A boundedness result for the solutions of certain third order differential equations (*).

K. E. Swick (Los Angeles, California) (**)

Summary, - In this paper a piece-wise linear extension of the usual Liapunov type function is constructed and used to investigate the equation

$$
\ddot{x}+a \ddot{x}+g(x \mid \dot{x}+h(x)=p(t)
$$

1. - Introduction.

The differential equations considered here are of the form

$$
\begin{equation*}
\ddot{x}+a \ddot{x}+g(x) \dot{x}+h(x)=p(t) \quad\left(\dot{x}=\frac{d x}{d t}\right) \tag{1.1}
\end{equation*}
$$

where a is a positive constant, g, h and p are real valued functions. All solutions are assumed to be real, and it will also be assumed that h is differentiable and that g, h^{\prime} and p are continuous for all x and t.

This equation has been studied by many authors, and in particular an excellent account of may of these results regarding both stability and boundedness can be found in [6, Chap. IV].

In [1], Ezello constructed an interesting extension of a Liapunov function to establish conditions under which all solutions of (1.1) will be uniform-ultimately bounded. It was shown that if $a>0$ and if

$$
\begin{aligned}
& h(x) \operatorname{sgn} x \rightarrow+\infty \quad \text { as }|x| \rightarrow \infty \\
& g(x) \geq b>0 \quad \text { and } \quad h^{\prime}(x) \leq c \quad \text { for } \quad|x| \geq K \quad \text { where } \quad a b>c>0,
\end{aligned}
$$

and either $|p(t)| \leq P_{0}$ or $\left|\int_{0}^{1} p(s) d s\right| \leq P$ for all $t \geq 0$, then the solutions of (1.1) are uniform-ultimately bounded.
(*) This work was supported by National Science Foundation COSIP (GY4754). (**) Entrata in Redazione il 16 dicembre 1969.

In [7], Müller showed, by examining the system

$$
\begin{aligned}
& \dot{x}=y-a x+P_{1}(x, y, z, t) \quad \dot{y}=x-G(x)+\dot{P}_{2}(x, y, z, t) \\
& \dot{z}=-h(x)+P_{3}(x, y, z, t) \quad \text { where } \quad G(x)=\int_{0}^{x} g(u) d u
\end{aligned}
$$

that if

$$
\frac{G(x)}{x}>b>0, \quad \frac{a G(x)}{x}>\frac{h(x)}{x}>0 x \neq 0, \quad-c_{0} \leq h^{\prime}(x) \leq a b\left(c_{0}>0\right)
$$

and $\left|P_{i}(x, y, z, t)\right| \leq P(i=1,2,3)$ then the solutions of (1.1) are uniformultimately provided

$$
h(x)(G(x)-b x)>C P|G(x)| \quad \text { for } \quad|x| \geq K
$$

where C is a sufficiently large positive constant. In both of these results the.se is a requirement that $h(x)$ sgn x become «sufficiently large» for large x.

For the case $g(x) \equiv b>0$, Vorácén [8] has shown that this requirement on h is not necessary to obtain boundedness for the solutions of equation (1.1), although it is required there that $h(x)$ be bounded for all x. To obtain uniform ultimate boundedness for the solutions of (1.1) he again requires that $h(x) \operatorname{sgn} x$ become «sufficiently large» for large x.

In this paper attention will be restricted to those functions $p(t)$ for which $\int_{0}^{t} p(s) d s$ is bounded for all $t \geq 0$. The Liapunor function used in [2] by this author to investigate the asymptotic behavior of solutions of (1.1) is extended by the addition of a piece-wise linear function and used to show that the requirements needed on h in [1], [7] and [8] to obtain uniform ultimate boundedness for the solutions of (1.1) can be replaced by the condition

$$
h(x) \operatorname{sgn} x \geq \eta>0 \quad|x| \geq K
$$

where the choice of K is arbitrary and η is any constant satisfying $\eta>\frac{c}{2 a}$ where $h^{\prime}(x) \leq c$ for all x.
The following results will be established:
Theorem. - Suppose there exist positive constants b, c, η, K and P_{0} such that:
(1.2) \quad (i) $\frac{G(x)}{x} \geq b \quad|x| \geq K \quad G(x)=\int_{0}^{x} g(u) d u$
(1.3) \quad (ii) $\quad h(x) \operatorname{sgn} x \geq \eta \quad|x| \geq K$
(iii) $h^{\prime}(x) \leq c$ for all x where $a b>c$ and $\eta>\frac{c}{2 a}$
(iv) $\left|\int_{0}^{t} p(s) d s\right| \leq P_{0}$ for all t,
then there exists a constant B, dependent only on equation (1.1), such that every solution $x=x(t)$ of (1.1) satisfies

$$
\begin{equation*}
|x(t)|+|\dot{x}(t)|+|\ddot{x}(t)| \leq B \tag{1.6}
\end{equation*}
$$

for all sufficiently large t.
If we set

$$
\begin{align*}
& \dot{x}=y \\
& \dot{y}=z-a y-G(x)+P(t) \tag{1.7}\\
& \dot{z}=-h(x)
\end{align*}
$$

then in the terminology of Pliss [3] the following is an immediate consequence of this theorem.

Corollary. - If there is a positive constant ω such that $P(t+\omega)=P(t)$ for all t and if conditions (1.2) - (1.5) are satisfied, then the system (1.7) is dissipative.
2. Consider a system of differential equation

$$
\begin{equation*}
\frac{d x}{d t}=F(t, x) \tag{2.1}
\end{equation*}
$$

where x is an n-vector and $F(t, x)$ is continuous on $[0, \infty) x R^{n}$.
Deminimion [4]. - The solutions of (3.1) are uniform-ultimately bounded for bound B if they are uniform-bounded and if there exists a $B>0$ and a $T>0$ such that for every solution $x\left(t, x_{0}, t_{0}\right)$ of (2.1), $\left\|x\left(t, x_{0}, t_{0}\right)\right\|<B$ for all $t \geq t_{0}+T$, where B is independent of the particular solution while T may depend on each solution.
The following will be used in establishing our result.
Lemma 2.1 [t]. - Suppose that there exists a Liapunov function $V(t, x)$ defined on $0 \leq t<\infty,\|x\| \geq H$, where A may be large, which satisfies the following conditions:
(i) $a\|x\| \leq V(t, x) \leq b\|x\|$, where $a(\tau) \in C I$ (i.e. continuous and incre$\operatorname{asing}), \alpha(\tau) \rightarrow \infty$ as $\tau \rightarrow \infty$ and $b(\tau) \in C I$,
(ii) $\dot{V}_{(2.1)}(t, x) \leq-c\|x\|$, where $c|=|$ is positive and continuous.

Then the solutions of ($? .1$) are uniform-ultimately bound.
It is assumed here that $V(t, x)$ is continuous in t and satisfies a local Lipsonitz condition with respect to x and that $\dot{V}_{(2.1)}$ is defined as

$$
\dot{V}_{(2.1)}(t, x)=\varlimsup_{h \rightarrow 0} \frac{1}{h}\{V[t+h, x+h F(t, x)]-V(t, x)\} .
$$

3. Equation (1.1) is equivalent to the system

$$
\begin{align*}
& \dot{x}=y \\
& \dot{y}=z-a y-G(x)+P(t) \tag{3.1}\\
& \dot{z}=-h(x)
\end{align*}
$$

where $\Gamma^{\prime}(t)=\int_{0}^{t} p(s) d s$.
Let β be a constant such that $b>\beta>\frac{c}{a}$ and $\beta<2 \eta$. Such a constant exists since $0<c<a b$ and $\eta>\frac{c}{2 a}$. Define the function $V_{1}=V_{1}(x, y, z)$ as

$$
2 V_{1}=2 a \int_{0}^{x} h(u) d u+2 \beta \int_{0}^{x} G(u) d u+\beta y^{2}+z^{2}+2 h(x) y-2 \beta x z,
$$

and define $V_{2}=V_{2}(x, y, z)$ as

$$
\begin{cases}0 & (x, y, z) \in R_{1}=\{y \geq M\} \\ -\varepsilon y+\varepsilon M & (x, y, z) \in R_{2}=\{|y| \leq M, z \geq N\} \\ 2 \varepsilon M & (x, y, z) \in R_{3}=\{y \leq-M, z \geq N\} \\ \frac{2 \varepsilon M}{N} z & (x, y, z) \in R_{4}=(y \leq-M,|z| \leq N\} \\ -2 \varepsilon M & (x, y, z) \in R_{5}=\{y \leq-M, z \leq-N\} \\ V_{2}=\{y-\varepsilon M & (x, y, z) \in R_{6}=\{|y| \leq M, z \leq-N\} \\ -\varepsilon y+\varepsilon \frac{M}{N} z & (x, y, z) \in R_{7}=\left\{0 \leq y \leq M,|z| \leq \frac{N}{M} y\right\} \\ \frac{2 \varepsilon M}{N} z & (x, y, z) \in R_{9}=\left\{-M \leq y \leq 0,|z| \leq \frac{-N}{M} y\right\} \\ \left\{\varepsilon y+\frac{\varepsilon M}{N} z\right. & (x, y, z) \in R_{10}=\left\{-N \leq z \leq 0,|y| \leq \frac{-M}{N} z\right\}\end{cases}
$$

where $\varepsilon=2 \eta-\beta>0$ and where M and $N, 2 \alpha M \leq N$, are positive constants suitably chosen to satisfy Lemmas 3.1 and 3.2.

The main tool in the proof is the function $V=V(x, y, z)$ defined by $2 V=2 V_{1}+2 V_{2}$. Before proceeding with the proof of our result, it will be convenient to make a few observations about conditions (i)-(ii) and about $V(x, y, z)$

If $\delta=a \beta-c$, then $\delta>0$ since $b>\beta>\frac{c}{a}$ and from (1.4) we have

$$
\begin{equation*}
h^{\prime}(x) \leq a \beta-\delta \quad \text { for all } \quad x . \tag{3.2}
\end{equation*}
$$

And since $h(x)=\int_{0}^{x} h^{\prime}(x) d x+h|0|$ it follows that there is $K>0$ such that

$$
\begin{equation*}
\eta \leq h(x) \operatorname{sgn} x \leq a \beta x \operatorname{sgn} x \text { for } \quad|x| \geq K . \tag{33}
\end{equation*}
$$

Combining (1.2), (3.2) and (3.3) we have the following set of inequalities which will be used throughout the proof.

$$
\left\{\begin{array}{l}
\frac{G(x)}{x} \geq \beta+\varepsilon \quad|x| \geq K \tag{3.4}\\
\frac{\beta+\varepsilon}{2} \leq h(x) \operatorname{sgn} x \leq a \beta x \operatorname{sgn} x|x| \geq K \\
h^{\prime}(x) \leq a \beta-\delta \text { for all } x .
\end{array}\right.
$$

Since V_{1} has continuous first partial derivatives with respect to each variable, it satisfies a local Lipschitz condition with respect to the vector (x, y, z). It follows that V satisfies a local Lipsohitz condition since V_{2} is either linear or constant in all regions of its definition and since V is clearly continuous. The partial derivatives $\frac{\partial V}{\partial x}, \frac{\partial V}{\partial y}$, and $\frac{\partial V}{\partial z}$ exist and are continuous for all values of x, y and z except along the planes:

$$
P_{1}: y= \pm M, P_{2}: y= \pm N, y \leq M, P_{3}: y= \pm \frac{M}{N} z,|z|<N
$$

Along these planes the upper and lower partial derivatives all exist and as a result \dot{V} exist for all x, y, z and t. (See [5]].

Lemma 3.1. - Under the hypotheses of the theorem, there exists a constant H and functions $a(\tau)$ and $b(\tau)$ in $C I$ such that $a(\tau) \rightarrow \infty$ as $\tau \rightarrow \infty, a(\tau)>0$ for $\tau>H$ and

$$
a\left(x^{2}+y^{2}+z^{2}\right) \leq V(x, y, \not y) \leq b\left(x^{2}+y^{2}+z^{2}\right) \text { for } x^{2}+y^{2}+z^{2} \geq H .
$$

Proof of Lemma 3.1. - The fanction $2 V_{1}$ can be written in the form

$$
2 V_{1}=(\beta x-z)^{2}+\beta^{\prime}\left(y+\frac{1}{\beta} h(x)\right)^{2}+2 \beta \int_{0}^{x}[G(u)-\beta u] d u+\frac{2}{\beta} \int_{0}^{x}\left[a \beta-h^{\prime}(u)\right] h(u) d u-\frac{h^{2}(0)}{\beta}
$$

Since $\int_{0}^{x}\left[a \beta-h^{\prime}(u)\right] h(u) d u$ and $\int_{0}^{x}[G(u)-\beta u] d u$ are continuous on $[-K, K]$, there exists $D_{1}>0$ such that

$$
\begin{equation*}
\frac{2}{\beta} \int_{0}^{x}\left[a \beta-h^{\prime}(u)\right] h(u) d u \geq-D_{1} \quad \text { and } \quad \beta \int_{0}^{x}[G(u)-\beta u] d u \geq-D_{1} \tag{3.0}
\end{equation*}
$$

on that interval. From (3.4) we have

$$
\begin{equation*}
2 \beta \int_{0}^{x}[G(u)-\beta u] d u \geq \beta \varepsilon x^{2}-D_{1}-\varepsilon K^{2} \tag{3.6}
\end{equation*}
$$

and

$$
\frac{2}{\beta} \int_{0}^{x}\left[a \beta-h^{\prime}(u)\right] h(u) d u \geq-D_{1} \quad \text { for all } x
$$

Let $D=2 D_{\mathrm{I}}+\varepsilon K^{2}+\frac{h^{2}(0)}{\beta}$, then

$$
\begin{equation*}
2 V_{1} \geq(\beta x-z)^{2}+\beta\left[y+\frac{1}{\beta} h(x)\right]^{2}+\beta \varepsilon x^{3}-D \quad \text { for all } x . \tag{3.7}
\end{equation*}
$$

It follows from (1.4) and the Mban Valne Theorem that there is a constant D_{2} such that

$$
\begin{equation*}
|h(x)| \leq C|x|+D_{2} \text { for all } x \tag{3.8}
\end{equation*}
$$

Using (3.7) and (3.8) it is clear that

$$
\begin{equation*}
V_{1}(x, y: z) \rightarrow \infty \quad \text { as } \quad x^{2}+y^{2}+z^{2} \rightarrow \infty \tag{3.9}
\end{equation*}
$$

Since V_{1} is continuous and independent of t, it follows from (3.9) that there exist functions $a_{1}(\tau), b_{1}(\tau) \in O I$ such that

$$
a_{1}\left(x^{2}+y^{2}+z^{2}\right) \leq V_{1}(x, y, z) \leq b_{1}\left(x^{2}+y^{2}+z^{2}\right) \quad \text { and } \quad a_{1}(\tau) \rightarrow \infty \quad \text { as } \quad \tau \rightarrow \infty
$$

It follows from an easy examination of the individual cases in the definition of V_{2} that

$$
-2 \varepsilon M, \leq 2 V_{2} \leq 2 \varepsilon M \text { for all }(x, y, z) \in R^{3}
$$

and therefore if we set $a(\tau)=a_{1}(\tau)-\varepsilon M$, and $b(\tau)=b_{1}(\tau)+\varepsilon M$; then

$$
a\left(x^{2}+y^{2}+z^{2}\right) \leq V(x, y, z) \leq b\left(x^{2}+y^{2}+z^{2}\right),
$$

$a(\tau) \rightarrow \infty$ as $\tau \rightarrow \infty$ and that there is an $H_{1}>0$ such that $a(\tau)>0$ for $\tau \geq H_{1}$.
Lemma 3.2. - Under hypotheses of Theorem 1, there is an H_{2} such that

$$
\dot{V}_{(3.1)}(t, x, y, z)<-1 \text { for } x^{2}+y^{2}+z^{2} \geq H_{2} \text { and } t \geq 0 .
$$

Proof of Lemma 3.2. - If (x, y, z) is any solution of (3.1), then

$$
\dot{V}_{1}=-\left[\alpha \beta-h^{\prime}(x)\right] y^{2}+\beta P\left(t \mid y-\left[G(x)-\beta x-I^{\prime}(t)\right] h(x) .\right.
$$

The value of \dot{V}_{2} is easily calculated for all values of x, y and z in the interior of each of the regions of definition and the exact value on the boundary is not important since \dot{V}_{2} will be estimated from both of the possible expressions at each boundary point. For example if $0<z<N$ and $-M<y<0$, then

$$
\dot{V}_{2}=\left\{\begin{array}{l}
-\varepsilon \dot{y}+\varepsilon \frac{M}{N} \dot{z} \text { if } M z>-N y \\
2 \varepsilon \frac{M}{N} \dot{z} \text { if } M z<-N y
\end{array}\right.
$$

and for $M z=-N y$, from the definition of \dot{V}_{2}, \dot{V}_{2} is either $-\varepsilon y+\varepsilon \frac{M}{N} \dot{z}$ or $2 \varepsilon \frac{M}{N}$.

In order to establish the lemma it will be shown that $\dot{V}<-1$ on each of the ten regions of R^{3} used in the definition of V_{2}.

For $(x, y, z) \in R_{1}, 2 V=2 V_{1}$, and

$$
\dot{V}=\dot{V}_{1}=-\left[a \beta-h^{\prime}(x)\right] y^{2}+\beta P(t) y-[G(x)-\beta x-P(t)] h(x) .
$$

It follows from (3.4) that $[G(x)-\beta x] \operatorname{sgn} x \geq \varepsilon|x|$ for $|x| \geq K$ which along with (1.5) and (3.4) imply the existence of a constant $K_{1} \geq K$ such that

$$
\begin{equation*}
[G(x)-\beta x-P(t)] h(x) \geq\left[G(x)-\beta x-P_{0} \operatorname{sgn} x\right] h(x)>0 \text { for }|x| \geq K_{1} . \tag{3.10}
\end{equation*}
$$

Since $\left[G(x)-\beta x-l^{\prime}(t)\right](x)$ is continuous for all x and $\left|l_{1}(t)\right| \leq P_{0}$ for all t, (3.10) implies the existence of a positive constant D_{4} such that $\left[G(x)-\beta x-I^{\prime}(t)\right] h(x) \geq-D_{+}$for all x and t.

So on R_{1}

$$
\dot{V} \leq-\delta y^{2}+\beta P_{0}|y|+D_{4}
$$

and clearly an M_{1} can be chosen such that

$$
-\delta y^{2}+\beta P_{0}|y|+D_{4}<-1 \quad \text { for } \quad y \geq M_{2} .
$$

Now if we assume that $M \geq M_{1}$, then

$$
\begin{equation*}
\dot{V}<-1 \quad \text { for } \quad(x, y, z) \in R_{1} \tag{3.12}
\end{equation*}
$$

For $(x, y, z) \in R_{3} \cup R_{5}, \dot{V}=\dot{V}_{1}$, and the same arguments as used above can be used to find an $M_{2}>0$, such that if $M \geq M_{2}$, then

$$
\begin{equation*}
\dot{V}<-1 \quad \text { for } \quad(x, y, z) \in R_{3} \cup R_{5} . \tag{3.13}
\end{equation*}
$$

On $R_{4}, \quad \dot{V}=\dot{V}_{1}-\frac{2 \varepsilon M}{\bar{N}} h(x)=-\left[a \beta-h^{\prime}(x)\right] y^{2}+\beta I^{\prime}(t) y-\left\{G(x)-\beta x-I^{\prime}(t)+\frac{2 \varepsilon M}{N}\right] h(x)$.
Pioceeding just as in the preceeding case, recalling that $2 a M \leq N$, there is $K_{2} \geq K$ such that

$$
\left[G(x)-\beta x-P(t)+\frac{2 \in M}{N}\right] h(x) \geq\left\{G(x)-\beta x-\left[P_{0}+2 a \varepsilon\right] \operatorname{sgn} x \mid h(x)>0\right.
$$

for $x \mid \geq K_{2}$, and the continuity of this function again implies the existence of a positive constant D_{5} such that

$$
\left[\left.G(x)-\beta x-P^{\prime}(t)+\frac{2 \varepsilon M}{N} \right\rvert\, h(x) \geq-D_{5} \text { for all } x \text { and } t .\right.
$$

As in the preceeding case, a positive constant M_{2} can now be selected such that

$$
-\delta y^{2}+\beta P_{0}|y|+D_{5}<-1 \text { for } y \leq M_{2},
$$

so that if $M \geq M_{2}$, then

$$
\begin{equation*}
\dot{V}<-1 \text { for } \quad(x, y, z) \in R_{4} \tag{3.15}
\end{equation*}
$$

Let $M=\max \left(M_{1}, M_{2}, M_{3}\right)$, then it follows from (3.12), (3.13) and (3.15) that

$$
\begin{equation*}
\dot{V}<-1 \text { for }(x, y, z) \in R_{1} \cup R_{3} \cup R_{3} \cup R_{5} \tag{3.16}
\end{equation*}
$$

For $(x, y, z) \in R_{2}, \quad \dot{V}=\dot{V}_{1}-\frac{\varepsilon}{2} z+\frac{{ }_{2}^{2}}{2} a y+{ }_{2}^{\varepsilon} G(x)-\frac{\varepsilon}{2} P(t)$, and since $|y| \leq M$ there is a positive constant D_{6} such that

$$
-\left[a \beta-h^{\prime}(x)\right] y^{2}+\beta P_{0}|y|+\frac{\varepsilon}{2} \alpha|y|+\frac{\varepsilon}{2} P_{0} \leq D_{6} \quad \text { on } \quad R_{2}
$$

and thus

$$
\begin{equation*}
\dot{V} \leq-\left[G(x)-\beta x+P(t) \cdot h(x)+D_{6}-\frac{\varepsilon}{2} z \quad \text { on } \quad R_{2} .\right. \tag{3.17}
\end{equation*}
$$

If $x \leq-K_{1}$, then (3.4) and (3.10) imply that

$$
\begin{equation*}
-\left[G(x)-\beta x-P_{0} \operatorname{sgn} x\right] h(x)<0 \quad \text { and } \quad \frac{\varepsilon}{2} G(x)<0 \tag{3.18}
\end{equation*}
$$

while for positive x we can write the first (wo terms of (3.17) as

$$
\begin{equation*}
-\left[G(x)-\beta x-P_{0} \operatorname{sgn} x\right]\left[h(x)-\frac{\varepsilon}{2}\right]+\frac{\beta \varepsilon}{2} x+\frac{P_{0} \varepsilon}{2} \tag{3.19}
\end{equation*}
$$

and again, if $x \geq K_{1}$, since $h(x) \geq \frac{\beta+\varepsilon}{2}$ each term of this expression is negetive. So combining (3.18) and (3.19) we have

$$
-\left[G(x)-\beta x-P_{0} \operatorname{sgn} x\right] h(x)+\frac{\varepsilon}{2} G(x)<0 \quad \text { if } \quad|x| \geq K_{1}
$$

and since this expression is continuous in x we have shown the existence of a positive D_{7} with the property

$$
-\left[G(x)-\beta x-P_{0} \operatorname{sgn} x\right] h(x)+\frac{3}{2} G(x) \leq D_{7} \text { for all } x
$$

Thus on $R_{2} \dot{V} \leq D_{6}+D_{7}-\frac{\varepsilon}{2} z$, and we can clearly choose N_{1} such that

$$
\dot{V}<-1 \text { for } z \geq N_{1} ; \text { and so if } N \geq N_{1}
$$

then

$$
\begin{equation*}
\dot{V}<-1 \quad \text { for } \quad(x, y, z) \in R_{2} . \tag{3.20}
\end{equation*}
$$

If $(x, y, z) \in R_{6}$, then $\dot{V}=\dot{V}+\frac{\varepsilon}{2} z-\frac{\varepsilon a}{2} y-\frac{\varepsilon}{2} G(x)+\frac{\varepsilon}{2} P(t)$, and since $z \leq 0$, we find $N_{2}>0$, using the same method as used in the preceding case, for which $N \geq N_{2}$ implies that

$$
\begin{equation*}
\dot{V}<-1 \quad \text { for } \quad(x, y, z) \in R_{6} \tag{3.21}
\end{equation*}
$$

Combining (3.20) and (3.21) if $N \equiv \max \left(N_{1}, N_{2}\right)$ then

$$
\begin{equation*}
\dot{V}<-1 \quad \text { for } \quad(x, y, z) \in R_{2} \cup R_{6} \tag{3.22}
\end{equation*}
$$

For $(x, y, z) \in R_{8}, \dot{V}=\dot{V}_{1}-\frac{\varepsilon}{2} z+\frac{\varepsilon}{2} y+\frac{\varepsilon}{2} G(x)-\frac{\varepsilon}{2} P(t)-\frac{\varepsilon M}{N} h(x)$, and since $|y| \leq M$ and $|z| \leq N$ and \dot{V} is continuous in y and z on R_{8}, there is a positive constant D_{8} such that on R_{8}

$$
-\left[a \beta-h^{\prime}(x)\right] y^{2}+\beta P(t)|y|+\frac{\varepsilon a}{2} y-\frac{\varepsilon}{2} P(t)-\frac{\varepsilon}{2} z \leq D_{8}
$$

and thus on R_{8}

$$
\begin{equation*}
\dot{V} \leq D_{8}-\left[G(x)-\beta x-P_{0} \operatorname{sgn} x\right] h(x)+{ }_{2}^{\varepsilon} G(x)-\frac{\varepsilon M}{N} h(x) . \tag{3.23}
\end{equation*}
$$

Since $2 M \leq N, \frac{\varepsilon M}{N} \leq \frac{\varepsilon}{2 a}$ and thus if $x \leq-K$ it follows from (3.4) that $\frac{\varepsilon}{2} G(x)-\frac{\varepsilon M}{N} h(x)<0$ and $-\left[G(x)-\beta x-P_{0} \operatorname{sgn} x\right] h(x) \leq-\left[\varepsilon x+P_{0}\right] h(x)$.

From this last expression and (3.4) it is clear that a positive constant L_{1} can be selected such that
(3.24) $D_{3}-\left[G(x)-\beta x-P_{0} \operatorname{sgn} x\right] h(x)+\frac{\varepsilon}{2} G(x)-\frac{\varepsilon M}{N} h(x)<-1$ for $\quad x<-L_{1}$

For positive values of x we can rewrite (3.23) as

$$
\dot{V} \leq D_{8}-\left[G(x)-\beta x-P_{0}\right]\left[h(x)-\frac{\varepsilon}{2}\right]+\frac{\beta \varepsilon}{2} x+\frac{P_{0} \varepsilon}{2}-\frac{\varepsilon M}{N} h(x),
$$

and if $x \geq K_{1}$ then (3.4) and (3.10) imply that $h(x) \geq \frac{\beta+\varepsilon}{2}$ and thus that

$$
-\left[G(x)-\beta x-P_{0}\right]\left[h(x)-\frac{\varepsilon}{2}\right]+\frac{\varepsilon M}{N} h(x)<0
$$

So $\dot{V} \leq D_{8}-\frac{P_{0} \hat{E}}{2}-\frac{\beta \varepsilon}{2} x$ on R_{8} if $x \geq K_{1}$ and clearly an $L_{2} \geq K_{1}$ can be selected such that

$$
\begin{equation*}
D_{8}-\frac{P_{0} \varepsilon}{2}-\frac{\beta \varepsilon}{2} x<-1 \text { if } \quad x \geq L_{2} \tag{3.25}
\end{equation*}
$$

Now if $L_{3}=\max \left(L_{1}, L_{2}\right)$ and if $L \geq L_{3}$, then combining (3.24) and (3.25) we have

$$
\begin{equation*}
\dot{V}<-1 \text { for }(x, y, z) \in R_{8} \tag{3.26}
\end{equation*}
$$

The details for the cases R_{7}, R_{9} and R_{19} are very similar to R_{8} and will not be repeated. Let $L_{4}>0$ be such that

$$
\dot{V}<-1 \text { for }(x, y, z) \in R_{7} \cup R_{9} \cup R_{10} \text { and }|x| \geq L_{4}
$$

Let $L=\max \left(L_{3}, L_{4}\right)$ then

$$
\begin{equation*}
\dot{V}<-1 \text { if }(x, y, z) \varepsilon \bigcup_{i=i}^{10} R_{i} \text { and }|x| \geq L \tag{3.27}
\end{equation*}
$$

Now set $H_{2}=3 \max \left(L^{2}, M^{2}, N^{2}, 1\right)$, then if $x^{2}+y^{2}+z^{2} \geq H_{2}$ one of the following must hold:
(i) $|y| \geq M$
(ii) $|y|<M$ and $|z| \geq N$
(iii) $|y|<M, \quad|z|<N$ and $\quad|x| \geq L$.

It is clear from (3.16), (3.22) and (3.26) that $\dot{V}<-1$ in each case which completes the proof of Lemma 3.2.

If $H=\max \left(H_{1}, H_{2}\right)$ then combining Lemmas 2.1, 3.1 and 3.2 it follows that there is a costant B_{1} such that if $(x(t), y(t), z(t))$ is any solution of (3.1), then

$$
\begin{equation*}
x^{2}(t)+y^{2}(t)+z^{2}(t) \leq B_{1} \tag{3.28}
\end{equation*}
$$

for all sufficiently large t. Now if $x(t)$ is a solution of (1.1), then $\dot{x}(t)=y$ and $x(t)=z-a y-G(x)+P(t)$, where (x, y, z) is a solution of (3.1).

Now since $|P(t)| \leq P_{0}$ for all t and G is continnous it follows from (3.28) that there is a constant B dependent only on equation (1.1) such that (1.6) is satisfied.

REFERENOES

[1] J.O.O. Ezello, On the Bowndedness of Solutions of the Equation $\ddot{x}+a \ddot{x}+f(x) x+$ $g(x)=p(t)$, Ann, Math. Pura Appl., TV. Vol. LXXX, (1968) pp. 281.300.
[2] K. E. Swick, Asymptotic Behavior of the Solutions of Certain Third Order Differential Equations, (to appeax) SIAM J. Appl. Math.
[3] V.A. Phiss, Nunlocal Problems of the Theory of Oseillations, Academic Press, (1966).
[t$]$ T. Yoshizawa, Stability Theory by Liapunov's Second Method, Tokyo, Japan, (1966).
[כ] J. P. La Salle, Stability Theory for Ordinay Differential Equations, J. of Diff. Equs., 4, pp. 57.65.
[6] R. Relsig - G. Sansona - R. Conti, Nichtlineare Differeutialgleichungen höherer Orduung, Edizioni Cremonese, Rome, (1969).
[7] Müller - Von Wolfdietrici, ひ̈ber Stabilität und Beschränktheit der Lösungen gewisser Differentialgleichungen dritter Ordnung, Math. Nachr., Bd. 41, H. $4 \cdot 6$, pp. 380̆-359, (1969).
[8] J. Voráçк, Einige Bemorkungen über nightlineare Differentialgleichung dritter. Orduung, Abh. Deatsch. Akal. Wiss. Berlin Kl. Math Phys. Tech. Jg, 1965, Nr. I, 372.378 (3) Konferenz uber Nichtineare Sohwingungon, Berlin, 25.-30.5, 1964, B and I).

