
A boundedness result  for the solutions of certain 
thi rd  order differential equatiolls (*). 

K.E. SWICK (:Los Angeles, California) (**} 

Summary, - [ n  this paper a piece-wise linear extension of the usual Liapunov type f~tnctiou 
is constructed and used to investigate the equation 

x +- ax -t- g(xlx + h(x) -~ pit). 

I. - Introduction. 

The d i f fe ren t ia l  equat ions  considered here  are of the form 

(1.t) x + c,x + g(~)x + a(x) = p(t~ X = 

where  a is a positive constant ,  g, h and p are  real  valued funct ions .  All 
solut ions  are assumed to be real,  and it will also be assumed that  h is diffe- 
ren t iab le  and that  g, h' and p are con t inuous  for all  x and  t. 

This  equa t ion  has been s tudied by m a n y  authors ,  and in pa r t i cu la r  an 
exce l len t  account  of may of these resul ts  r ega rd ing  both s tabi l i ty  and  boun- 
dedness  can be found in [6, Chap. IV]. 

In [1], EZEH~O cons t ruc ted  an  in te res t ing  ex tens ion  of a L I A P u ~ o ¥  
funct ion  to es tabl ish  condi t ions  unde r  which all solut ions of (1.1} will  be 
u n i f o r m - u l t i m a t e l y  bounded.  ]t  was shown that  if a > 0 and  if 

h(x) sgn  x --> -4- o,z as [w]-->cxD, 

g ( x ) ~ b > O  and h'4xl__~e for t x l ~ K  where  a b > c > O ,  

t 

and  e i ther  Ip(t) j ~ 1)o or I SP(s )ds l  <~ -P for all t ~ 0, then  
0 

(1.1) are  u n i f o r m - u l t i m a t e l y  bounded.  

the solut ions of 
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In [7], ~':[ULLER showed, by examining the system 

m ---- y --  am -4- P I ( X ,  y, z, t) 

z - -  - -  h (m) q- P3(m, y, z, t) 

that if 

Y = m - -  G(x) q- P2(x, y, z, t) 
x 

where G(x) - ' f g ( u ) d u ,  
0 

G(m) aG(m) h(xi 
- - > b > 0 ,  - - >  > 0 m ~ 0 ,  

m m 
- -  Co ~ h'(x) ~__ ab (co > O) 

and I Pdm , y, z, t ) [ ~  P ti = 1, 2, 3) then the solutions of (1.1) are uniform- 
ul t imately provided 

h(x)(G(x) - -  bx) > CP [ G(m) I for I wl ~ K  

where C is a sufficiently large positive conslant. In both of these results  
theae is a requirement  that h(m) sgn x become << sufficiently large>> for 
large x. 

For  the case g { x ) ~  b > 0, VORAGEK [8] has shown that this requirement  
on h is not necessary to obtain boundedness for the solutions of equation 
(1.1), although it is required there that h(x) be bounded for all x. To obtain 
uniform ult imate bounde,]ness for the solutions of {1.1) he again requires 
that h(x) sgn x become <~ sufficiently large ~> for large x. 

In this paper attention will be restricted to those functions p(t) for 
t 

which fp(s)ds  is bounded for all t ~ 0 .  The L I ~ u ~ o v  function used in [2] 
0 

by this author to investigate the asymptotic behavior of solutions of (1.1) is 
extended by the addition of a piece-wise linear function and used to show 
that the requirements  needed on h in [1], [7] and [8] to obtain uniform 
ult imate boundedness for the solutions of t1.1) can be replaced by the condi- 
tion 

h(xj sgn m ~ ~ > 0 

where the choice of K is arbi trary and ~ is 
where h ' (m)~ c for all m. 
The following results will be established: 

THEOREM.- Suppose there exist 
such that : 

(1.2) (i) G { m ) ~ b  I m i ~ K  
m 

x 

e(m)=fg(u)du 
0 

lml K 
C 

any constant satisfying ~q > 2a 

positive constants b, c, ~, K and Po 

(1.3) (it} h(x) sgn oc ~ v~ I x I ~ K 
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G 
(1.4) (iii) h'tx)~__c for all x where  a b > c  and ~ >  2=a 

t 

(1.5) (iv) fp(s)ds  ~ Po for all t, 
,J 
0 

then  there exists  a cons tan t  8, dependent  only on equat ion  (1.1), 
every  solut ion x - - x ( t )  of (1.1) sat isf ies  

(t.6) tx(0!+l~(01 +t~(01<-B 

such that  

for all suf f ic ien t ly  large t. 
I f  we set 

x - - - y  

(1.7) y --  z - -  ay - -  G(x) + P(t) 

z = - h ( x )  

then  in the te rminology of PLIss  [3] the fol lowing is an  immedia te  conse- 
quence  of this theorem.  

COROLLARY. - I f  there is a posit ive cons tan t  ~o such that  P(t  + to ) - -P ( t )  
for all t and  if condi t ions  (1.2) - (1.5) are satisfied,  then the sys tem (1.7) is 
dissipat ive.  

2. Consider  a sys tem of d i f fe rent ia l  equa t ion  

(2.1) dx  -d[ = F(t, x) 

where  x is an  n -vec to r  and F(t, x) is con t inuous  on [0, c,o)xR ~. 

D E S I ~ O N  [4]. - The  solut ions of (3.1) are u n i f o r m - u l t i m a t e l y  bounded  
for bound B if they are u n i f o r m - b o u n d e d  and if there exists a B >  0 and 
a T >  0 such that  for every solut ion xtt, Xo, to) of (2.1), IIx(t, Xo, to)[] < B for 
all t__> to + T, where  B is independen t  of the pa r t i cu la r  solut ion while  T 
may  depend  on each solution.  
The  fol lowing will be used in es tab l i sh ing  our  result .  

LEMMA 2.1 [4]. -- Suppose that  there  exists  a LIAPUbTOV func t ion  V(t, x) 
def ined  on 0 ~  t < c~,  I I x l i >  H, where  H may  be large, which sat isf ies  the 
fol lowing condi t ions  : 

(i) afll xll) ~ vtt, ~c) ~ bll[ x II), where a(z} s C1 (i.e. con t inuous  and incre- 
asing), a(zl --> ~ as z --> ~ and b(z) e CI~ 
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(ii) V(2.~)tt, x ) ~ -  cIIt xt'~), where ctzl is positive and continuous. 

Then the solutions of ('2.1) are uni form-ul t imate ly  bound. 
It is assumed here that V(t, x} is continuous in t and satisfies a local 

L:~escrr~z condition with respect  to x and that V(~) is defined as 

V(~)(t, x)= iim ~ h-~o h { V[t -t- h, x + hF(t,  x)]  - -  V(t, x ) } .  

3. Equat ion (1.1) is equivalent  to the system 

(3.~} 

t 

where l'(t) = ~ p(s}ds. 
o 

Let [~ be a constant 

x - - ' y  

y = z --  ay - -  G(x) + P(t) 

z = - -  h ( x )  

such that b > ~ >  c and ~<2~ .  Such a constant 
G 

exists since 0 < c < a b  and ~ > 2 a .  Define the function Vx-- V~(x, y, z) as 

x x 

0 

and define V2 = V2(x, y, z) as 

V~ =- 

0 (x, y, z ) ~ R ~ = { y ~ M }  

2sM (x, y, ~) ~ R3 -- l y ~ - -  M, z ~ N } 
2~M 

- : ~ - - z  (x, y, z ) e R a - - { y ~ _ - - M ,  l z i ~ N }  

- - 2 ~ M  (x, y, z i ~ R s = { y ~ - - M ,  z ~ - - N }  

~ y - - ~ M  (x, y, z ) ~ R 6 - - { [ y t ~ M ,  z ~ - - N }  

o (x, y, ~ ) s B T =  O~y~M,  I z l ~ N y  

- N - - Z  (x, y, z ) e R g =  - - M ~ y ~ O ,  l z l ~  y 

~M 1 --M I , y + ~ z  (x, y, z ) e R ~ o =  - - N ~ z . ~ O ,  ] y i ~ N - - z  
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where ~ - 2 B - - ~ > 0  and where M and N, 2 a M e N ,  are positive constants 
suitably chosen to satisfy Lemmas 3.1 and 3.2. 

The main tool in the proof is the function V =  V(x, y, z) defined by 
2V--2V~ + 2V2. Before proceeding with the proof of our result, it will be 
convenient to make a few observations about conditions (i)-(iii) and about 
V(x, y, z) 

If ~ - - a ~ - - c ~  then ~ > 0  since b > ~ >  c and from (1.4) we have 
a 

(3.2) h'(x) ~ a~ -- ~ for all x. 

x 

And since h(~c)- j~ h'(x)dx--{-htOI it follows that there is K >  0 such that 
0 

(33j ~ h ( w )  s g n x ~ a ~ x s g n o c  for Ix I ~ K .  

Combining (1.2}, (3.2} and (3.3j we have the following set of inequalit ies 
which will be used throughout the proof. 

(3.4j 

I lxl K 

h ' ( x ) ~ a ~ - - ~  for atl x, 

Since V~ has continuous first partial derivatives with respect to each 
variable, it satisfies a local LIPSC~ITz condition with respect to the vector 
(.% y, z). It  follows that V satisfies a local LIPSCHI~z condition since V2 is 
either l inear or constant in all regions of its definition and since V is 

clearly continuous. The partial derivatives ~V__ --,3V and d~ex i s t  and are con- 
~x ' ~y zz 

tinuou~ for all values of x, y and z except along the planes:  

M 
P~'y - ' -+-M,  P 2 " y = ~ N ,  y ~ 3 I .  P 3 " y - - ± ~ z ,  t z l < N .  

Along these planes the upper and lower partial derivatives all exist and 
as a result  V exist for all x, y, z and t. (See [5]~. 

LEM~IA 3.1. - Under  the hypotheses of the theorem, there exists a constant 
H and functions a (z )and  bIx)in CI such that a(~)._>c~ as :.-->¢x~, a ( z ) > 0  
for z > H and 

a(x2 _4_ y2 q_ z2j ~ V(x, y, zl ~ bqx 2 --~ y2 + z2j for x 2 -b y2 q_ z 2 ~ H. 
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PROOF OF LmI~IA 3 . 1 . -  The  funct ion  217t can be wr i t ten  in the form 

2 V~--(~--z)2-[-~/\y-[ - i3h(x) )+ 2~ f [G(u)--~u]du~- -~ f [a~--h'(u)]h(u)du -h2(O'  
0 0 

x 

Since ff[a~ -- h'(u)]h(u)du and j" [G(u) - ~u]du are con t inuous  on [- -  K, K], 
o o 

there  exis ts  D~ > 0 such  that  

(3.5) 
x x 

o o 

on that interval .  F rom (3.4) we have  

x 

(3.6) 2~ f [G(u) - -  ~u]du ~ ~zx 2 - -  D~ - -  z K  2 
0 

and 
x 

[a~ --- h'(u)]h(u)du ~ - -  D~ for all  

0 

Let  D --  2D1 -[- ~K 2 4- h2(0) __ , then 

I ] lh(x)-_{_~e:c ~ - D  for all x. (3.7) 2 V~ ~ (~x - -  z)2 + ~ Y "b ~ 

I t  follows from (1.4) and the )IEAN Value  Theo rem that  there  is a cons tan t  
D2 such that 

(3.s) I h(~)p ~ ~ l x ]  + D~ for all x. 

Using  (3.7) and (3,8) it is c lear  that  

(3.9) V~(x, y: z) --> ~ as ~2 ÷ y~ _1_ z 2 __> ~ .  

Since  V~ is con t inuous  and independen t  of t, it follows from (3.9) that  there  
exis t  func t ions  al(z), blt':)e CI such that 

al(x 2 + y2 ~ z 2) ~ VI(x: y, z) ~ b~(x ~ -[- y2 -}- z:~) and a l ( z ) - - > ~  as z - - > ~ .  
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I t  follows f rom an easy examina t ion  of the indiv idual  cases in the def in i t ion  
of V2 that  

--2sM, ~ 2 V 2 ~ 2 a M  for all  (x, y, z) e R  3, 

and therefore  if we set a ( ~ ) =  a l ( x ) -  aM, and b(~:)- bl (z )+ eM. then  

a( x2 -t- y2 + z~) ~ V(~, y, z) ~__ b(x 2 -t- Y~ -l- z2), 

a(z) --> c<~ as z--> c<~ and that  t h e r e  is an  H~ > 0 such that  a(x) > 0 for ~ ~ H~. 

LEMM.~ 3.2. - Under  hypotheses  of Theorem 1, there  is an H2 such that  

ff(3.~)(t, x, y, z ) <  - -1  for ~c 2 + y 2 . ~ _ z 2 ~ / / 2  and t ~ 0 .  

, 

PnOOF OF LEMMA 3..~. - [[ ( x , y ,  z) is any  solut ion of (3.1), then 

V~ = - -  [a~ - -  h'(x)]y 2 + ~P(tIy - -  [e(x) --  }x --  1)(t)]h(x). 

The value of V2 is easi ly  ca lcu la ted  for all Values of x, y and z in the 
inLerior of each of the regions of def in i t ion  and the exact  va lue  on the 

boundary  is not impor tan t  since V2 will be es t imated  from both of the pos- 
sible express ions  at each bonndary  point.  For  example  if 0 < z < N  and 
- - M < y  < 0 ,  then 

a ~ - z  if M z > - - N y  

2~N-z if M z < - - N y  

M "  
and for M z = - - N y ,  from the def ini t ion of V~, I~ is e i ther  - ay-{-a N z 

M .  
or 2a~7: z. 

In  order  to establ ish the l emma  
of the ten regions of /t3 used in the 

For  (x, y, z) e R i ,  2 V =  2Vt, and 

V = V~ = - [a~ - h'(a~)]y 2 -t- 

I t  follows from (3.4) that  [G(x) 
along' with (1.5) and (3,4) imply  the 
that  

it will be shown that  V < - - - 1  on each 
def in i t ion  of V2. 

 Ptt}y - -  [ G ( x )  - -  - -  P ( t ) ] h ( x ) .  

f o r  w h i c h  

exis tence  of a cons tan t  K ~ K  such 

[G(x) - -  ~x - -  P(t}]h(~c) ~ [G(x) - -  ~x - -  Po sgn x]h(x) > 0 for I x I ~ Kj .  
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Since [G[x) - -~x- - l ' IO]hIx)  is continuous for all x and 
all t, (3.10} implies the existence of a positive constant 
[ G ( x ) - - ~ x -  P ( t l ] h ( x ) ~ -  D~ for all x and t. 

So on R1 

and clearly an M1 can be chosen such that 

- - ~ y 2 + ~ P o ! y l + D ~ < - - I  for y>_~M~. 

Now if we assume that M ~ M I ,  then 

(3.12} V <  - 1  for (~v, y, z) eR~. 

For (x, y, z}eR3 U Rs, V =  Yl, and the same arguments  as used above 
can be used to find an M 2 > 0 ,  such that if M ~ M 2 ,  then 

(3.13) V < - - I  for (x, y, z) eR3 U R s .  

2sM . . l'(tty-- G(x)--~x - 2sM ] On R4, V = V x -  N tt{x~=--[c'~--h'(x@2+~ l ' ( t ) + ~  jh(x). 

PJoceeding just  as in tho preceeding case, recalling that 2 a M < N ,  there 
is K2 ~ K such that 

2 e 311 , 
Glx) -- ~x -- P(tt -t- ~ 1  h{x~ >_ (Glx) -- ~x -- [Po + 2a~] sgn x } h(x) > 0 

for x [ ~ K 2 ,  .and the continuity of this function again implies the existence 
of a positive constant Ds such that 

[O(xj - -~ix-- I ) ( , )+ 2s--~Nllh(x,~--Ds for all x and t. 

As in the preceeding case~ a positive constant M2 can now be selected such 
that 

_~y2.k_~poIy]+Ds< - 1 for y ~ M ~ ,  

so that if M>__M2, then 

[3.15} V < - - t  for (x, y, z) e R a .  

Let  M = max(M~, M2, M3), then it follows from (3.12), {3.13) and {3.15} that 

(3.16) 1 ) ' < - - 1  for (x, y, z) e R ~ O R 3 [ _ ) R ~ U R s  

] l ' l t~]~ Po for 
D~ such that 
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For  (;v, y, z) e R2, V "- V1 - -  ~ z -j- 2 ay + 2 - -  2 P(t), and 

there  is a posi t ive cons tan t  D6 such that  

- - [a~- -h ' (x ) ]y  2 + ~ P o t y ] - ~ a t y ]  + 2 P o ~ D 6  on 

and  thus  

(3.17) V ~  - - [G(x)  --  ~x -b P(t)]h(x) "4- D 6 - - 2 z  on R2. 

I f  a ~ - - / ( ~ ,  then {3.4) and t3.10) imply  that  

(3.18) - -  [G(x) - -  ~x - -  Po sgn x]h(x) < 0 and G(z) < o, 

since I Y I~'~M 

R2 

while for posit ive x we can write the first  two terms of (3.17) as 

(3.19) -- [ G(x) --  ~x - -  Po sgn ~c][h(x) - -2]  -b ~2 x -}- Po~2 

and again,  if x ~ K 1 ,  since h ( x ) >  ~ -{" ~ each te rm of this  express ion  is negetive.  

So combin ing  (3.18) and (3.t9) we have 

~G(x)<0 if Ix]~K~, - -  [G(vc) - -  ~v - -  Po sgn x]h(x) -{- 

shown the exis tence  and since this express ion  is con t inuous  in x we have 
of a posit ive D7 with the proper ty  

G(x)~__D7 for all x. - -  [G{x) - [3x - -  Po sgn x]h(x) -{- 

Thus  on R2 17<:_ D 6 - { - D 7 -  ~z, and  we can c lear ly  choose N~ such that  

V < -  1 for z ~ N ~ ;  and  so if N : ~ N 1  
then 

(3.20) V < - - I  for (vc, y, z) eR2.  

I f  ix,, y, z) eR6 ,  then  V - "  V +  s ~ z -  2-y~a --2S G(x) + ~ P(t}' and since 

we find ~ > 0, us ing  the same method as used in the preceding  case, for 
which / V ~  N2 implies  that  

Annali di Matematica 23 
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(3.21) V < - - I  for (x, y, z )~R6.  

Combining (3.20) and 13.21) if _hr~ max(N1,  N2) then  

(3.22) g < - - i  for (x, y, z ) ~ R 2 U R 6 .  

e / l l , ,  , 
e ~a s G(m) - -  P(t} - -  ~ h(x), and since F o r ( x ,  y, z) e R s ,  V :  Y ~ -  2 z +  2 - y + ~  

l y t < M  and l z l < N  and V is con t inuous  in y and z on Rs, there is a 
posi t ive cons tant  D8 such tha t  on R8 

~a s P(t) - -  2 z < D8 - -  [a~ - -  h'@)]y 2 + ~P(t~ l y I + -~ Y - -  2 

and thus  on R8 

eM s G(x) ~ h(x). (3.23) V ~ D8 - -  [e(x) ~ ~x - -  Po sgn x]h(x) + 

Since 2M~_<N, ~ 2 a a n d  thus if x _ < - - K  it follows from (3.4) that  

sM 
~- 2 G{~c) - -  ~ h(x) < 0 and - -  [G(x) - -  ~x - -  Po sgn x]h(x) ~ - -  [ex "F Po]h(x). 

cons tan t  From this last  express ion  and  (3.4) it is c lear  that  a posit ive 
L~ can be selected such that  

(3.24) D8 --  [G(x) - -  ~9c - -  Po sgn x]h(x) + ~ G(x) -- ~ h(x) < - -  1 for 

For  posi t ive values  of x we can rewri te  (3.23) as 

_ - h ( x ) ,  

x < - - L 1  

and if m>_K1 then  (3~4) and (3.10) imply  tha t  h ( x ) ~ - - ~ 2  ~and thus  that  

~M 
- -  [ G(x) - -  ~x - -  Po] [h(m) --  2] + - ~  h(x) < O. 

go~ 
So V <__ D8 

2 
selected such that  

~2a~ on R8 if x ~ / Q  and c lear ly  an L2>__K1 can be 
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I)0 ~ ~ 
[3.25) D8 2 ~ - x < - - i  if x ~ L 2  

Now if L3=max(L~ ,  L2} and if L?~_L3, then combining (3.24t and (3.25) 
we have 

(3.26) ? < - - 1  for (x, y, z) eR8 

The details  for the cases RT, R9 and R~o are very similar  to R8 and will 
not be repeated.  Let  L~ > 0 be such that  

V < - - I  for (x, y, z) eR~ U R9(ARlo and I x l ~ - L ~ .  

Let L - ~  max(L3,  L4) then 

lO 
(3.27j V < - -  1 if (x, y, z}~ U R~ and [ x l ~ L .  

Now set / / 2 ~ - - 3 m a x t L  2, M 2, N 2, 1}, then if x 2 ÷ y 2 ÷ z  2 ~ / / 2  one of the 
following must  hold:  

(il lyl M 

(ii) l y l < M and ] z i O N  

(iii) I Y t < M ,  f z I < N  and I x l ~ L .  

It  is clear from (3.16}, (3.22) and (3.26) that I? < -  1 in each case which 
completes  the proof of L e m m a  3.2. 

If  H =  max(H1,  //2) then combining Lemmas  2.1, 3.1 and 3.2 it follows 
that  there is a costant  B1 such that if (~(t), y(t}, z(t)) is any solution of 
(3.1), then 

(3.28~ x2(t} + y2(O + z2(t) <_ B1 

for all suff icient ly large t. Now if x(t) is a solution of (1.I), then x ( t ) =  y 
and x( t )= z -  a y -  G(x)+ P(t), where (x, y, z) is a solution of (3.1). 

Now since IP(t) l ~  Pc for all t and G is cont inuous  it follows from 
(3.28} that  there is a constant  B dependent  only on equat ion (1.1) such that  
(1.6) is satisfied. 
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