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Abstract. We study the statistical characteristics of a box-fitting algorithm to analyze stellar photometric time series in the
search for periodic transits by extrasolar planets. The algorithm searches for signals characterized by a periodic alternation
between two discrete levels, with much less time spent at the lower level. We present numerical as well as analytical results to
predict the possible detection significance at various signal parameters. It is shown that the crucial parameter is the effective
signal-to-noise ratio — the expected depth of the transit divided by the standard deviation of the measured photometric average
within the transit. When this parameter exceeds the value of 6 we can expect a significant detection of the transit. We show
that the box-fitting algorithm performs better than other methods available in the astronomical literature, especially for low

signal-to-noise ratios.
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1. Introduction

A considerable fraction of the periodic astronomical time series
can be modeled rather accurately by finite sums of sinusoidal
components. In general, these Fourier-sums have a single dom-
inant component, and therefore the basic method of Discrete
Fourier Transformation (DFT) has become commonplace in al-
most all applications (e.g., Deeming 1975). When the signal
becomes distorted by higher harmonics (e.g., light curves of
fundamental mode RR Lyrae and § Cephei stars), this simple
approach fails to perform properly, due to leakage of the sig-
nal power to many higher harmonics. One way to deal with
this problem is to use a multifrequency Fourier fit for better ap-
proximation of the signal shape and thereby to increase the al-
gorithm efficiency, a method recently suggested by Defay et al.
(2001) for the search for extrasolar planetary transits. Another
generally accepted approach is the so-called Phase Dispersion
Minimization (PDM), which searches for the best period that
yields the “smoothest” folded time series.

Application of variants of the PDM method in the anal-
yses of variable star observations goes back to earlier times
than that of the DFT. This is primarily because the PDM al-
gorithm does not require the computation of trigonometric
functions, which put a heavy load on the computers, espe-
cially in those early days. The most frequently cited imple-
mentation of the PDM idea is that of Stellingwerf (1978).
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However, earlier versions had appeared already in the *60s and
early *70s, like those of Lafler & Kinman (1965, hereafter the
L-K method), Jurkevich (1971) and Warner & Robinson (1972,
hereafter the W-R method). Actually, it can be shown that up to
afrequency- (or trial period-) independent constant, the method
of Jurkevich (1971) is equivalent to that of W-R (see, Kovacs
1980). Furthermore, without the additional feature of overlap-
ping bin structure, the method of Stellingwerf (1978) is equiv-
alent to that of Jurkevich (1971).

The study of the algorithm presented in this paper has
been stimulated by the increasing interest in searching for pe-
riodic transits by extrasolar planets (e.g., Gilliland et al. 2000;
Brown & Charbonneau 2000; Udalski et al. 2002), which fol-
low the discovery of the transit of HD 209458 (Charbonneau
et al. 2000; Henry et al. 2000) by its planetary companion
(Mazeh et al. 2000). Due to the short duration of the transit
relative to the orbital period (typically less than 5%), the signal
expected is extremely non-sinusoidal. Considering the shallow-
ness of the transit (typically less than 2% in the case of Jupiter-
size planets) and the expected high noise level of the ground-
based small telescopes capable of performing large-scale
surveys (e.g., Borucki et al. 2001), we suggest an algorithm that
utilizes the special form of the signal. The algorithm studied
here (see also Gilliland et al. 2000 and Udalski et al. 2002) is
based on direct Least Squares (LS) fits of step functions to the
folded signal corresponding to various trial periods. We present
numerical simulations as well as analytical considerations to
estimate the ability of the algorithm to detect a faint signal in a

Article published by EDP Sciences and available at http://www.aanda.org or http://dx.doi.org/10.1051/0004-6361:20020802



http://www.edpsciences.org/
http://www.aanda.org
http://dx.doi.org/10.1051/0004-6361:20020802

370

noisy time series. We show that the algorithm performs signifi-
cantly better and more efficiently than the published variants of
PDM, DFT or some LS modification of the latter.

2. The box-fitting algorithm

We assume a strictly periodic signal, with a period Py, that
takes on only two discrete values, H and L. The time spent in
the transit phase L is gPy, where the fractional transit length g is
assumed to be a small number (x0.01-0.05). For any given set
of data points, the algorithm aims to find the best model with
estimators of five parameters — Py, g, L, H and t;, the epoch of
the transit. Actually, if we assume the average of the signal is
zero, we have H = —Lq/(1 — g), and the number of parameters
of the model is reduced to four.

Let us denote the data set by {x;}, i = 1,2,...,n. Each x;
includes an additive zero-mean Gaussian noise with o stan-
dard deviation. The noise is presented by assigning to each data
point a weight w;, defined as w; = o-;z[Z;le 0_;2]—1 . It is further
assumed that {w;x;} have a zero arithmetic average.

For a given trial period we consider a folded time series,
which is a permutation of the original time series. This series
is denoted by {%;} and the corresponding weights by {@;}. We
fit a step function to the folded time series with the following
parameters:

- L —thelevelin [i1, ix]
— A —thelevelin [1, ;) and (i, n].

The relative time spent at level L is characterized by r =
e ;, Wi, i.e., by the sum of the weights of the data points at

level L.
For any given (i1, i), we minimize the expression
-1 n
D= Y wEw -+ ) il - AY
i=1

i:[2+1
12 R
+ > miE - Ly %)

Minimization of D yields simple weighted arithmetic averages
over the proper index regimes

p=2 A=-—, 2
r 1-r

where
ir

5= Z ik, (3)

i=iy

With these formulae, the average squared deviation of the fit
becomes

I
D = ;w,xi r(l —r) (4)

Once this expression is evaluated, one has to repeat the compu-
tation with other (i1, i») values and find the absolute minimum
of O for any given period. The first term on the right hand side
of Eq. (4) does not depend on the trial period, and therefore one
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Fig. 1. An example of the power of the BLS method. The time series,
the normalized BLS frequency spectrum and the folded time series
are shown in the upper and lower two panels, respectively. The signal
parameters are displayed in the header (see text for details).

can use the second term alone to characterize the quality of the
fit. We define the Box-fitting Least Squares (BLS) frequency
spectrum by the amount of Signal Residue of the time series at
any given trial period:

(i, in) ]}
R = MAX . s
S {[r(il’iZ)[l = r(iy, i2)] ©)

Here, the maximization goes over the values iy = 1,2,...,n%,

while the i, values satisfy the inequality Aiyin < i» —i] < Aimax,
where Aimin/max are determined by the minimum/maximum
fractional transit length suspected to be present in the signal.
The maximum lower index n* depends on i, —i; and covers the
range of [n — Aiyax, # — Alpin]-

The most obvious meaning of SR follows immediately from
Egs. (1) and (4). At the maximum value of SR, D of Eq. (4)
is related to the average variance of the noise. By using the
definition of § = H — L for the transit depth, and the cor-
responding estimates of H and L of Eq. (2), we find that SR
at the correct test period yields also an estimate of 4, i.e.,
SR = 6+r(T =7).

In a practical implementation of the above procedure!, we
suggest to divide the folded time series into m bins and eval-
uate SR by using these binned values. This approach is very
efficient computationally, and yields an exact LS solution with
a time resolution defined by the number of bins. Although the
lower resolution affects the efficiency of the signal detection, in
all interesting cases a good compromise can be made between
computational constraints and the effectiveness of signal detec-
tion (see next section). One can further minimize the amount of
computation by recognizing that for a given period each s(iy, i)
and r(i;, i) can be obtained by adding the corresponding bin
values to the already evaluated functions of smaller i; and 7.

As an introductory example of the power of the BLS al-
gorithm, we show in Fig. 1 the result of the analysis of a test

' A rorTRAN’77 version of the BLS algorithm is accessible at
http://www.konkoly.hu/staff/kovacs.html
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signal with very low signal-to-noise ratio. Here and in all sub-
sequent simulations we assume all data points have the same
noise level, characterized by o, and therefore the signal-to-
noise ratio (S NR) is defined by 6/c0. The figure demonstrates
that the BLS spectrum is able to identify the correct period even
at a high noise level. Several high peaks appear in the spectrum
at integer fractions and multiples of the true period. This fea-
ture is common in all methods utilizing higher harmonics of
the signal. In this example we used 50 bins, which is a reason-
able compromise between computational efficiency and signal
resolution (see next section for details). In plotting the folded
time series we used 100 bins. Here and in all subsequent fig-
ures the full frequency band is divided into ~1000 bins and
only the maxima in these bins are plotted. In this way all impor-
tant information is retained and showing unnecessary details is
avoided. The final spectra are normalized in the [0, 1] interval.

3. Properties of the box-fitting algorithm

This section focuses on the applicability of the box-fitting
algorithm to different time series, and to give signal- and noise-
dependent confidence limits. Due to the statistical complex-
ity, most of the results are based on extended numerical tests.
Nevertheless, whenever possible, we also present some analyt-
ical approximations.

In all subsequent tests the signals have a period of 5¢ and
span a timebase T of 609. The signal is sampled at times
t; = (i— 1+ $T/n, where ¥ is a uniformly distributed random
variable in [0, 1]. This distribution corresponds to the timings
we may obtain during a short but concentrated and continuous
observational campaign from several ground-based observato-
ries or from space. If the sampling or test periods are different
from the ones used in this paper, the main results presented here
still remain valid, assuming that the distribution of the data in
the folded time series at any trial period is basically uniform.
Our non-periodic sampling yields aliasing-free spectra in the
frequency band of interest. We do not deal with aliasing effects
originating from nearly periodic sampling, because this prob-
lem affects all period searching algorithms in a similar way.

In all our simulations, the search for the fractional transit
length is performed in the [0.01, 0.10] range. The upper limit
is well above the expected maximum fractional transit length
for planets (see Defay et al. 2001), but is in the right range for
detached binaries.

The frequency spectra are computed in the (0.02,0.91) d™!
band, a range that contains frequency components of the true
period from the 10th subharmonics up to the 3rd harmonics.
Usually we use 4000 frequency steps, because, due to the spe-
cific signal shape, the line profiles are very narrow. Therefore,
our algorithm requires a much finer sampling than DFT (see
also Stellingwerf 1978).

To characterize the Signal Detection Efficiency we intro-
duce (see also Alcock et al. 2000):

SRpeak - <SR>
sd(SR)

where SRpex is the SR at the highest peak, (SR) is the av-
erage, and sd(SR) is the standard deviation of SR over the

SDE = (6)
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Fig. 2. BLS spectra computed for two different transit phases for the
same number of bins and signal parameters, shown in the header.

frequency band tested. Because in the practical computation
of SDE one uses all available spectral points, in the presence
of periodic signal, the actual value of SDE also depends on the
time spanned by the data and on the lengths and position of the
frequency band of the analysis. If all other parameters are kept
constant, increasing time span or frequency band leads to an
increase in SDE for signals containing periodic component(s).
This is because under the condition mentioned, the relative con-
tributions to (SR) and sd(SR) of the peaks associated with the
signal become smaller. Of course, aliasing leads to a decrease
in SDE.

3.1. Dependence on the transit phase

In the practical implementation of BLS one has to satisfy two
conflicting requirements: (a) a high time resolution — demand-
ing a large number of bins; (b) short execution time and sta-
tistical stability — supporting a small number of bins. For ex-
ample, assuming a fractional transit length of 2%, one would
like to have at least 50 bins, otherwise the transit signal will
be included in a wider bin, degrading the signal. However,
50 bins in such a case are not enough, because in most cases
the transit will be divided into two bins, causing the same ef-
fect. For a more secure coverage we would probably need to
double or triple the number of bins. However, this could be
rather time consuming, especially if the allowed range of frac-
tional transit length is assumed to be large (say > 0.1). The
sensitive dependence of the execution time on the number of
bins follows from the fact that the number of operations in
the BLS algorithm is proportional to m(Aimax — Aimin), and
Aimax - Aimin ~ m(rmax - rmin)c

When using a finite bin size, we expect some dependence
of the BLS spectra on the transit phase, i.e., on the position of
the transit within the folded time series. We illustrate this effect
in the case of a noiseless signal in Fig. 2. The figure shows the
strong increase of the power in the harmonic and subharmonic
components, in addition to similar changes in other substruc-
tures of the frequency spectrum.
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Fig. 3. Dependence of the SDE of the BLS spectra on the transit phase
for noiseless signals with parameters shown in the header.
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Fig.4. As in Fig. 3, but for a signals of shorter fractional transit length.

In order to have a better idea of the possible ranges of SDE
for different numbers of bins, we show in Fig. 3 the SDE as a
function of the fractional transit phase At/(qPy), where At de-
notes the shift in time of the starting moment of the transit with
respect to some arbitrary epoch. The transit length is chosen so
that at m = 50 the bin size is about half the transit length. The
figure shows that even this number of bins displays relatively
large variations of SDE as a function of the transit phase, let
alone the m = 20 case. The high number of bins clearly yields
high, more stable SDE. However, the necessary increase in the
CPU time is rather high (see later). On the other hand, the low
number of bins may yield a fairly low SDE, due to occasional
partial coverage of the transit and wide bin size. The periodici-
ties in SDE come from the equidistant bin distribution and are
given by (mq)~" in units of gP,.

The SDE dependence on the transit phase is a function of
the transit length. To show this function we plot in Fig. 4 the
same dependence for a transit length of ¢ = 0.015, instead
of 0.035 as in Fig. 3. We see now that the SDE correspond-
ing to m = 20 is stable, although with lower values. This is so
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P(SDE>X)

Fig. 5. Probability distribution functions of SDE for the BLS method
at various numbers of test frequencies shown at the horizontal lines.
Thick lines are for the empirical (numerical), thin lines are for the
semi-theoretical results described in the text.

because for a small number of bins the full transit is included
in one bin in most cases — yielding SR values independent of
the transit phase. The strong dependence on the transit phase
occurs when the bin size is comparable to the actual length of
the transit. In both examples, a high enough number of bins
yields higher, and more stable SDE, which, in the presence of
noise, means also a higher probability of signal detection (see
Sect. 3.3).

3.2. Response to pure noise

One of the most important features of any search algorithm is
its ability to distinguish between false and true signals. In our
case, this translates to the estimation of the statistical signifi-
cance of the highest peak in the BLS spectrum. To study this
question we performed intensive numerical tests to derive the
Probability Distribution Function (PDF) of SDE in case the in-
put data contain only Gaussian noise.

Our results show that the PDFs depend only on the number
of trial frequencies ny, and are immune (within the numerical
stability of the simulations) to changing the number of data
points or number of bins used by the BLS algorithm. In or-
der to ensure reasonable numerical stability, we use in all cases
1500 realizations to estimate the corresponding PDF. The num-
ber of data points is set to 500, 1000, or 2000, while the number
of bins is chosen to be 50 or 100. Figure 5 displays the empiri-
cal PDFs obtained for various numbers of trial frequencies.

One could expect the probability of finding outstanding
peaks in a noisy spectrum to increase with the number of sam-
pled frequencies, if the samples were statistically independent.
We derive a theoretical PDF by using this assumption, and
show that adjustment of this PDF to the empirical one is pos-
sible, with parameters different from the ones predicted by the
assumption of large independent samples.
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The computation of SDE consists of two major steps:
(a) selection of the largest SR(ij, ;) at each trial period, (b)
selection of SRpeax — the largest SR of all the values computed
for the ny trial frequencies. In general we have mny > n, and
therefore it is obvious that many of the tested SR(i, i) values
cannot be considered to be independent samples. Therefore, in
this — admittedly not exact, but, as we shall show below, quite
practical — approach, it is assumed that the distribution of SDE
can be approximated by the one obtained for 7 independent
samples of SR(i1, i), where 7i is to be determined by numerical
simulations.

Assume, for the sake of simplicity, that all data points have
the same error, 0. We take 7 independent values of the random
variable SR(iy, i), identify the highest value SRycac and com-
pute SDE. For a large sample size we can assume the values of
(SR) and sd(SR) are constant. Therefore, one can use Eq. (6) to
write the probability that SDE exceeds a specified value X:

P(SDE > X) = P(SRpear > %),

where x = X X sd(SR) + (SR). Let p be the probability that a
given sample of SR has a value larger than x. Then,

P(SDE > X) = P(SRpeax > %) = 1 — (1 = p)".

The value of p can be calculated under the assumption of pure
noise. In such a case SR is actually the absolute value of a
zero-mean Gaussian random variable with a variance of 0% /n.
This distribution implies sd(SR) = ac/ vn and (SR) = bo/ \n
where a = VI —-2/7 = 0.60 and » = 2/7 = 0.80. To fa-
cilitate the calculation of p we can use the normalized random
variable y = SR /n/o and write:

P(SR > x)

P(y > x\n/o)

2(1 = d(x Vn/o))

2(1 - d(aX + b)), (7

p

where @ is the commulative distribution function of the nor-
malized Gaussian variable. If all the ny samples were indepen-
dent, we could use ny instead of 7i. Since this is not the case,
in order to generalize the above calculation we assume that the
effective 71 is related to ny by some power law: 7 = nf. The
parameters a and b depend on the assumption of constant stan-
dard deviation and mean of SR as well as on its specific distri-
bution. Therefore, in order to fit the empirical PDFs we allow
the three parameters a, b and ¢ to vary. The best-fit values we
get are: a = 0.67, b = 0.36, ¢ = 0.83. These values are signif-
icantly different from the ones obtained with our simplifying
assumptions. However, as Fig. 5 shows, the functional form of
the above PDF with the fitted parameters gives a good approx-
imation of the numerical results.

3.3. Signal detection power

Before turning to the numerical simulations, we derive a sim-
ple estimate of the minimum number of data points nec-
essary to obtain a high enough signal detection probability.
Here we deal with the folded time series at the signal period,

SDE

Fig. 6. Signal detection efficiency for noisy signals as a function of
a= % 4/ng. The same bin number of 100 and fractional transit length
of 0.033 are used in all simulations.

and ask the question whether the differences in SR%(iy, i) =
$2(i1, i)/ [r(i1, i2)(1 — r(iy, i2))] between the values including or
excluding the transit event are significant. We therefore evalu-
ate the Dip Detection Efficiency:

ook - EISR G, j)] = EISR (k1. k)]
VTSR (jy, jo)] + 2SR (ky, ko).

®)

where the indices j, k refer to the “in” and “out” of transit val-
ues, respectively, and E[...], o?[...] stand for the expectation
value and variance of the corresponding random variable. If we
assume equal noise for all data points and optimal bin size (i.e.,
r = q), then the averages and standard deviations read:

2

EISRir.i)] = So+ .
2 4

ISRir. i2)] = 4807 +27, ©)
n n

where S denotes the corresponding noise-free value of
SR2(iy, ip), with i = Jj» So = q(1 — q)62 for the “in transit”
andi =k, So = 6°¢°/(1 — ¢) for the “out of transit” cases. By
employing the ¢ < 1 condition and retaining only the leading
terms in g, and omitting the quartic terms in o, it is easy to get
the final expression for DDE

16
DDE = —— +nq. 10
> Vi (10)

Based on this result, we use

0
@=— g

to parameterize the effective SNR, because o/+/nq is the stan-
dard deviation of the average of all measurements within the
transit.

We performed 1500 simulations with m = 100, 6 = 0.01,
g = 0.033, n = 1000-4000, and various transit phases. The
dependence of SDE on « is shown in Fig. 6. We see that at

1D
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Fig.7. Differential signal detection efficiency for noisy signals as
a function of a. Shaded circles and filled squares show results for
A(SDE) = SDEm:200 - SDE,,,:z(), and SDEm:50 - SDE,,,:z(), respec-
tively. The transit length is the same in all cases and is chosen to be
relatively small, i.e., g = 0.015.

a < 5 the SDE values are noise-dominated at about constant
level, almost exclusively below 6. The SDE values generated
by pure noise fall also under 6 with very high probability (see
Fig. 5). In the range of @ = 6 — 13, SDE displays a sharp lin-
ear increase, until it reaches a mild maximum. It turns out that
when « gets to the linear increase region, the associated value
of SDE starts to become significant.

Tests performed with other numbers of bins show that the
above pattern remains the same, with the sole difference that for
a larger number of bins SDE reaches larger maxima, and there-
fore, the linear region between @ = 6 and 13 becomes steeper.
It is important to note that the region of a around 6 is critical
in all cases, because of the separation between the stochastic
and deterministic signal detections. As we could expect, this
regime coincides with the =30 limit of DDE (see Eq. (10)).

In the above simulations we fixed the fractional transit
length at a relatively large value, in order to ensure reasonable
resolution with 100 bins. With a shorter transit length, at the
same number of bins, the @ > 15 region becomes fuzzier, with
a somewhat higher average value of SDE (at least for moder-
ately smaller transit lengths). However, the global properties
remain the same as described above.

The response of SDE to changing the number of bins is
illustrated in Fig. 7. We see that a substantial increase of
SDE can be gained in many cases by moving from 50 bins
to 200 bins. Of course, for longer transit lengths, the gain is
smaller.

4. Comparison with other methods

The purpose of this section is to illustrate that the method intro-
duced in this paper enables us to discover periodic transit-type
events in noisy time series with a (much) higher probability
than the other standard period searching algorithms available

G. Kovics et al.: A box-fitting algorithm
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Fig. 8. As in Fig. 6, but for the W-R method with 100 bins.

in the current astronomical literature. In all subsequent exam-
ples we use m = 200 for the BLS method.

Perhaps the most competitive method is that of W-R (or
similarly, PDM of Stellingwerf 1978). Therefore, we perform
the same test for this method as the one presented in Fig. 6 for
the BLS method. The result is shown in Fig. 8. For compatibil-
ity, we use the same bin number and signal parameters as for
the simulations shown in Fig. 6. In comparison, we see that the
W-R method yields a wider transition region between the noise-
and signal-dominated regimes. Furthermore, the value of SDE
is lower in the signal-dominated region. In order to illustrate
the appearance of these differences in the frequency spectra,
we show a representative example in Fig. 9. We use 100 bins
in the W-R method, because a larger number leads to an even
poorer performance of this method.

The next example examines the L-K method. We recall
that in this method the squared differences between the bin-
averages are computed for each folded time series. For large bin
numbers and smoothly varying time series, this method should
yield very small (in the limiting case, zero) L-K statistics at the
correct period. Certainly, in the case of periodic signals with
discontinuous variations, such as the ones studied in this pa-
per, the L-K method should give non-zero statistics even in the
noiseless case. Indeed, even for very high SNR, the L-K method
performs extremely poorly (see Fig. 10). We use 500 bins for
the L-K method, because tests have shown that at lower val-
ues the L-K method performs even more poorly. By decreasing
SNR to 2-3, there remains no significant dip close to the test
frequency (or to its harmonics) in the L-K spectrum. It is impor-
tant to recall that this noise level still corresponds to o = 14-21,
well above the secure signal detection limit for BLS.

As expected, DFT is also not preferable for analyzing sig-
nals with periodic transits of short duration. In the noiseless
case, DFT yields very slowly decreasing power for the succes-
sive harmonics. Although this is not a good property for correct
period identification, DFT shows a reasonable stability against
noise. As shown in Fig. 11, some remnant power at (or close
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Fig. 9. Comparison of the BLS and W-R methods for a realization
of a signal with parameters shown in the header (other parameters
are standard, as given in Sect. 3). The uppermost panel shows the
folded/binned time series (dots) with the period and the fit (contin-
uous line) obtained by the BLS method.

to) the original harmonics is still visible in the DFT spectrum,
but a reliable identification is not possible even at this high SNR
(@ = 11). At an even higher SNR, corresponding to @ = 14, the
main component becomes the highest amplitude peak, with a
simultaneous increase of the harmonics and with a still consid-
erable contribution from other parts of the spectrum, originat-
ing from the noise.

Finally, one can attempt to use multifrequency LS Fourier
fit (FLS) for better approximation of the signal shape and
thereby increasing the SDE in the case of the Fourier method.
(We note that for data distribution leading to orthogonal Fourier
base, the method of Defay et al. 2001 is equivalent to this di-
rect LS Fourier approach.) Because of the substantial increase
in execution time for this method, we use a smaller number of
data points and limit the order of the Fourier fit to 10. By plot-
ting the standard deviation of the residuals, we obtain the result
shown in Fig. 12. Although the performance of FLS could be
improved by using more harmonics, FLS did, in general, a con-
siderably poorer job at moderately high noise levels (similarly
to the one shown in Fig. 12).

Computational efficiency of the BLS method has been
tested in comparison with DFT on a sun workstation. For
proper comparison, the same data sets and the same num-
ber of frequency steps were computed by both methods, al-
though DFT requires about an order of magnitude fewer steps,
because of its wider line profiles. The range of the search
for the best fractional transit length in the BLS method was
fixed at [0.01,0.10], as mentioned at the beginning of Sect. 3.
Table 1 shows that, except for high bin numbers and low num-
ber of data points, BLS surpasses DFT in execution time per
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Fig.10. As in Fig. 9, but for the L-K method. On the ordinate axis for
the L-K method, S D stands for “standard deviation”, the correspond-
ing statistics of the L-K method. Minima of S D indicate periodicities
in the signal by the the L-K statistics.
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Fig.11. As in Fig. 9, but for the DFT method.

frequency step. While the CPU time required by DFT is deter-
mined by the number of data points, BLS depends much less
on this parameter. The BLS execution time can be decreased
by decreasing the allowed range of fractional transit length. For
example, with n = 8000, m = 500 the execution time decreases
to 13 s, if [7min,> max] = [0.005,0.03]. Note that by increasing
the SDE of the Fourier method with the aid of a multifrequency
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Fig.12. As in Fig. 9, but for the the Fourier-sum-fitting Least Squares
method with 10 components. Minima in the FLS spectrum indicate
periodicities in the signal.

Table 1. Comparison of the execution times.

n m tprsls] tprr/tBLs
1000 50 1.0 6.5
100 1.6 4.1
200 4.0 1.6
500 19.1 0.3
5000 50 4.3 7.6
100 5.0 6.6
200 7.6 4.3
500 22.6 1.5
8000 500 25.0 2.1

Notes: — 5000 test frequencies are computed.
— A sun Ultra 300 MHz machine is used with an optimized
FORTRAN compiler.

least squares approach (or its nearly equivalent version using
sum of the amplitudes of the harmonics — see Defay et al. 2001)
the execution time will increase substantially (proportional to
the number of harmonics) for the Fourier method. A multifre-
quency Fourier method must use frequency steps as small as for
the BLS method, while it has to use at least 7—10 harmonics to
approximate reasonably closely the SDE of the BLS method.
We therefore suggest that the BLS method can be considered a
very efficient tool to analyze transit-type signals.

5. Conclusions

This paper has examined the statistical characteristics of
the Box-fitting Least Squares algorithm to detect periodic
transits in time series of stellar photometric observations.

G. Kovics et al.: A box-fitting algorithm

The algorithm strongly relies on the anticipated box-shape of
the periodic light curve. The advantage of using a predeter-
mined shape of the light curve manifests itself in the high ef-
ficiency of this method relative to the other search methods,
which are generic and can detect any periodic variation.

The algorithm studied here assumes only two levels of the
periodic light curve. This assumption ignores all other features
that are expected to appear in planetary transits. Thus, we ig-
nore the gradual ingress and egress phases of the transit, which
carry important information about the parameters of the plane-
tary orbit (e.g., Sackett 1999). The lengths of these phases are
short compared to the transit and thus they are not expected
to affect significantly the results of the search. Another effect
we ignore is the limb-darkening effect, which has indeed been
shown to be small in the case of HD 209458 (e.g., Deeg et al.
2001). The effectiveness of the algorithm relies on the above
simplifying assumption, which is justified as long as we are in-
terested in a detection tool. After the periodicity is detected we
can try to recover subtle features of the folded light curve, in
order to derive the stellar and the planetary characteristics.

Our main interest is in cases where the signal-to-noise ratio
is small, and one cannot identify the signal by monitoring a sin-
gle transit, because the stellar drop in intensity is buried in the
noise. Contrary to the search of transits by the HST in 47 Tuc
(Gilliland et al. 2000), where the noise was small relative to
the expected transit dip, we concentrate on cases in which the
periodic signal can be detected only after many measurements
are accumulated and the unknown transit is monitored many
times. To be able to deal with a large number of observations,
of a thousand or more, we have introduced binning into the
folded data. We have shown that as long as the bin size is small
compared to the expected transit length, the efficiency of the
method is not affected.

One additional factor that determines the computational
load of the algorithm is the range of transit length searched for.
The maximum possible transit length can be estimated if we
know the orbital, stellar and planetary radii. For a given stel-
lar mass, the stellar radius can be derived by the mass-radius
relation, and the orbital radius can be derived for any period.
Recent theories give some estimates for the planetary radii.
Therefore, for a given stellar mass we can estimate the max-
imum duration of the transit, which for HD 209456 is only a
few percent of the period. For most ground-based and space
searches for planetary transits one would have some idea of
the stellar mass of all transit candidates, and therefore we can
make our algorithm computationally more efficient by impos-
ing a variable maximum duration on the transit length.

The significance of the detection depends primarily on the
effective signal-to-noise ratio of the transit. The signal is the
stellar brightness within the transit, relative to the brightness
outside the transit, and the noise is the expected scatter of the
measured average of the stellar brightness inside the transit.
The scatter is composed, obviously, of the observational noise
as well as of stochastic variation of the stellar intensity. It seems
that the effective signal-to-noise ratio should exceed 6 in order
to get a significant detection. This requirement should be taken
into account when planning future searches for extrasolar plan-
etary transits.
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