10. Return the elements of a numeric array
found at given coordinates.

If the dyadic function RE provides the solution, it
should work as follows:

O<A«3 4p78 90 22 2.3 43.9
92 12 67 23 33 88
9.34
78 90 22 2.3
43.9 92 12 67
23 33 88 9.34
O«B«<2 2p1 3 2 4
13
2 4
A RE B
22 67

O0«C«2 5 6p60?21000
554 684 485 119 559 530
193 631 783 1 838 366
380 987 986 224 269 670
572 312 314 779 160 285
168 883 895 230 361 764

763 891 592 47 51 589
705 297 689 215 208 1000
688 772 946 957 16 721
172 822 982 379 781 163
797 12 702 723 847 735
D<>(1 3 4) (1 5 5) (2 1 6)
C RE D
224 361 589

Restrictions: assume that a looping solution is not
allowed and that index origin is 1.

If you are a developer working with APL, you
should be able to propose at least three solutions or
idioms in respect of the problems above. The
restrictions imposed in formulating the solution
should help in determining an idiom.

Subject to the readers' active participation —via

correspondence with the author— the solutions are
posted at the end of this issue.

26

A Boundless
Compression
Algorithm in APL2

Manuel Alfonseca

Introduction

Compression algorithms are very useful for a
variety of applications. Originally, their main use
was what their name suggests, reducing the size of
computer files without losing any information. It
was interesting to see that they were equally useful
for all types of files, such as text, bit maps, many
types of images, sound, scientific experimental data,
computer code (source and object code), combined
data (text and images, for instance), and so on, and
so forth. Only when the files have been coded with
an imbedded compression algorithm (as happens in
some image formats, such as JPEG, or in sound
renditions in MP3) the additional compression by
generalized algorithms is negligible.

The reason why compressors usually make a
good work is the fact that human generated
information is largely redundant. In fact, this
redundancy is even greater than what is currently
taken advantage of by typical compressors, as our
languages includes lots of words with a null
information content, that only make it simpler to
understand what somebody else is speaking. This
kind of redundancy is not used by current
compressors to perform an even better job, as it
would give rise to a change in the way the
information is expressed, making it impossible to
recover the original contents fully. Typical
compressors work under the assumption that the
information they compress is 100% recoverable, i.e.
that the result of uncompressing the compressed file
is identical to the original uncompressed file.

As an example of this, the Japanese language
contains many words which are pronounced exactly
in the same way, but have completely different
meanings and syntactic values. For instance, the
sequence GO- GO GO might mean five p.m., as five

APL Quote Quad

is said GO, after is said GO, and noon is also said GO,
The written language prevents mistakes by using
different Kanji symbols for each of these meanings,
which means that a single pronunciation may
correspond to twenty or thirty different words.
However, the spoken language cannot make use of
these guides. A Japanese friend told me that what
they do is to use redundancy (saying the same thing
in different ways) so as to provide the missing
information. Although this may be an extreme case,
all human languages contain lots of this type of
redundancy.

AR

Figure 1. GO-GO-GO (5 p.m.) in Kanji.

Another way to see it is to compute the average
number of letters in a word, or the average number
of characters in a given text. These numbers are
widely different for different human languages,
because some languages include a larger amount of
redundancy. For instance, Spanish words have an
average of about six characters, while English words
only reach five. Table 1 shows the size in characters
of three of my novels, which I wrote originally in
Spanish and later translated into English. It is clear
to see that the amount of redundancy in Spanish is 5
to 20% greater than in English.

June 2004, Volume 34, Number 3

Book title Thousand chars.
Spanish | English
The journey of Tivo the |203 182
dauntless
The mystery of the Black Lake | 194 156
The ruby of the Ganges 204 188

Table 1: Size comparison of the same texts in
English and Spanish.

But this is not what the typical compressors do
to attain compression. They don’t look for hidden
redundancies, which are not easy to find out, but just
try to detect explicit redundancies, i.e. full
repetitions of whatever the file contains (i.e. actual
repetitions of byte strings). This is what makes the
compressors independent of the file type, which
although makes them not as good as they could be,
on the other hand gives them their surprising type
independency.

Problems found with standard
compressors

There are many well-known compressors, such
as PKZIP, WINZIP, GZIP, BZIP2, and many others
[1-2]. Some of them use statistics [3], others
algorithms of other types. Most aim to attain the
maximum compression in the minimum time. The
problem 1is that these two objectives are usually
incompatible (i.e. to get a larger compression, the
compressor should use more time), so that most
compressors try to reach a balance between them,
giving up some compression efficiency to attain a
faster speed. This is done by setting certain areas
(work blocks or sliding and look ahead windows)
that move around the file to be compressed. All
compression decisions are taken inside those blocks
or windows, which means that redundancies outside
them are usually not detected, and the compression
won’t be as good as it could be expected.

Let us consider, as an example, PKZIP, one of
the best-known general-use compressors. The
version of this compressor which I’ve been using
appears to use a comparison window of 32 kBytes.
How did I find this out? By building a set of high
redundancy sample files, compressing them with

27

PKZIP, and comparing their original sizes with the
sizes of the respective compressed files. To build the
files, I took a set of text files of different sizes and
concatenated them to themselves. In this way, the
second half of each file is exactly equal to its first
half, thus putting in the file a lot of redundancy
which the compressor should take advantage to
attain a high degree of compression. Table 2 shows
the results of these experiments.

Observe that for files below 16 kBytes (i.e. files
which concatenated to themselves are smaller than
32 kBytes) the size of the duplicated file is almost
the same as the size of the non-duplicated file (with
increases of about 3%). This happens because
PKZIP was able to detect that the second half of the
file was exactly the same as the first, and therefore
could compress it a lot. However, for larger sizes,
the full file does not fit in its work block, and PKZIP
becomes unable to find the redundancy of larger and
larger pieces of text in the latest part of the file,
until, for file sizes larger than 32 kBytes, it is
completely unable to find any redundancy between
the two repeated sections, and the size of the
compressed double file becomes almost twice as
large as the size of the compressed single file.

Files in Size of Size of PKZIP
the file compressed files
sample | (Bytes) | File | File,File | %A
set
File 1 10075 4001 | 4132 33
File 2 15107 5433 | 5628 3.6
File 3 19928 6701 | 6981 4.2
File 4 24976 8218 | 9588 16.7
File 5 30099 9683 | 15875 63.9
File 6 39940 12893 | 24667 91.3
File 7 47839 15535 | 29902 92.5
File 8 68332 20334 | 39819 95.8

Table 2: Detection of work block size in PKZIP.

For certain experiments which we wanted to do,
related to the automatic generation of music by
using an approximation of the Kolmogorov
complexity to compute the normalized information
distance [4] we needed to be able to use a
compressor which would not present the same
problems as PKZIP. We made a similar study for

28

two other compressors, GZIP and BZIP2 [5], and
found that though one of them had a very large
sliding window, so that the problem did not appear
as quickly, sooner or later all of them came to limits
similar as those found for PKZIP.

The LZ77 compression algorithm

There was, however, a solution: the LZ77
algorithm, one of the oldest compression algorithms
[6], which can be implemented without any window
limitation, and therefore is not subject to the above
mentioned problems. This algorithm can be written
as follows in APL2:

0] Z<LZ77 X:;I:;d:;0:01:Q2;

@3
[1] Q<Ql<Z<""
[2] I<0

[3] L:»((I<«I+1)>pX)/0
(4] J<0

[5] L1:Q2<«Q ¢ Q3<«Q1
[6] >((pX)=I+J-1)/L2
(7] Q<X[I+ 1+1J<J+11]
[8] Q1<QeX[1I-1]

[9] >(~1€Q1)/L2

(101 ~L1

[11] L2:>(J>1)/L3
(121 Z+<Z,Q

(131 ~L

[14] L3:Z2«Z,c(($@3)11),pQ2
[15] I<«~1+I+pQ2
(161 ~L

The following is a description of how this
algorithm works:

° X is the text (or a Byte string of any type) that
we want to compress.

* 7 is the result of the compression, initialized to
an empty vector.

APL Quote Quad

e I is a pointer to X which controls the outer
loop. This loop (and the algorithm) is ended
when I reaches the end of vector X.

e Starting at X[I], we take the next &
characters and put them at variable . This is
the inner loop around L1: J starts at 1 and
ends when there are no more characters in X or
when the longest section of X which had been
found before is located (see next).

* We search for € in the section of X already
compressed. If found, we go on with the inner
loop. If not found, the longest repeated section is
the former value of @ (which has been kept in

Q1).

e If @1 is empty (J=1), we put the next
character in the result Z (it is a totally new
character) and proceed with the outer loop.

* Otherwise, we have found the next longest
repeated string. We add to the result the number
of characters we must go back to find the
beginning of the string, plus the size of the
repeated string. Then we proceed with the outer
loop.

We shall now apply this algorithm to compress
the string ' abcdabpgabcdabpqg':

e Initially, 7«0 and Z<"'"'

e WesetI<«1,J<1 and find that @<« "'a"' is not
in the section already seen of X (which is

empty). Therefore, this character is new and we
add it to Z.

° We start again the outer loop at I<2. We set
J<1 and find that @<« ' b"' is not in the section
already seen of X (which is 'a'). Therefore,
this character is new and we add it to Z.

e The same happensto 'c' and 'd"'.

* We start again the outer loop at I<4. We set
J<1 and find that @< 'a"' is in the section
already seen of X (which is 'abcd').

June 2004, Volume 34, Number 3

Therefore, this character is not new and we
proceed with the inner loop.

* The next character is 'b"'. We add it to € and
find that @<« 'ab"' is in the section already
seen of X (which is 'abcd"). Therefore, this
string is not new and we proceed with the inner
loop.

e The next character is 'p'. We add it to € and
find that @<«'abp' is not in the section
already seen of X (which is 'abcd').
Therefore, this string is not new and we exit the
inner loop, add to Z the vector (4 2) which
means that the repeated string 1 (the previous
value of €, 'ab') can be found by going back
4 characters in X and taking 2. After doing this,
we go on with the outer loop, with I<7 (to
point again to the new character).

e Characters 'p' and 'g' are new, therefore
they will be directly added to Z.

e The remaining characters, 'abcdabpqg',
are repeated, so they will be replaced by the
vector (8 8), meaning that they will be
found by going back 8 characters in X and
taking 8 characters starting there.

¢ With this, we have come to the end of X. The
result ~ of the algorithm will be
'abcd'(4 2)'pg'(8 8)

The inverse algorithm is straightforward: copy
all characters from Z to X until a two element
integer vector (& b) is found. Then go back a
elements from the end of the X string just generated,
take b elements from there and copy them to the
end of X. Proceed like this until all the elements in
Z are exhausted.

Performance considerations

This algorithm is not very fast, specially so
because it is written in APL2 with loops, but it
works as desired. Whatever the size of its argument,
it will perform a perfect compression, without any
bounds because of the existence of a slide window.

29

On the other hand, why write it in APL2? Couldn’t
better results be attained if it were written in a
compilable language?

Doubtlessly, but we had to take into account that
all our application algorithms for music generation
are written in APL2. In our first experiment, when
we started using PKZIP, we actually set an
environment where everything was done in APL2,
but when the compressor had to be invoked, the
string to be compressed was written into a file and a
batch program was started to invoke PKZIP, then
the compressed file was read back into APL2 and
processed there. All these steps made the experiment
quite slow, and compensated the loss of
performance when the LZ77 function is used
instead of PKZIP.

On the other hand, execution time was not our
main concern. All applications using genetic
algorithms (as our music generator does) are
inherently slow. To attain an interesting piece of
music takes several hours, and a fractional increase
of the speed of the compressor wouldn’t change this
much.

In conclusion, we have found APL2 very useful
for several applications which use genetic
algorithms to generate music, interesting fractal
curves with a given dimension [7], and other
applications. While using an approximation of the
Kolmogorov universal distance to compute the
fitness of some of our genetic algorithms, we
discovered a serious problem in most of the standard
processors (such as PKZIP, GZIP and BZIP2) that
made them practically unusable for our purposes.
We needed a boundless compressor, and there was
one available in the literature, LZ77, although we
did not have an implementation. The easiest solution
was to implement it in APL2, in this way attaining a
tighter environment for our algorithms (everything
was done in the same language). The function
implementing the LZ77 algorithm is quite simple, as
it contains just 16 lines of quite simple code. On the
other hand, although this compressor is not fast, this
was not a problem for our application, so we did not
dedicate any time to try and improve the algorithm
so as to make it as fast as possible.

We consider this work to be a good APL
success story.

30

References

[1]T. C. Bell, G. J. Cleary, I. H. Witten, Text
Compression, Prentice Hall, Englewood Cliffs,
Jersey, 1990.

[2] M. Burrows, D. J .Wheeler, 4 Block Sorting
Lossless Data Compression Algorithm, Research
Center of Digital Equipment Corporation,
Technical Report 124, Palo Alto, Calif. 1994.

[3] D. Huffman, A Method for the Construction of
Minimum Redundancy Codes, Proc. IRE, Vol.
40:9, 1952.

[4] M. Alfonseca, M. Cebrian, A. Ortega, Evolving
Computer-generated Music by Means of the
Normalized Compression Distance, WSEAS
Transactions on Information Science and
Applications, Vol. 9:2, p.1367-1372, Sep. 2005.

[5] M. Cebrian, M. Alfonseca, A. Ortega, Common
Pitfalls using the Normalized Compression
Distance: to Watch out for in a Compressor,
submitted to Communications in Information
and Systems.

[6]]. Ziv, A. Lempel, A Universal Algorithm for
Sequential Data Compression, IEEE Trans. On
Information Theory, 23:3, p. 337-343, 1977.

[7] A. Ortega, A. Abu Dalhoum, M. Alfonseca:
Grammatical evolution to design fractal curves
with a given dimension, IBM Journal of Res. and
Dev., Vol. 47:4, p. 483-493, Jul. 2003.

APL Quote Quad

