the
u(m1), u(m2), u(m3), . . . vectors corresponding to those points. While the worst-case absolute error
bound presumes that an individual vector u(m) may have length k, this will not be possible for
many vectors corresponding to vertical points on the scatter plot. For this reason, the MSE will be
significantly lower than the square of the worst-case absolute error, because making a high affine-
corrected absolute error on one index necessitates that the absolute errors at another index cannot
be the worst-case absolute error (if the sizes of L and R are fixed).

5. Availability

Code for exact max-convolution and the fast numerical method (which includes both ‖ · ‖p∗ and null
space projection methods) is implemented in Python and available at https://bitbucket.org/

orserang/fast-numerical-max-convolution. All included code works for numpy arrays of any
dimension, i.e., tensors).
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Appendix A. Details on the Projection Method

This appendix establishes a closed-form equation for finding the maximum via the projection method
as it is used in the implementation of the algorithm and proves/conjectures an upper/lower bound
of its relative error.

A.1 Closed-Form Projection Method for r = 2

In general, the computation of both the null space spanning vector (γ0, γ1, . . . γr) and of machine-
precision approximations for the roots of the polynomial γ0 + γ1x+ γ2x

2 + · · ·+ γrx
r (which can be

approximated by constructing a matrix with that characteristic polynomial and performing eigen-
decomposition; Horn and Johnson, 1999) are both in O(r3) for each index m in the result; however,
by using a small r = 2, we can compute a closed form solution of both the null space spanning
vector and of the resulting quadratic roots. This enables faster exploitation of the curve of norms
for estimating the maximum value of u(m) (although it doesn’t achieve the high accuracy possible

with a much larger r ≈ e). This is equivalent to approximating ‖u(m)‖p
∗

p∗ ≈ h1α
p∗

1 + h2α
p∗

2 , where

h1 + h2 = km = len(u(m)).
In this case, the single spanning vector of the null space of

[

‖u(m)‖p
∗

p∗ ‖u(m)‖2p
∗

2p∗ ‖u(m)‖3p
∗

3p∗

‖u(m)‖2p
∗

2p∗ ‖u(m)‖3p
∗

3p∗ ‖u(m)‖4p
∗

4p∗

]

will be




γ0
γ1
γ2



 =











‖u(m)‖2p
∗

2p∗‖u(m)‖4p
∗

4p∗ −
(

‖u(m)‖3p
∗

3p∗

)2

‖u(m)‖2p
∗

2p∗‖u(m)‖3p
∗

3p∗ − ‖u(m)‖p
∗

p∗‖u(m)‖4p
∗

4p∗

‖u(m)‖p
∗

p∗‖u(m)‖3p
∗

3p∗ −
(

‖u(m)‖2p
∗

2p∗

)2











and thus α̂ ≈ ‖u(m)‖∞ can be computed by using the quadratic formula to solve γ0+γ1x+γ2x
2 = 0

for x, and computing α̂ using the maximum of those zeros: α̂ = xmax

1
p∗ . When the quadratic is not

well defined, then this indicates that the number of unique elements in u(m) is less than 2, and thus
cannot be projected uniquely (i.e., em < r); in this case, the closed-form linear solution can be used
rather than a closed-form quadratic solution:

α̂ =

(

‖u(m)‖4p
∗

4p∗

‖u(m)‖3p∗

3p∗

)
1
p∗

.

When the closed-form linear solution is not numerically stable (due to division by a value close to
zero), then the p∗-norm approximation can likewise be used.

A.2 Adapted Piecewise Algorithm Using Interleaved p∗ Points

Because the norms must have evenly spaced p∗ values in order to use the projection method described
above, the exponential sequence of p∗ values used in the original piecewise algorithm will not contain
four evenly spaced points (which are necessary to solve the quadratic formulation, i.e., r = 2). One
possible solution would be to take the maximal stable value of p∗ for any index (which will be a
power of two found using the original piecewise method), and then also computing norms (via the
FFT, as before) for p∗ − 3δ, p∗ − 2δ, p∗ − δ, p∗; however, this will result in a 4× slowdown in the
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algorithm, because for every p∗-norm computed via FFT before, now four must be computed. An
alternative approach reuses existing values in the 2i sequence of p∗: for p∗ sufficiently large, then
the exponential sequence is guaranteed to include these stable p∗ values: p∗

4 , p∗

2 , p∗. By considering
3p∗

4 in p∗ candidates, then we can be guaranteed to have four evenly spaced and stable p∗ values.
This can be achieved easily by noting that

3p∗

4
=

p∗

2 + p∗

2
,

meaning that we can insert all possible necessary p∗ values for evenly spaced sequences of length four
by first computing the exponential sequence of p∗ values and then inserting the averages between
every pair of adjacent powers of two (and inserting them in a way that maintains the sorted order):
1, 2, 4, 8, 16, . . . becomes 1, 1.5, 2, 3, 4, 6, 8, 12, 16, . . .. Thus, if (for some index m) 16 is the highest
stable p∗ that is a power of two (i.e., the p∗ value that would be used by the original piecewise
algorithm), then we are guaranteed to use the evenly spaced sequence 4, 8, 12, 16. By interleaving
the powers of two with the averages from the following powers of two, we reduce the number of
FFTs to 2× that used by the original piecewise algorithm. For small values of r (such as the r = 2
used here), the estimation of the maximum from each sequence of four norms is in O(4k), meaning
the total time will still be k log(k) log(log(k) + 4k ∈ O(k log(k) log(log(k))), which is the same as

before. Because the spacing in this formulation is p∗

4 , and given the maximal root of the quadratic

polynomial γ(xmax) = 0, then α̂ = x
4
p∗

max (taking the maximal root xmax to the power 4
p∗

instead of
1
p∗
, which had been the spacing used in the description of the projection method). The null space

projection method is shown in Algorithm 5.

Algorithm 7 Linear projection of the maximum, using previously computed values est3, est4
for two p∗ with a difference of spacing (estimates given in ascending order of their corresponding

p’s used). The naming of the variables follows the scheme esti = ‖u(m)‖
i
4maxP
i
4maxP

. To prevent numeric

instabilities, the algorithm checks for division by zero within a tolerance τDiv = 10−10 (again, a
conservative estimate of the machine precision). The return value is a new estimate of the real
maximum.

1: procedure maxLin(est3, est4, spacing)
2: if |est3| > τDiv then

3: result← est4
est3

4: else

5: result← est4
6: end if

7: return result(1.0/spacing)

8: end procedure

A.3 Accuracy of the r = 2 Projection-Based Method

The full closed-form of the quadratic roots used above (which solve the projection when r = 2) will
be
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Algorithm 8 Quadratic projection of the maximum, using previously computed estimates
est1, est2, est3, est4 for four equally spaced p in steps of spacing (estimates given in ascending order

of their corresponding p’s used). The naming of the variables follows the scheme esti = ‖u(m)‖
i
4maxP
i
4maxP

.

To prevent numeric instabilities, the algorithm checks for division by zero within a tolerance τDiv =
10−10. The return value is a new estimate of the real maximum.

1: procedure maxQuad(est1, est2, est3, est4, spacing)
2: γ2 ← est1 ∗ est3 − est22
3: γ1 ← est2 ∗ est3 − est1 ∗ est4
4: γ0 ← est2 ∗ est4 − est23
5: preRootV alue← γ2

1 − 4 ∗ γ2 ∗ γ0
6: stableQuadratic← (γ0 > τDiv) & (preRootV alue >= 0.0)
7: if stableQuadratic then

8: result← (−γ1 +
√
preRootV alue/(2 ∗ γ2)

9: else ⊲ Resort to linear projection
10: result← maxLin(est3, est4)
11: end if

12: return result(1.0/spacing)

13: end procedure

α̂ = max





(

−γ1 ±
√

γ2
1 − 4γ2γ0

2γ2

) 1
p∗





= max
(((

‖u(m)‖2p
∗

2p∗‖u(m)‖3p
∗

3p∗ − ‖u(m)‖1p
∗

1p∗‖u(m)‖4p
∗

4p∗

±
(

(‖u(m)‖2p
∗

2p∗‖u(m)‖3p
∗

3p∗ − ‖u(m)‖1p
∗

1p∗‖u(m)‖4p
∗

4p∗)
2

− 4 (‖u(m)‖1p
∗

1p∗‖u(m)‖3p
∗

3p∗ − ‖u(m)‖2p
∗

2p∗
2
)(‖u(m)‖2p

∗

2p∗‖u(m)‖4p
∗

4p∗ − ‖u(m)‖3p
∗

3p∗
2
)
)0.5

)

÷ 2(‖u(m)‖2p
∗

2p∗
2 − ‖u(m)‖1p

∗

1p∗‖u(m)‖3p
∗

3p∗)
) 1

p∗

)

= max
((

‖u(m)‖p
∗

∞

(

‖v(m)‖2p
∗

2p∗‖v(m)‖3p
∗

3p∗ − ‖v(m)‖1p
∗

1p∗‖v(m)‖4p
∗

4p∗

±
(

(‖v(m)‖2p
∗

2p∗‖v(m)‖3p
∗

3p∗ − ‖v(m)‖1p
∗

1p∗‖v(m)‖4p
∗

4p∗)
2

− 4 (‖v(m)‖1p
∗

1p∗‖v(m)‖3p
∗

3p∗ − ‖v(m)‖2p
∗

2p∗
2
)(‖v(m)‖2p

∗

2p∗‖v(m)‖4p
∗

4p∗ − ‖v(m)‖3p
∗

3p∗
2
)
)0.5

)

÷ 2(‖v(m)‖2p
∗

2p∗
2 − ‖v(m)‖1p

∗

1p∗‖v(m)‖3p
∗

3p∗)
) 1

p∗

)

= ‖u(m)‖∞ max
(((

‖v(m)‖2p
∗

2p∗‖v(m)‖3p
∗

3p∗ − ‖v(m)‖1p
∗

1p∗‖v(m)‖4p
∗

4p∗

±
(

(‖v(m)‖2p
∗

2p∗‖v(m)‖3p
∗

3p∗ − ‖v(m)‖1p
∗

1p∗‖v(m)‖4p
∗

4p∗)
2

− 4 (‖v(m)‖1p
∗

1p∗‖v(m)‖3p
∗

3p∗ − ‖v(m)‖2p
∗

2p∗
2
)(‖v(m)‖2p

∗

2p∗‖v(m)‖4p
∗

4p∗ − ‖v(m)‖3p
∗

3p∗
2
)
)0.5

)

÷ 2(‖v(m)‖2p
∗

2p∗
2 − ‖v(m)‖1p

∗

1p∗‖v(m)‖3p
∗

3p∗)
) 1

p∗

)

where p∗ = maxP
4 in the pseudocode (i.e., the maximum numerically stable p∗ used by the piecewise

algorithm at that index). Note that ‖u(m)‖p∗

∞ can be factored out because the exponents in every term
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in the numerator will be 5p∗ (i.e., 10p∗ in the square root). Similarly the terms in the denominator
each contain ‖u(m)‖4p∗

∞ . Factoring out the maximum value is then the same as operating on scaled
vectors v (instead of u) with the maximum entry being 1, and at least one element of value 1.

Furthermore, the denominator 2γ2 ≥ 0; even though the terms summed to compute γ2 are
not exclusively nonnegative, symmetry can be used to demonstrate that every negative term is
outweighed by a unique corresponding term:

γ2 = ‖v(m)‖1‖v(m)‖33 −
(

‖u(m)‖2p
∗

2p∗

)2

=

(

∑

i

v
(m)
i

)(

∑

i

v
(m)
i

3

)

−
(

∑

i

v
(m)
i

2

)2

=
∑

i,j

v
(m)
i v

(m)
j

3
−
∑

i,j

v
(m)
i

2
v
(m)
j

2

=
∑

i,j

v
(m)
i v

(m)
j

2 (

v
(m)
j − v

(m)
i

)

=
∑

i

v
(m)
i v

(m)
i

2 (

v
(m)
i − v

(m)
i

)

+
∑

i<j

v
(m)
i v

(m)
j

2 (

v
(m)
j − v

(m)
i

)

+ v
(m)
j v

(m)
i

2 (

v
(m)
i − v

(m)
j

)

= 0 +
∑

i<j

v
(m)
i v

(m)
j

(

v
(m)
j − v

(m)
i

)(

v
(m)
j − v

(m)
i

)

=
∑

i<j

v
(m)
i v

(m)
j

(

v
(m)
j − v

(m)
i

)2

≥ 0.

Thus, for well-defined problems (i.e., when γ2 6= 0), the denominator 2γ2 > 0, and therefore, the
maximum root of the quadratic polynomial will correspond to the term that adds (rather than
subtracts) the square root term:

α̂ = ‖u(m)‖∞
((

‖v(m)‖2p
∗

2p∗‖v(m)‖3p
∗

3p∗ − ‖v(m)‖1p
∗

1p∗‖v(m)‖4p
∗

4p∗

+
(

(‖v(m)‖2p
∗

2p∗‖v(m)‖3p
∗

3p∗ − ‖v(m)‖1p
∗

1p∗‖v(m)‖4p
∗

4p∗)2

− 4 (‖v(m)‖1p
∗

1p∗‖v(m)‖3p
∗

3p∗ − ‖v(m)‖2p
∗

2p∗

2
)(‖v(m)‖2p

∗

2p∗‖v(m)‖4p
∗

4p∗ − ‖v(m)‖3p
∗

3p∗

2
)
)0.5

)

÷ 2(‖v(m)‖2p
∗

2p∗

2
− ‖v(m)‖1p

∗

1p∗‖v(m)‖3p
∗

3p∗)
)

1
p∗
)

.
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The relative absolute error is defined as | α̂−‖u(m)‖∞

‖u(m)‖∞

| = | α̂
‖u(m)‖∞

− 1|; therefore, a bound on the

relative error of the projection method can be established by bounding

s(p∗, km) =
α̂

‖u(m)‖∞
=
((

‖v(m)‖2p
∗

2p∗‖v(m)‖3p
∗

3p∗ − ‖v(m)‖1p
∗

1p∗‖v(m)‖4p
∗

4p∗

+
(

(‖v(m)‖2p
∗

2p∗‖v(m)‖3p
∗

3p∗ − ‖v(m)‖1p
∗

1p∗‖v(m)‖4p
∗

4p∗)2

− 4 (‖v(m)‖1p
∗

1p∗‖v(m)‖3p
∗

3p∗ − ‖v(m)‖2p
∗

2p∗

2
)(‖v(m)‖2p

∗

2p∗‖v(m)‖4p
∗

4p∗ − ‖v(m)‖3p
∗

3p∗

2
)
)0.5

)

÷ 2(‖v(m)‖2p
∗

2p∗

2
− ‖v(m)‖1p

∗

1p∗‖v(m)‖3p
∗

3p∗)
)

1
p∗

.

where the length of the u(m) (respectively v(m)) is km. Using this reformulation, s = 1 indicates a
zero-error approximation. This can be rewritten to bound its value before taking to the power 1

p∗
:

s(p∗, km) = t(p∗, km)
1
p∗

where

t(p∗, km) =
(

‖v(m)‖2p
∗

2p∗‖v(m)‖3p
∗

3p∗ − ‖v(m)‖1p
∗

1p∗‖v(m)‖4p
∗

4p∗

+
(

(‖v(m)‖2p
∗

2p∗‖v(m)‖3p
∗

3p∗ − ‖v(m)‖1p
∗

1p∗‖v(m)‖4p
∗

4p∗)2

− 4 (‖v(m)‖1p
∗

1p∗‖v(m)‖3p
∗

3p∗ − ‖v(m)‖2p
∗

2p∗

2
)(‖v(m)‖2p

∗

2p∗‖v(m)‖4p
∗

4p∗ − ‖v(m)‖3p
∗

3p∗

2
)
)0.5

)

÷ 2(‖v(m)‖2p
∗

2p∗

2
− ‖v(m)‖1p

∗

1p∗‖v(m)‖3p
∗

3p∗).

The extreme values of t(p∗, km) can be found by minimizing and maximizing over the possible

values of v(m) ∈ V = {v : [0, 1]
km : ∃i, vi = 1, ∃j, vj ∈ (0, 1)}. The final constraint on vj in (0,1) is

because any v containing only one unique value (which must be 1 in this case since dividing by the
maximum element in u(m) to compute v(m) has divided the value at that index by itself (∃i, vi = 1)
will lead to instabilities. When values in v are identical to one another, using r = 1 yields an exact
solution, and thus solving with r = 2 is not well-defined because γ2 = 0. Because all elements

v(m)p
∗

∈ [0, 1] and p∗ ≥ 1, we can perform a change of variables v
(m)
i = v(m)p

∗

i , thereby eliminating
references to p∗:

t(km) ≥ min
v∈Rkm :∃i,vi=1,∃j,vj∈(0,1)

(

‖v(m)‖22‖v(m)‖33 − ‖v(m)‖11‖v(m)‖44

+
(

(‖v(m)‖22‖v(m)‖33 − ‖v(m)‖11‖v(m)‖44)2

− 4 (‖v(m)‖11‖v(m)‖33 − ‖v(m)‖22
2
)(‖v(m)‖22‖v(m)‖44 − ‖v(m)‖33

2
)
)0.5

)

÷ 2(‖v(m)‖22
2 − ‖v(m)‖11‖v(m)‖33).
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km 3 4 5 6 7

Minimum 0.935537 0.902161 0.895671 0.880487 0.85343
Maximum 1 1 1 1 1

Table 2: Exact bounds of t(km) for short vectors of length km. This table shows the results
of numerical minimization techniques performed on the symbolic closed-form of t(km) in
Mathematica (using NMinimize). All km − 1 entries (excluding the first that was set to
1.0) were left symbolic and constrained to [0, 1], with restriction that the denominator of
t(km) was nonzero.

km 4 64 1024

Minimum (km − 1 d.o.f.) 0.90221268 0.74942834 0.81858283
Maximum (km − 1 d.o.f.) 0.99999986 0.92482416 0.86795636

Minimum (vectors of form (1, a, b, . . . b), 2 d.o.f.) 0.90216688 0.75455478 0.71695386
Maximum (vectors of form (1, a, b, . . . b), 2 d.o.f.) 1.00000000 1.0000000 1.00000000

Table 3: Bounds via random sampling for vectors different in size and type. This table
shows the minimal and maximal values resulting from the evaluation of t(km) on 105

randomly generated vectors (uniform distribution in [0, 1]). The first part shows the result
for vectors of potentially unconstrained composition, besides one (w.l.o.g. the first) being
set to 1.0. The values in the second half were obtained based on vectors of (supposedly)
worst-case composition (i.e., of form (1, a, b, . . . b)).

t(km) ≤ max
v∈Rkm :∃i,vi=1,∃j,vj∈(0,1)

(

‖v(m)‖22‖v(m)‖33 − ‖v(m)‖11‖v(m)‖44

+
(

(‖v(m)‖22‖v(m)‖33 − ‖v(m)‖11‖v(m)‖44)2

− 4 (‖v(m)‖11‖v(m)‖33 − ‖v(m)‖22
2
)(‖v(m)‖22‖v(m)‖44 − ‖v(m)‖33

2
)
)0.5

)

÷ 2(‖v(m)‖22
2 − ‖v(m)‖11‖v(m)‖33).

For small vector lengths, the exact bounds of t(km) are shown in Table 2. Notice that the
upper bound is fixed, but the lower bound grows monotonically smaller as km, the length of the
vector considered, increases. For larger vectors, Mathematica does not find optima in a matter of
hours, and for arbitrary-length vectors, the Karush-Kuhn-Tucker criteria do not easily yield minima
or maxima; however, we do observe that all maxima are achieved by vectors that are permutations
(order does not influence the result) of v = (1, 1, . . . 1, b, b, . . . b) (again, when only two unique values
are found in v, the approximation is exact and thus α̂

‖u(m)‖∞

= 1). Likewise, the minima are achieved

by permutations of v = (1, a, b, b, . . . b). For this reason, we perform further empirical estimation
of the bound by randomly sampling vectors of the form (1, v2, v3, . . . vkm

) with km − 1 degrees of
freedom (d.o.f.) and sampling vectors of the form v = (1, a, b, b, . . . b) (with 2 d.o.f.), whose extrema
are shown in Table 3.
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At length 64 we see that due to an extreme value scenario, an unconstrained vector scores slightly
lower than a vector holding the worst-case pattern (1, a, b, . . . b), because both forms of sampling
approach the true lower bound, but one of the unconstrained km − 2 d.o.f. is slightly closer.

From these results, we conjecture that t is bounded above ≤ 1 (this is achievable at any length
km by letting v contain exactly two distinct values). In this manner, we achieve our predicted upper
bound of 1 regardless of the length km. Likewise, we conjecture that at any km (not simply the
lengths investigated, where this principle is true), the lower bound is given by vectors of the form
(1, a, b, b, . . . b). Qualitatively, this conjecture stems from the fact that since the estimate is perfect
when v contains exactly two distinct elements, then the worst-case lower bound when v contains
three distinct values will concentrate the points at some value far from the other two distinct values.
When four distinct values are permitted, then we conjecture that the optimal choice (for minimizing
t) of the fourth value will equal the choice for the third distinct value, since that was already
determined to be the best point for deceiving the quadratic approximation. From this conjecture,
we can then use the fact that the bounds should only grow more extreme as km increases, since
R

1 ⊂ R
2 ⊂ · · · (i.e., lower-dimensional solutions can always be reached in a higher dimension by

setting some of the values to 0). Thus the minimum for any possible vector should be conservatively
bounded below on vectors of the form (1, a, b, b, . . . b) and is achieved by letting km approach ∞:

lim
km→∞

t(km) =

a4b− a3b2 − a2b3 +

√

b2 (−a4 + 3a3b− 3a2b2 + ab3 + (b− 1)3)
2
+ ab4 + b4 − b3 − b2 + b

2b (a3 − 2a2b+ ab2 + (b− 1)2)
.

The minimum value of this expression over all a ∈ [0, 1], b ∈ [0, 1] is 0.704 (computed again with
Mathematica). Overall, assuming our conjecture regarding the forms of the vectors achieving the
minima and maxima, then it follows that t ∈ (0.7, 1], and the worst-case relative error at the p∗max

contour will be bounded by

|t
1

p∗max − 1| < 1− 0.7
4

p∗max .
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