A boundedness result for the solutions of certain
third order differential equations (*).

K. E. Swick (Los Angeles, California) (*%)

Summary. - In this paper a piece-wise linear extension of the usual Liapunov type funclion
is constructed and used fo investigute the equation

@ + ax + g(eix + hw) = p(h)-

1. - Introduction.

The differential equations considered here are of the form

{1.1) x -+ ax 4 gleje + hix) = ply) (m = Ef)

where a is a positive constant, g, # and p are real valucd funetions. All
solutions are assumed to be real, and it will also be assumed that A is diffe-
rentiable and that g, # and p are continuous for all @ and f.

This equation has been studied by many authors, and in particnlar an
excellent account of may of these results regarding both stability and boun-
dedness can be found in {6, Chap. IV].

In [1], EzeiLo constructed an interesting extension of a LiapurNov
function to establish conditions under which all solutions of (1.1} will be
uniform-ultimately bounded. It was shown that if ¢ > 0 and if

hlx)sgnax — 4+ oo a8 |x]| - o0,
gle)=b>0 and Rx)<<c for |xw]|=K where ab>c¢>0,

and either | p(f)| << Py or | [ pis)ds| << P for all {=0, then the solutions of
0

{1.1) are uniform-ultimately bounded.

(*) This work was supported by National Science Foundation COSIP (GY4 754).
(**) Entrata in Redazione il 16 dicembre 1969.
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In [7], MULLER showed, by examining the system
x=y— ax+ Pix, y, 2, 1) y = — Glx) + Do, 3, 2, 4

= —h(x)+ Psx, y, 2, t) where Gx) :J'g(u)du,

that if
G(x)

T>b>0’ >0 x40, — co== h(x) << ab(co > 0)

aGlx) > hx)

x x
and | Py, y, 2, §)| << P (i =1, 2, 3) then the solutions of (1.1) are uniform-
ultimately provided

h(x)(Ge) — bx) > CP | Gle) | for || =K

where C is a sufficiently large positive constant. In both of these results
there is a requirement that h{x) sgn x become «sufficiently large» for
large w.

For the case g(x) = 0> 0, VORACEK [8] has shown that this requirement
on h is not necessary to obtain boundedness for the solutions of equation
(1.1), although it is required there that #A(x) be bounded for all «. To obtain
uniform ultimate boundeduess for the solutions of (1.1) he again requires
that h(x) sgn x become « sufficiently large » for large .

In this paper attention will be restricted to those functions p(f) for

which | p(s)ds is bounded for all £#=0. The L1aPUNoV function used in [2]
0

by this author to investigate the asymptotic behavior of solutions of (1.1) is
extended by the addition of a piece-wise linear function and used to show
that the requirements needed on % in [1], |7] and [8] to obtain uniform
ultimate boundedness for the solutions of (1.1) can be replaced by the condi-
tion

h{x) sgnac =7 >0 || =K
where the choice of K is arbitrary and % is any constant satisfying %> 2%
where I/(x) < ¢ for all a.
The following results will be established:

TrEOREM. - Suppose there exist positive constants b, ¢, v, K and P,
such that:
G ‘
%)2() le| =K G(m):fg(u)du

(1.3) (ii) h(x)sgna =7 || =K
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c

(1.4) (iiij A{x)<<c¢ for all = where ab>c¢ and 7> o

2

f pls)ds

0

o

< Py for all ¢,

(iv)

then there exists a constant B, dependent only on equation (1.1), such that
every solution x = x(f) of (1.1) satisfies

(1.6) L) |+ | @l) | + ()| < B
for all sufficiently large f.
It we sef
5=y
(1.7) y=2—ay — G) + P
&= — hix)

then in the terminology of Priss [3] the following is an immediate conse-
quence of this theorem.

CorOLLARY. — If there is a positive constant o such that P{{ + v} = P{{)
for all ¢ and if conditions (1.2) - (1.5) are satisfied, then the system (1.7) is
dissipative.

2. Consider a system of differential equation

der

@.1) =T, a

where x is an n-vector and F(f, 2} is continuous on [0, ocjwR".

DeriNiTioN [4]. - The solutions of (3.1) are uniform-ultimately bounded
for bound B if they are uniform-bounded and if there exists a B> 0 and
a T> 0 such that for every solution wx(t, o, o) of (2.1), ||a(f, w0, %) < B for
all {14, -+ T, where B is independent of the particular solution while T
may depend on each solution.

The following will be used in establishing our resulf.

Lemma 2.1 [4]. - Suppose that there exists a LrapunNov funection V{f, x)
defined on 0 <<t <oc, x| = H, where H may be large, which satisfies the
following conditions:

(i) afje]) << Vit, ) << b{|x]), where a(t)e CI (i.e. continuous and incre-
asing), a(t) —» oo as T—> oo and bi7) € CI,
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(ii) Veylt, ) << —cf|x|), where ¢fz} is positive and continuous.

Then the solutions of (2.1) are uniform-ultimately bound.
It is assumed here that Vi{f, =} is continuous in { and satisfies a local
Lipscrirz condition with respect to x and that V) is defined as

Veult, ) = lim L [ VIE4h, x4 hF({, x)] — Vi, x)}.

A3 h

3. Egquation (1.]) is equivalent to the system

=y
(3.1) ¥y =12 —ay — Hx) + P(})
ﬁi = e h(;I‘)

where () = [ plsjds.
0

Let B be a constant such that &>§> gand B < 2yv. Such a constant

c

5a" Define the function V, = Vi(x, y, #) as

exists since 0 <c¢ < ab and 7 >

2V, = 2a I‘h(uv)du + 28 f Gu)du + By* + 2* + 2hix)y — 23z,
] 0

and define V, = Vy(x, 9, #) as

1o (@, y, sje By ={y=M}|
;‘ — ey + e (v, y, 2)eRe={|y|< M, 2=N}|
2¢M (x, 4, )eRs={y<—M, s =N|
.2%3% (0, 9, deRi=y<—M, |2|<N)
— 2e M , y, )eR;s={y<— M, s < — N|
Vi= ey —eM (®, y, p)eBs ={|y| <M, 2<<— N}
0 (x, v, #)€ B: = Osy:gM,\zls-l—\Zy%

M

{
_ay-l-e%lz @, ¥, Z)GRE,:gnggN;[?/fg%{z}

— N
ez (®, y, 2)e Ry = »—M«;:’/SO,(ZIS—I‘T?/}

“ Ey+TV_z (e, ¥, z)eRm:;——Ngng,iyig_NMz§
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where ¢ = 2y — 3 > 0 and where M and N, 2aM << N, are positive constants
suitably chosen to satisfy Lemmas 3.1 and 3.2

The main tool in the proof is the function V= V(r, y, 2) defined by
2V =2V, + 2V,. Before proceeding with the proof of our resulf, it will be
convenient to make a few observations about conditions (i)-(iiij and about
Vix, y, 2) c

If 8 =aB —c¢, then >0 since 6> 5> a and from (1.4} we have

(3.2) W) <<aff —& for all w.

k4

And since Rix) = [ W(x)de 4+ RiO; it follows that there is K > 0 such that

[

(33 << hle)sgne << afrsgnae for |x| =K.

Combining (1.2), {3.2) and (3.3) we have the following set of inequalities
which will be used throughout the proof.

gg}zﬁ-;-e 0| =K
(34 e i&gfgh(x) sgnw << afesgna|e| =K
Rly<<af — & for all =

Since V; has continuous first partial derivatives with respect to each
variable, it satisfies a local LipscHITZ condition with respect to the vector
{z, ¥, 2). It follows that V satisfies a local LipscHITZ condition since V, is
either linear or constant in all regions of its definition and since V is
, _8_1_7, and a;zexist and are con-

oy oz
tinuous for all values of x, y and 2 except along the planes:

clearly continuous. The partial derivatives %EV

Priy==M P:y==N, y<< M. 1)3:y‘::i%2, |z| < N.

Along these planes the upper and lower partial derivatives all exist and
as a result V exist for all x, y, # and £ (See {B]).

Levma 3.1, - Under the hypotheses of the theorem, there exists a constant
H and functions a(z) and b(t) in CI such that a{1).»oc0 as t—>o0, a(1)>0
for v > H and

ax® + 2 < Vix, y, )<< blw* + y* + #*) for * 4y + = H.
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Proor or LuyMymaA 3.1. - The funection 2V: can be written in the form

2V1=(;3m—z)2+{3<y—§—%h(ac))g—{—%f[G(u)‘@u]du%—%f{aﬁmh’(u)]h(u)du—— h:éo'.

Since fx[a,{i — W' (u))hlu)du and fx[G(u) — Bu]du are continuous on [— K, K|,
o 0
there exists D; > 0 such that

(3.5) éof [af — R(u)jh{u)du = — D, and BJLG(%) — Bujdu = — Dy

on that interval. From (3.4) we have

(3.6) QSI{G(M) — Buldu = Bex* — Dy — cK?
and
E f [af — Kh{uw)du = — D, for all o
Let D=2D, -} <K? @Z;TO) , then
(3.7) 2Vi=PBe—2? -+ 3 l'y - %h(w) 2—[— Bex* — D for all .

Tt follows from (1.4) and the MEAN Value Theorem that there is a constant
D, such that

(3.8) |hix) | < Cla|+ D: for all a.
Using (3.7) and (3.8) it is clear that
(3.9 Vife, . 2)—>o00 as & + ¢ + 2> > o0

Since V; is continuous and independent of ¢, it follows from (3.9) that there
exist fanctions ai(t), bi(t) € CI such that

(@ + YA Vi, vy, 2) <bx>+ y* + #°) and ayft) >0 as 1-» oo,
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It follows from an easy examination of the individual cases in the definition
of Ifz that

—2eM, <<2V,<<2eM for all (x, y, 2)e R®,
and therefore if we set a{t) = ai{t) — e, and b(z) = bi{v} + eM, then
ale® +y + ) << Vix, y, 2) <b@* + y* + &%),
@t} > oo as T—> oo and that there is an H; > 0 such that a(t) > 0 for t = H,.
LemMMA 3.2. - Under hypotheses of Theorem 1, there is an H, such that
Venlt, «, 4, 2) < ~1 for &’+ ¢y +2=H, and {=0.
Proor or LeMMA 3.2. - If (x, y., #) is any solution of (3.1), then
Vi = — [aB — W{x)l? 4 8Pty — [G(x) — Bx — Pit)hx).

The value of V, is easily caleulated for all values of a, y and # in the
interior of each of the regions of definition and the exact value on the
boundary is not important since V, will be estimated from both of the pos-
sible expressions at each boundary point. For example if 0 <2< N and
— M <y <0, then

g ~ey+5%[é it Mz>— Ny
V2 ==
( 25%?; it Mz< — Ny
and for Mz = — Ny, from the definition of V., V. is either — ey 4+¢ - 2

N

or 2 = 2.
N

In order to establish the lemma it will be shown that V< — 1 on each
of the ten regions of K® used in the definition of V5.
For (e, 9, 2}e By, 2V =2V,, and

V="V = —[af — Wa)ly* + BP(tyy — [Gla) — B — P()}hlx).
1t follows from (3.4) that [G(x)— fx]sgnax=c|x| for |x|= K which
along with (1.5) and (3.4) imply the existence of a constant K, = K such

that

(3.10}  [Glx) — Bax — P({)]hix) = [Glx) — B — Posgn xlh{x) >0 for |x|=K;.
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Since [Glx) — B — I’|f)hix) is continuous for all a and | ()| << Py for
all ¢ (3.10) implies the existence of a positive constant D, such that
[G(x) — B — P(t)|hlx) = — Dy for all « and ¢

So on R

V< — 8+ 8P|yl + Ds,
and clearly an M, can be chosen such that
— 8+ Pyl +Di<—1 for y=M,.
Now if we assame that M = M,, then
(3.12) V<—1 for (x y, 2)eR,.

For (x, y, sl R, U Bs, V= Vi, and the same arguments as used above
can be used to find an M, > 0, such that if M > M,, then

(3.13) V<—1 for (x, 9, 2)€R:s U Rs.

On RB,, V= V—rrzjé‘ihm:ﬁa@—h’(wﬂy%ﬁ/’(tw“ Gfer)—Be — I(5)+ 23\1)1

Pioceeding just as in th. preceeding case, recalling that 2aM << N, there
is K; > K such that

h{x).

2e M

Glr) — fe — Plt) + —

hix) = { Gx) — B — [Po + 2ae] sgn 2 | h(x) > 0

for a|= K., and the continuity of this function again implies the existence
of a positive constant Ds such that

2e M

Glx) — Bx — Pty + N

ih(m);«: — Ds for all « and ¢.

As in the preceeding case, a positive constant M, can now be selected such
that
— Sy + PPy + Ds< -1 for y<M,,

so that if M = M,, then
(3.15) V<—1 for (x ¢, 2)€R,.
Let M = max(M,, M., M;), then it follows from (3.12), {3.18) and (8.15) that

(3.18) V<—1 for (x y, 2)€R UR,UR,UR;
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For (x, 9, #2)€ R:, V= Vl—%z+—;ay+;G(az)—§P(i}, and since |y|<<M

there is a positive constant Ds such that

—[aﬁ—-h’(wﬂy%ﬁPoyy|+-;aiy| +5P<D; on B,

and thus

(3.17) V< —[Ge) — & + P )+ Ds— 2z on Ry
It ® << — K,, then (3.4) and (3.10) imply that

(3.18) — (G@) — fw — Pysgnalhle) <O and ¢ Glx) <O,

while for positive x we can write the first {wo terms of (3.17) as

Be Poe

(8.19) — [G(xe) — B — Po sgn x] h(m)-—%]-{— —2—790—}-7

)
<

B

..I._

and again, if x = K;, since hlx)=

3 each term of this expression is negetive.

So combining {3.18) and {3.19) we have
— [Glx) — B — Po sgn @]h{x) +§G(m) <0 if |o]=K,

and since this expression is continuous in @ we have shown the existence
of a positive D; with the property

— [Gx) — B — Po sgn x]hix) +32 Gle)y << D; for all o

€

Thus on R V< Ds+ D; — 52, and we can clearly choose N; such that

2
V<—1 for 2=>N,; and so if N=>DN,
then
{3.20) V<—1 for (x, ¥, ¢)€R;.
; - £ £q e € .
1f (¢, y, 2)e Rs, then V= V-i—;)zm—-é—y—é G(:x:)-{—g}?(t), and since 2= 0,

we find N; > 0, using the same method as used in the preceding case, for
which N = N; implies that
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(3.21) V<—1 for (x g, #)€Rs.
Combining (3.20) and (3.21) if N = max (N,, N} then

(3.22) V<—1 for (x 9 #€R:; U Rs.

For (x,y,2)€ Rs, V = V1~§z+%‘y+ga(m)—gp(t)-i_fg

|y|<M and |2|<N and V is continuous in y and z on Rs, there is a
positive constant Dy such that on B

h{x), and since

€

— B — W@)ly* + BP0 |y | + 5y — 5 Plt) — 5 o< Dy

and thus on Es

(3.23) V < Dy — [G(x) — B — Py sgn alhix) +- ; Glx) — Ellvllh(ac).
Since 2M << N, %Igé%and thus if & <<— K it follows from (3.4) that
£ eM
5 Glr) — S hixr) <0 and — [G(x)— Bx — Posgn xjh{x) << — [ex + Poh{x).

From this last expression and (3.4) it is clear that a positive constant
L, can be selected such that

e

Nh{m)<—1 for x<— L,

(3.24) Ds — [Glx) — Bx — Po sgn xjhix) + % Gz}
For positive values of x we can rewrite (3.23) as

VgDs——[G(m)~§3w-—l’o}{h(w}—s} Be o Loe M

2| T 2¥ T2
. - ) B+
and if @ = K, then (3.4) and (3.10) imply that h{x) = 5 and thus that
) M
— [G{x) — B — Po] [h(:)c) - %] 4 E’V hi{x) < 0.
: P()E BE o
So V<< Dy —5 = ‘Q’w on Rs if x> K; and clearly an L, = K; can be

selected such that
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P _fe

2 _ g
(3.25) Dy— 5 —%

< —1 it =1L,

Now it Ls = max(Ly, Ly} and if L > L;, then combining (3.24) and (3.25)
we have

(3.26) V< —1 for (o y, 2)eRs

The details for the cases E;, Rs and Ry are very similar to Rs; and will
not be repeated. Liet L. > 0 be such that

V<—1 for (x, 9, 2)€R: U R U Ry, and |w|= L.

Let L = max (L;, L,) then
. 10
(3.27) V<—1 if (x, y 2 U B and [ |= L.

Now set H, = 3 max (L?, M?, N?, 1), then if x? 4 y* 4 2 = H: one of the
following must hold :

@ lyl=M
(i) |y|<M and |2|{=N

i) |yl <M, fz] <N and |x|=L.

It is clear from (3.16), (3.22) and (3.26) that V < — 1 in each case which
completes the proof of Lemma 3.2.

It H = max (H,, H,) then combining Lemmas 2.1, 3.1 and 3.2 it follows
that there is a costant B; such that if (x(f), y(f), #(f)) is any solution of
(3.1), then

(3.28) () + v() + () < By

for all sufficiently large . Now if «(f) is a solution of (L.1). then a(f)=y
and x(f) = # — ay — G(x) + P(f), where (x, y, 2) is a solution of (3.1).

Now since | P(f)|<< P, for all ¢ and G is continuous it follows from
(3.28) that there is a constant B dependent only on equation (1.1} such that
(1.6) is satisfied.
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