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Aging affects functional connectivity between brain areas, however,

a complete picture of how aging affects integration of information

within and between functional networks is missing. We used

complex network measures, derived from a brain-wide graph, to

provide a comprehensive overview of age-related changes in func-

tional connectivity. Functional connectivity in young and older par-

ticipants was assessed during resting-state fMRI. The results show

that aging has a large impact, not only on connectivity within func-

tional networks but also on connectivity between the different func-

tional networks in the brain. Brain networks in the elderly showed

decreased modularity (less distinct functional networks) and de-

creased local efficiency. Connectivity decreased with age within net-

works supporting higher level cognitive functions, that is, within the

default mode, cingulo-opercular and fronto-parietal control net-

works. Conversely, no changes in connectivity within the somatomo-

tor and visual networks, networks implicated in primary information

processing, were observed. Connectivity between these networks

even increased with age. A brain-wide analysis approach of func-

tional connectivity in the aging brain thus seems fundamental in un-

derstanding how age affects integration of information.
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graph theory

Introduction

Performance in various domains of cognitive functioning has
been found to decline with age (Grady 2012). There is
evidence that these deteriorations are partly related to changes
in communication between different brain areas (Andrews-
Hanna et al. 2007; Sambataro et al. 2010). We previously found
the first evidence that aging not only affects functional connec-
tivity within specific functional networks, implicated in particu-
lar cognitive functions, but communication between different
functional networks as well (Geerligs et al. 2012). In the current
study, we investigated how aging affects the integration of infor-
mation across the whole brain, that is, within as well as between
functional brain networks.

Whole-brain analysis requires a novel approach. So far,
effects of aging on functional connectivity have mainly been
assessed using seed-based functional connectivity and inde-
pendent component analysis (Biswal et al. 1995; van de Ven
et al. 2004; Fox et al. 2005). Both methods have a limited capa-
bility of providing a complete view of the characteristics of
connectivity between and within functional networks. Seed-
based connectivity requires a hypothesis regarding the chosen
seed region, while independent component analysis has the
inherent limitation that only connectivity within functional net-
works can be examined. In the current study we apply

complex network measures, to assess connectivity within a
brain-wide graph of functional areas (Rubinov and Sporns
2010; Power et al. 2011).

In the context of a graph, brain areas are referred to as
nodes and connections between nodes are referred to as
edges. Nodes that are directly connected through one edge are
referred to as neighbors, whereas a series of edges connecting
distant nodes are referred to as a path. After a network has
been defined in such a way, it is possible to extract different
complex network measures that characterize the connectivity
structure of the network. This approach has major advantages
over a mass-univariate approach in which all connections
between all areas are tested independently. First of all, graph
theory avoids the large number of multiple comparisons that
accompany a mass-univariate approach. Second, by examining
complex network measures, specific features that are impor-
tant for the functioning of the network can be assessed.

Studies in younger adults have shown that the brain consists
of a number of separate functional networks. There are dense
connections within these networks whereas connectivity between
different networks is sparse. This organization is thought to
benefit specialized or segregated information processing in differ-
ent brain networks (Bullmore and Sporns 2012). The extent to
which such an organization is present can be measured with the
complex network measure modularity (Newman 2004). There are
indications that functional brain networks in elderly become less
distinct, due to an increase in internetwork connections along
with a decrease in intranetwork connections (Geerligs et al.
2012). Previous studies have already shown that brain areas
become functionally dedifferentiated with advancing age (Baltes
and Lindenberger 1997; Park et al. 2004; Carp et al. 2011; Dennis
and Cabeza 2011). Geerligs et al. (2012) extended these findings
by showing that dedifferentiation might also occur on the level
of large-scale functional brain networks. One of the goals of
the current study was to lend more support to these findings,
using complex network measures. If functional networks
indeed become dedifferentiated with age, we would expect a
reduction in modularity. A reduction in modularity with age
might be driven by global changes throughout the networks or
by decreased connections within or increased connections
between specific functional networks. To examine these possi-
bilities, we additionally examined the participation coefficient
(Guimerà and Amaral 2005), which is a local measure of the
proportion of inter- and intra-network connections.

The trajectory between the input and the output of the
brain, that is, between perception and overt and covert behav-
ior, requires the integration of information within, as well as
between, different functional networks. The capacity to inte-
grate information across all brain areas can be assessed with
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global efficiency (Latora and Marchiori 2001). Higher level
functions, such as executive functions, that require integration
of information from different sources, benefit from global effi-
ciency across the whole network (Bullmore and Sporns 2012).
In addition, primary processing functions, such as visual infor-
mation processing benefit from clustered connections between
neighboring nodes. This can be measured using local effi-
ciency, which quantifies connections between neighboring
nodes (Latora and Marchiori 2001). If neighboring nodes are
well connected, information exchange will be more segregated
as well as more efficient and the networks will be more resili-
ent to disruptions in connectivity.

Previous studies using graph theory in fMRI data have shown
that aging is accompanied by a reduction in global and local
network efficiency (Achard and Bullmore 2007). Modularity on
the other hand was reported to be similar in older and younger
participants (Meunier et al. 2009). In the current paper, we
extend these previous findings by examining age-related effects
on complex networks measures within different functional
networks. Because each functional network tends to be related
to specific cognitive functions, this approach allows for a more
direct link between the changes in complex graph measures and
the changes in cognitive functioning. In this paper, we used the
network measures described above to provide a coherent whole-
brain view of age-related changes in functional connectivity. To
extract functional networks in the older and younger groups, we
used data driven methods which did not require any a-prior
hypotheses about specific features of these networks. We found
that, the balance between intra- and inter-network connections
shifted with age, as reflected by decreased modularity. Changes
in local efficiency varied across networks. In the visual and
somatomotor networks, subserving more elementary cognitive
functions, efficiency was maintained in elderly, whereas a sharp
decrease in efficiency was found in higher level processing net-
works, the default mode network (DMN, Raichle et al. 2001;
Greicius et al. 2003; Buckner et al. 2008), fronto-parietal control
network (FPCN, Vincent et al. 2008; Spreng et al. 2010), and the
cingulo-opercular network (Dosenbach et al. 2007).

Methods

Participants

Forty older adults (24 males,Mage = 64.9 years, age range: 59–74 years)
and 40 younger adults (21 males, Mage = 20.6 years, age range: 18–26
years) participated in this experiment. All participants were right
handed and had no history of neurological or psychiatric disorders.
Older participants had a score of 26 or higher on the mini mental
status examination (MMSE, Folstein et al. 1975) and <16 on each of
the subscales of the hospital anxiety and depression scale (HADS,
Zigmond and Snaith 1983). All participants had normal or corrected-
to-normal visual acuity. The study adhered to the Declaration of Helsin-
ki and was approved by the local ethics committee of the University
Medical Center Groningen, the Netherlands. Informed consent was
obtained from all participants. Data of one older participant was lost
due to technical problems. One older participant was excluded
because a brain abnormality was detected.

Data Acquisition and Preprocessing

FMRI scans were obtained during 10 min of resting state with a 3-T MR
scanner (3T Achieva, Philips Medical Systems, Best, the Netherlands),
with echo planar imaging (EPI) capability and an 8-channel SENSE
head coil. Participants were instructed to keep their eyes closed and
not fall asleep. Functional images were obtained with the following
pulse sequence parameter settings: single shot EPI; 37 slices; slice
thickness 3.5 mm; no gap; field of view 224 mm; matrix scan size 64 by

62; transverse slice orientation; repetition time (TR) = 2000 ms; echo
time (TE) = 30 ms; minimal temporal slice timing (1836 ms); flip angle
70°. A 3D T1-weighted anatomical scan of the entire brain was obtained
for each participant using the following pulse sequence parameters:
field of view 256 mm; matrix scan size 256 by 256; 170 slices; slice
thickness 1 mm; transverse slice orientation; TE = 3.6 ms; TR = 9 ms;
flip angle 8°. Offline processing was performed using the statistical
parametric mapping software package (SPM 8; http://www.fil.ion.ucl.
ac.uk/spm/software). First, for each participant, the functional images
were motion-corrected and coregistered to the anatomical scan. Core-
gistration was checked visually and adjusted manually when required.
Smooth signal intensity variations due to field inhomogeneities were
reduced in both structural and functional images by applying bias
regularization as implemented in SPM. For functional images, the
regularization was initially applied only to the first and the last func-
tional scan. Based on these 2 corrections, an average correction factor
was computed for each voxel, which was applied to all scans. A
study-specific anatomic template was created (for young and elderly
participants together), using Diffeomorphic Anatomical Registration
Exponentiated Lie algebra (DARTEL), to optimize interparticipant
alignment (Ashburner 2007). Data were smoothed with an 8-mm
full-width half maximum (FWHM) Gaussian kernel.

For the functional connectivity analyses, additional preprocessing
steps were used to remove spurious variance from the time courses.
One of these steps was global signal regression. The global signal is
assumed to reflect a combination of resting-state fluctuations, physio-
logical noise (e.g., respiratory and cardiac noise), and other noise
signals (Birn et al. 2006). It has been shown that (physiological) noise
in the BOLD signal increases with advancing age (D’Esposito et al.
1999; Makedonov et al. 2013). Therefore, in the current study, we
applied global signal regression to reduce these effects of noise differ-
ences between groups on estimates of the correlation coefficient.
Using SPM routines, a multiple regression approach was used which
included regression of the time-courses from the white matter, cere-
brospinal fluid, and the whole brain (global signal) and regression of
motion parameters (for details of this procedure see Geerligs et al.
2012). First derivatives of these signals were also regressed out. In
addition, a high pass filter (time constant of 111 s) was applied.

It has been shown that participant motion can have large effects on
functional connectivity estimates (Power et al. 2012). To minimize such
effects, scans which might have been affected by movement were ex-
cluded from the analysis. The first step in this correction was to calculate
the total displacement per scan. Rotations and translations were com-
bined by computing the square root of the summed squared values
(http://cibsr.stanford.edu/tools/human-brain-project/artrepair-software
.html). The absolute scan to scan differences in both the rotational and
translational displacement were summed to represent the total displace-
ment per scan. Scans in which the displacement compared with the pre-
vious scan was larger than 0.5 mm were flagged. The second step in the
correction was to identify scans which could have been affected by par-
ticipant motion by examining changes in the intensity of the functional
image. For each voxel (within the participant-specific brain mask) a tem-
poral derivative of the signal was calculated, by computing the intensity
difference between subsequent scans. Subsequently, the root mean
square (RMS) intensity change over all voxels was calculated as index
of total intensity change. Scans in which the RMS was >3 standard
deviations above the average were flagged (Smyser et al. 2010;
Shannon et al. 2011). For functional connectivity analysis, all flagged
scans were excluded, as well as the scan before and 2 scans after the
flagged scan. Two younger and 2 older participants with <200 re-
maining scans were excluded. In the remaining younger participants,
an average of 10.4% of all scans was removed based on this pro-
cedure, in the older participants the proportion of removed scans
was 7.2% on average. Before, as well as after this motion correction
procedure, there was no significant difference between age groups in
the average total displacement per scan.

Functional Connectivity Analysis

For functional connectivity analysis the brain-wide graph of 264 puta-
tive functional areas (10 mm diameter spheres) created by Power et al.
(2011) was used. The functional areas in this graph were defined
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based on meta-analysis and functional connectivity mapping so that
each area represents an element of brain organization. To make sure
that the graph only included areas that did not suffer from suscepti-
bility artifacts, a group mask was created. First, participant-specific
binary images were created by thresholding functional images at 70%
ofmean signal intensity. A group mask was created by multiplying the
binary images of all participants. If the group mask overlapped <50%
with a functional area, this area was excluded from analysis (i.e., 29
functional areas). Average time courses were extracted for the remain-
ing 235 functional areas. Pearson correlation coefficients were com-
puted between the time courses of all functional areas in each
participant separately. To remove connections which might be due to
re-slicing or motion-induced artifacts, correlations between areas <20
mm apart were set to zero (Power et al. 2011). The diagonal of the cor-
relation matrix was set to zero to remove correlations between an area
and itself.

Thresholding

Based on the correlation matrix, graphs were constructed for each partici-
pant. Graph characteristics, such as modularity and global efficiency are
affected by the number of nodes, but also by the number of edges in a
graph (van Wijk et al. 2010). For each participant, the correlation matrix
was thresholded to enhance the contrast between relevant (strong) and
irrelevant (weak) connectivity values. This was done in such a way that
the number of edges in the graph was constant. A threshold was selected
using the method below, in order tomaximize the amount of information
obtained about the network on the group level.

For a range of thresholds (selecting between 1 and 50% strongest
connections), and for both age groups separately, we applied the fol-
lowing procedure. For each participant, the correlation matrix was bi-
narized by setting the connections above the predefined threshold to 1
and all other connections to zero. Subsequently these binarized ma-
trixes were averaged over all participants within each group. This aver-
aged matrix is referred to as the “actual” matrix. Information theory
was applied to compute the entropy over the actual matrix (Shannon
1948). The threshold at which the entropy is lowest, is the threshold at
which the actual matrix contains the least disorder and therefore the
largest stability over participants. However, the entropy also depends
on the number of elements taken into account for each participant; at a
threshold of 100% the entropy will be zero. Therefore, a correction was
applied to account for these changes by comparing the entropy in the
actual matrix to the entropy in a randomized matrix. We created 50 ran-
domized matrices per participant, per threshold, preserving the
number of nodes and the degree distribution (Maslov and Sneppen
2002). These random graphs were used to construct 500 new average
graphs, by randomly sampling one of the 50 randomized networks per
participant. The entropy was computed for each of these average
random matrices and averaged. Then, the difference between the
entropy in the actual and the entropy in the random matrices was com-
puted. Once this procedure was performed for all thresholds, the
optimal threshold was defined as the threshold at which the difference
between the entropy in the actual matrices and the entropy in the ran-
domized matrices is maximal. The optimal threshold is found when
the information in the actual matrix is as unique as possible (i.e.,
highest stability across subjects), and more importantly, least resembles
the result for a random network. More details of this method, including
simulations, are presented in the Supplementary materials. Applying
the procedure described above to both age groups separately, resulted
in a threshold set at the 2.8% strongest connections in the network for
the younger participants and 2.6% for the older participants. There-
fore, a threshold of 2.7% was selected (see Supplementary Fig. 2).

Graph Analysis

Network measures were calculated using functions implemented in the
Brain Connectivity Toolbox (Rubinov and Sporns 2010, www.
brain-connectivity-toolbox.net). Modularity is the extent to which a
graph can be divided into modules with a large number of within
module connections and a minimal number of between module con-
nections (Girvan and Newman 2002). For fMRI data, such modules are
similar to the functional networks that can be identified using seed-

based correlations or independent component analysis (Power et al.
2011). Network modularity estimates were computed using the algor-
ithm by Blondel et al. (2008), using the average modularity across 50
runs of the algorithm. In addition, local and global efficiency were as-
sessed (Latora and Marchiori 2001). Global efficiency is the inverse of
the average shortest path length in the network and is suitable for use
in disconnected networks. Local efficiency is the inverse of the average
shortest path length between all immediate neighbors of a node. Local
efficiency tends to be related to modularity; networks which have
dense local connections tend to have a more modular organization
(Bullmore and Sporns 2012). Local efficiency was averaged over all
nodes to estimate the mean local efficiency for the complete graph or
specific networks.

The graph was partitioned into modules separately for younger and
older participants. As input to the partitioning algorithm, we computed
averages of the binary matrices of all participants (correlation matrices
thresholded at 2.7%) in each age group. To achieve the optimal
module division, we adopted a 2-step procedure, similar to the one
applied by Rubinov and Sporns (2011). An initial partition into
modules was created using the algorithm by Blondel et al. (2008),
which attempts to maximize within module connections and minimize
between module connections. As the approach is susceptible to the oc-
currence of local maxima, this procedure was repeated 500 times. Sub-
sequently, all of these partitions were refined, using a modularity
fine-tuning algorithm (Sun et al. 2009) which randomly assigns nodes
to different modules or randomly creates a separate module. Changes
that led to an increase in modularity were retained. The fine-tuning
algorithm was applied repeatedly until the modularity of the partition-
ing no longer increased, and the partitioning with the highest modular-
ity was used for further analyses.

To compare the module decompositions in older and younger
participants, we used normalized mutual information (NMI). NMI
measures how much information is provided by one set of assignments
about another set of assignments (Strehl and Ghosh 2003) and varies
from 0 (no mutual information) to 1 (identical node assignments). Stat-
istics on differences in module decomposition between age groups
(NMI <1) was obtained using permutation testing. In the permutation
procedure, participants were randomly divided into 2 groups (retain-
ing original group sizes). Subsequently, the optimal module decompo-
sition was calculated for each group and their NMI was calculated as
described above. This procedure was repeated 1000 times to get a dis-
tribution of NMI values under the null hypotheses. If the actual NMI
between age groups was smaller than the fifth percentile of this distri-
bution, the difference between groups was considered significant.

To find modules which were representative for both the older and
the younger participants, we used the intersection of the modules
defined in the 2 groups. Only nodes that belonged to a specific
module in both groups, were taken as representative of that module
for both groups. Additional details on how common networks were
constructed are reported in the Results section. For each of the 5
large networks defined in this manner, we computed the average
local efficiency and participation coefficient. The participation coeffi-
cient is an index of the number of between module connections
versus the total number of connections of a certain node (Guimerà
and Amaral 2005).

To examine the connectivity within and between all the different
modules we developed a specific procedure, which was performed
separately for both negative and positive connections. For this analysis
the original weighted graph was used. Correlations with P < 0.05 after
false discovery rate correction (FDR, Benjamini and Hochberg 1995)
were retained, while all other correlations were set to zero. For each
pair of modules and within each module, we then computed the sum of
all correlations and divided these by the number of possible correlations.
Group comparisons were performedwith MannWhitney U tests.

Correlation with Behavioral Measures

To assess how the observed changes in network properties affected
the functioning of older participants, the relation with cognitive per-
formance was examined. All participants were tested on an extensive
neuropsychological battery, consisting of visual-motor sequencing
(Trail making test A and B, Reitan 1958; Tombaugh 2004), executive
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functioning (Stroop task, Stroop 1935), working memory and inciden-
tal recall (digit span test forward and backward, Wechsler Intelligence
Scale—Revised, Wechsler 1981), verbal learning (Dutch version of the
Rey Auditory Verbal Learning Test, Lezak et al. 2004), and a simple re-
action time test. In addition, an estimation of crystallized intelligence
(Dutch version of the National Adult Reading Test, Schmandt et al.
1992) and fluid intelligence (matrix reasoning test, Wechsler Intelli-
gence Scale—Revised, Wechsler 1981) was obtained. One younger par-
ticipant was excluded from the analysis because neuropsychological
data were not available. All neuropsychological test scores were trans-
formed to z-scores and scaled such that a higher value indicates better
performance. Because some of the neuropsychological test scores were
highly correlated, we first performed factor analysis on the neuropsycho-
logical tests using maximum likelihood estimation and varimax rotation.
Four factors, with an eigenvalue >1, were chosen based on the interpret-
ability of the results. Subsequent correlations with complex network
measures were performed using participant factor scores. Only complex
network measures that showed a significant difference between the age
groups were related to behavioral performance.

Correlation with Structural Measures

To assess whether complex network measure differences between
younger and older adults were related systematic gray matter volume
differences between the groups, the determinant of the Jacobian
matrix was used. This determinant is the local expansion factor, which
results from the DARTEL procedure and represents differences in local
volume between the individual images and the template brain. Values
of the Jacobian determinant that are >1, indicate volume expansion
relative to the group template, whereas values <1 indicate contraction
(Lee et al. 2007). For each functional area that was used in the graph
analysis, the corresponding average Jacobian determinant was ex-
tracted for each participant. Subsequently, Spearman rank correlations
were computed between complex networks measures and the Jaco-
bian, both averaged across all functional areas as well as for each
module separately.

Results

Functional Networks in Old and Young

Functional networks were identified separately in the older
and the younger group, by using module decomposition algor-
ithms (Rubinov and Sporns 2011). The modules we identified
were similar to the functional brain networks described in the
literature (Damoiseaux et al. 2006) and to the modules de-
scribed by Power et al. 2011 (see Fig. 1A). To examine the simi-
larities between the node–module assignments (i.e., which
nodes are assigned to which functional networks) of older
adults and younger adults, we used normalized mutual infor-
mation (NMI). Subsequently, permutation testing was used to
test whether this similarity was significantly below chance
level. Over all nodes and all modules, the NMI between older
and younger participants was 0.6, which was significantly
lower than expected by chance (P = 0.006). Tests per module
revealed significant differences between younger and older
participants in the visual module (NMI = 0.63, P = 0.001),
whereas no significant differences between age groups were
observed in the somatomotor and cingulo-opercular network
(NMI = 0.66, P = 0.07, and NMI = 0.60, P = 0.69, respectively).
In addition, age-related differences were observed in the FPCN
and the DMN. While the FPCN and the DMN were separate
modules in younger participants, they were identified as one
module in the older participants. The NMI expressing the
extent to which DMN/FPCN node assignment in the older
group was predicted by node assignments of both the DMN
and the FPCN in the younger group was 0.39. This similarity

was significantly below chance level (P = 0.009). The null distri-
butions of the permutation tests per module are shown in Sup-
plementary Figure 6. To test whether the observed age-differences
are specific to the threshold of 2.7% applied here, we repeated the
analysis presented above for a range of thresholds between 2 and
10%. At all of the thresholds, a significant difference in module
decomposition between younger and older participants was
observed (see Fig. 3B).

To compare characteristics of networks between the younger
and older groups, we first derived common networks. The
nodes belonging to the same network in both groups were
taken as representatives of that network (see Fig. 1C and
Table 1). The DMN and FPCN modules were based on the node
assignments in young participants but included only nodes that
belonged to the DMN/FPCN in older participants. In Figure 1B,
the average graphs of the younger and older participants are
presented using a force atlas layout. To illustrate age-related
differences in labeling, the graphs of older and younger partici-
pants are presented both with the labeling of their own group
and with the labeling of the other group.

Age-Related Changes in Network Distinctiveness:

Modularity and Participation Coefficient

Segregation of functional networks was reduced in the older
(mean modularity old [Mold] = 0.61) compared with the younger
participants (Myoung = 0.67; z = 5.3, P < 0.001), see Figure 2A.
Additional correlation analyses between modularity and age
within the older group revealed no significant correlation (r =
−0.21, P = 0.22). The difference between the age groups can also
be observed in Figure 1B; nodes within functional networks are
less clustered in older than in younger participants. Particularly,
the visual network shows more pronounced local isolation in
younger than in older participants. Confirming these findings,
the participation coefficient was increased in older compared
with younger participants in the visual and the somatomotor net-
works (z = 4.53, P < 0.001; z = 4.04, and P < 0.001, respectively),
indicating that a larger proportion of the connections of the
nodes in these networks are directed to nodes outside the
network (see Fig. 2B). Similar to Power et al. (2011), we observed
that the FPCN was the network with the highest proportion of in-
ternetwork connections (the highest participation coefficient).
This is in agreement with its central role in cognitive control, re-
quiring communication with other networks (Vincent et al. 2008;
Spreng et al. 2010).

Age-Related Changes in Efficiency of Connectivity: Global

and Local Efficiency

While global efficiency was similar in older and younger par-
ticipants (Myoung= 0.20, Mold = 0.20, z= 0.25, P= 0.80), local effi-
ciency was significantly reduced in the older compared with the
younger participants (Myoung= 0.35,Mold = 0.39, z= 4.7, P < 0.001).
These results were independent of the chosen connectivity
threshold (see Fig. 3). Separate analyses in each functional
network showed an age-related decrease in local efficiency in the
DMN (z= 2.87, P= 0.004), the FPCN (z= 2.51, P= 0.012) and the
cingulo-opercular network (z= 3.53, P < 0.001, see Fig. 2B). Corre-
lations between local or global efficiency and age within the older
group, did not show any significant effects (r = 0.22, P = 0.20;
r = 0.05, P = 0.78, respectively). Additional analyses with more
stringent movement correction criteria (0.3 mm) and additional
low-pass filtering (0.08 Hz) did not change the effects of age
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Figure 1. (A) The different modules are shown separately for older (right) and younger (left) participants. The colors indicate the nodes that belong to each module. Nodes are
pasted on an inflated surface rendering of the human brain using the CARET program (Van Essen et al. 2001). (B) The graphs for younger (left) and older (right) participants are
visualized using a force atlas layout implemented in Gephi (Bastian et al. 2009). The top row shows the graphs of younger and older participants with the node assignments of the
younger participants. The bottom row shows the graphs for both groups with the node assignments of the older participants. (C) Final node–module assignments based on the
intersection of node assignments in both groups. Gray nodes were not assigned to any of the modules.
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group on the network measures described above (global and
local efficiency, modularity and participation coefficient, see
Supplementary Figs 3 and 4). As a final check, we investigated
the effect of global signal regression on the results. In the litera-
ture, it has been shown that global signal regression can have
both positive and negative effects on the analysis of functional
connectivity (Murphy et al. 2009; Weissenbacher et al. 2009;
Song et al. 2012). Therefore, we have repeated the analyses
without global signal regression. Although these analyses point
to the same pattern of differences between older and younger
participants, some differences were observed compared with

the original analyses. These are presented and discussed in the
Supplementary materials (see Supplementary Fig. 5).

Age-Related Changes in Functional Connectivity Within

and Between Networks

Functional connectivity is reflected in the strength of the corre-
lations between all functional brain areas. To examine the
effect of age on overall functional connectivity, we compared
the correlation distribution of the unthresholded correlation
matrix between younger and older participants. The number
of negative correlations (between −0.25 and −0.15) and the

Figure 2. (A) Global network measures are presented in boxplots for older (lighter) and younger (darker) participants. From left to right, global efficiency, local efficiency, and
modularity. Stars indicate a significant difference between the older and younger participants (***P<0.001). (B) For each of the functional networks (modules), participation
coefficient, and local efficiency are displayed in boxplots for younger and older participants. The darker boxplots represent the younger participants, the lighter boxplots the older
participants. Difference between the older and younger groups; *P< 0.05, **P< 0.005, and ***P< 0.001.

Table 1

Nodes assigned to each module in younger and older participants: overlap and differences

Young

Visual Somatomotor Cingulo-opercular DMN FPCN Other Total (count) % Nodes in common

Old
Visual 33 0 0 4 0 1 38 87%
Somatomotor 0 37 3 6 0 1 47 79%
Cingulo-opercular 0 0 47 0 2 1 50 94%
DMN and FPCN 1 1 9 26 44 8 89 79%
Other 4 0 0 0 2 5 11

Total (count) 38 38 59 36 48 16 235

% Nodes in common 87% 97% 80% 72% 92%

Total (count) refers to the number of nodes in each module. % Nodes in common refers to the percentage of nodes assigned to a specific module that ended up in the same module in the final node–

module assignments.
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number of strong positive correlations (between 0.4 and 0.8)
was reduced in elderly (P < 0.05, see Fig. 4A). Correlations
between 0.08 and 0.18 were more pronounced in elderly. Taken
together, overall functional connectivity decreased with age.

In addition, functional connectivity within and between
each of the functional networks was examined. To distinguish
effects of aging on positive and negative correlations (also
referred to as anti-correlations Fox et al. 2009), these were
examined separately (see Fig. 4B). The strength and number of
correlations was combined in a single measure (total positive
correlation or total negative correlation, respectively) and
compared between younger and older participants. To select
relevant connections an FDR-threshold was applied (P < 0.05
FDR corrected) to the correlation matrix of each participant.
Subsequently node–module assignments were used to identify
correlations within and between specific networks. The
connectivity within the cingulo-opercular control network
(z = 4.59, P < 0.001), the FPCN (z = 2.64, P = 0.008), and the
DMN (z = 4.23, P < 0.001) was reduced with age, as was
the connectivity between the cingulo-opercular network and
the somatomotor network (z = 2.02, P = 0.04). The connectivity
between the visual network and the somatomotor networks
(z = 3.04, P = 0.002) and between the visual and the
cingulo-opercular network (z = 2.62, P = 0.009) increased with
age.

Negative correlations were reduced in elderly between the
somatomotor network and the visual network (z= 2.48, P =
0.013), between the cingulo-opercular network and the FPCN
(z= 2.01 P = 0.044) and between the DMN and the FPCN (z= 2.07,
P = 0.038). An increase in negative correlations was observed
between the cingulo-opercular network and the somatomotor

network (z = 2.04, P = 0.042) and within the cingulo-opercular
network (z= 4.24, P< 0.001).

Uddin et al. (2009) argued that the negative correlations
between the DMN and FPCN result from a unilateral influence of
the DMN on the FPCN. Therefore, we tested whether decreased
intra-network connectivity in either the FPCN or DMN was
indeed related to a decrease in negative correlations between the
DMN and FPCN. We found that correlations within the DMN
were associated with negative correlations between the DMN
and FPCN in both younger (r = 0.33, P = 0.044) and older partici-
pants (r = 0.47, P = 0.005). However, correlations within the
FPCN were not predictive of negative correlations between
the DMN and FPCN in younger (r =−0.01, P = 0.95) nor older
participants (r =−0.06, P = 0.72).

Age-Related Changes in Network Measures Related to

Cognitive Performance

Cognitive performance was assessed by neuropsychological
tests in all participants. Since some of the neuropsychological
test scores showed high collinearity, we first performed factor
analysis on the data of all participants (younger and older) to
cluster the tests. Four factors were identified: verbal learning,
loading high on the Rey auditory verbal learning test direct
recall (0.77) and recognition (0.98); processing speed, with
high loadings on the trail making tests A (0.84) and B (0.58),
symbol substitution test (0.53) and matrix reasoning test
(0.47); working memory, loading high on the forward (0.52)
and backward digit span (0.95); crystallized intelligence with
high loadings on the trail making B (0.45) and adult reading
test (0.61). Older participants showed a significant decline of

Figure 3. (A) Differences between old and young participants in modularity, global efficiency and local efficiency are plotted for thresholds between 2% and 10% of all possible
connections. The dashed line indicates the P-values corresponding to the difference between the 2 groups, these values are presented on the right y-axis. (B) A test of age-related
differences in module decomposition is shown over a range of thresholds. The null distribution of NMI values resulting from the permutation testing procedure is shown in the
boxplots. The black dot represents the actual NMI value of the correspondence between the 2 age groups.
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performance in verbal learning (z = 3.36, P < 0.001) and pro-
cessing speed (z = 3.22, P = 0.001) but not on working
memory or crystallized intelligence.

For each of the network measures that showed an effect of
age, we tested whether it was related to any of the 4 neuropsy-
chological test factors, using partial Spearman correlations,
controlling for the effects of age. Within the younger group, we
found that reduced modularity was related to better verbal
learning (r =−0.37, P = 0.025), while increased local efficiency
in the full graph was related to increased processing speed (r =
0.37, P = 0.028). Modularity and local efficiency did not show
significant relations with performance in the older group.

Within the younger group, we found that better verbal learning
was associated with increased local efficiency and intra-network
connections within the DMN (r = 0.40, P= 0.015 and r = 0.40, P=
0.015, respectively). In addition, better verbal learning was related
to increased negative correlations between the cingulo-opercular
network and the DMN and between the FPCN and DMN (r= 0.39,
P= 0.019 and r = 0.42, P= 0.01, respectively). Increased working

memory was associated with decreased local efficiency within the
cingulo-opercular network (r =−0.33, P = 0.044) and decreased
negative correlations between the cingulo-opercular network and
the FPCN (r =−0.35, P = 0.037). In elderly, increased intra-
network correlations in the FPCN were related to increased
working memory (r = 0.34, P = 0.043) and crystallized intelligence
(r = 0.39, P = 0.019). In addition, increased crystallized intelli-
gence was associated with increased negative correlations within
the cingulo-opercular network (r = 0.35, P = 0.042). It should be
noted that the correlations between behavior and network
measures do not survive an FDR correction for multiple compari-
sons. Therefore, these results should be interpreted with caution.

Age-Related Changes in Network Measures Related to

Structural Differences

The Jacobian determinant was used as a measure of local gray
matter volume differences between the individual images and
the DARTEL template. In the young, the Jacobian determinant
(local expansion factor) tended to be larger (1.058) than in

Figure 4. (A) The distribution of correlations shown for older (lighter) and younger (darker) participants. The number of correlations was counted in the separate bins with a size of
0.01. On the y-axis, the average number of correlations within the group, divided by the average number of correlations across both groups is depicted. A bin was included if at least
half of the participants had one or more correlations in that particular bin. Stars indicate bins showing a significant difference between older and younger participants (*P< 0.05).
(B) Average total functional connectivity (representing both strength and number of correlations) within and between networks is shown for younger (left) and older (middle)
participants. The upper row demonstrates the changes in positive correlations, whereas the bottom row demonstrates the changes in negative correlations. The right panel shows
significant differences in functional connectivity between both age groups. A fully filled square indicates decreased total correlations with age, a filled square with a diamond shape
indicates increased total correlations with age.
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the older participants (0.978; z = 1.72, P = 0.085), indicating
that on average, the local volume was larger in younger than
older participants. The same pattern was observed in all 5 separ-
ate modules (visual, z = 3.09, P = 0.002; somatomotor, z = 1.92,
P = 0.055; cingulo-opercular, z = 2.99, P = 0.003; FPCN, z = 3.99,
P < 0.001, DMN, z = 4.84, P < 0.001).

We found that the average Jacobian determinant over the
whole brain correlated significantly with the whole-brain local
efficiency (r = 0.31, P = 0.006) as well as modularity (r = 0.32,
P = 0.005) but not with the global efficiency (r = 0.18, P = 0.12).
When we examined the correlations for each specific network,
we found that some of the network measures that changed
with age, were correlated with the Jacobian determinant. For
the local efficiency per module, we found no significant corre-
lations with the Jacobian determinant (visual, r = 0.14, P = 0.22;
somatomotor, r = 0.04, P = 0.77; cingulo-opercular, r = 0.21,
P = 0.076; FPCN, r = 0.07, P = 0.56; DMN, r = 0.16, P = 0.16). For
the participation coefficient, we found a significant correlation
with the Jacobian determinant (r =−0.35, P = 0.002) only in the
somatomotor network. In the other networks no significant
relationship was observed (visual, r =−0.06, P = 0.59; cingulo-
opercular, r =−0.10, P = 0.41; FPCN, r =−0.06, P = 0.61, DMN,
r = 0.02, P = 0.85).

Discussion

Using complex network measures, we identified clear differ-
ences in the organization of connections within and between
functional networks with age. Brain networks in the elderly
showed decreased modularity and decreased local efficiency
within the DMN, FPCN and cingulo-opercular networks. Con-
versely, local efficiency in the visual and somatomotor networks
was not affected by agewhile the participation coefficient of these
networks was increased in elderly. Additional analyses showed
that this increase in participation coefficient was due to increased
connectivity between the visual and somatomotor network, as
well as, between the visual and cingulo-opercular network.

In younger adults, functional brain networks were found to
be highly modular, as reflected in high intranetwork connec-
tivity along with few internetwork connections (Ferrarini et al.
2009; Meunier et al. 2010). In this study we have shown that
this modularity is reduced in elderly, indicating that functional
brain networks become less differentiated or less specific with
age. These findings are in accordance with our previous study,
where we used seed-based correlation analyses to demonstrate
an increase in internetwork connections along with decreased
intra-network connections during task performance (Geerligs
et al. 2012). The present study extended these findings in 2
ways. First, the current findings demonstrate that age-related
changes in functional connectivity are general and not restricted
to performance during specific tasks. Second, the use of graph
theory allowed us to quantify the effects of age on modularity.
These effects are large, there is only little overlap in the modu-
larity values of younger and older participants (see Fig. 2A).

The dedifferentiation theory suggests that overactivation of
brain areas in elderly might be due to a decrease in functional
distinction between brain areas (Baltes and Lindenberger
1997; Park et al. 2004; Carp et al. 2011; Dennis and Cabeza
2011). In line with our previous study (Geerligs et al. 2012),
the current findings show that dedifferentiation also occurs on
the level of functional networks. Functional networks show in-
creased internetwork connections in older age along with

decreased intra-network connections, which makes them less
distinct. These age-related changes in functional connectivity
could be related to a dedifferentiation of activation patterns.
Although the term dedifferentiation has often been used to
indicate a link with age-related declines in performance, the in-
crease in internetwork connections might also have a compen-
satory role.

Along with reduced modularity, the local efficiency across
the whole network was reduced in elderly, while global effi-
ciency was not affected by aging. The latter finding might be
related to the increase in internetwork connections with age.
Our findings are partly in accordance with previous results
(Achard and Bullmore 2007), that have shown a reduction in
local efficiency and global efficiency with age, while modular-
ity was reported to be stable across age groups (Meunier et al.
2009). Differences between those results and the current find-
ings may be related to the regional parcellation of the brain
that was used in the previous study for graph construction (90
vs. 235 nodes in the present study), which has a limited ability
to represent functional networks due to coarse nodes which
encompass different functional areas (Power et al. 2011).

It has been suggested that overactivations in elderly are
caused by less efficient use of neural resources (reduced cost
efficiency); this theory has related over-recruitment of brain
areas to less efficient performance in elderly (Morcom et al.
2007; Rypma et al. 2007; Stevens et al. 2008). The decline in
local efficiency can be interpreted as a sign of reduced cost effi-
ciency in the elderly brain, that is, with the same number of
connections (cost) the efficiency is decreased. Because of the
large metabolic costs of supplying the brain with resources,
minimizing these costs is likely one of the selection pressures
during evolution (Chen et al. 2006). Minimal metabolic costs
can be achieved through high clustering of connections in
brain networks (i.e., high local efficiency) along with sparse
long range connections which are more costly but greatly in-
crease the speed of information transfer (Buzsáki et al. 2004;
Kitzbichler et al. 2011; Bullmore and Sporns 2012). Even
though for older and younger participants the analyzed graphs
contained the same number of connections, the local efficiency
in the resulting network was smaller in the older participants.
Furthermore, we found an increase in the number of intermod-
ular connections in older compared with younger participants.
Intermodular connections tend to be longer and therefore more
costly, than intramodular connections (Meunier et al. 2010). To-
gether, these findings indicate a decrease in the cost efficiency
of functional networks of elderly. Note that we have shown that
the reduction in cost efficiency is not only present during task
performance (Morcom et al. 2007; Rypma et al. 2007; Stevens
et al. 2008) but also during resting-state conditions.

In addition to comparisons between age groups, we also
studied the correlations between the global network measures
(modularity and global and local efficiency) and chronological
age within the older group. No significant correlations were
observed, which suggests that the changes in functional con-
nectivity are not linearly related to chronological age. This fits
with the model presented in a recent review article of Grady
(2012), which illustrates how the effect of aging on functional con-
nectivity could be mediated by many different (environmental)
factors. These mediating variables (e.g., such as stress, education,
exercise, genes, life experiences and diet (Milgram et al. 2002;
Kramer et al. 2004; Pesonen et al. 2013)) might obscure a linear
relation between aging and functional connectivity.

Cerebral Cortex July 2015, V 25 N 7 1995
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Besides age-related changes in global network properties,
we showed changes in connectivity within and between
specific functional networks in the older brain. Internetwork
connections increased with age, primarily between the visual,
somatomotor and cingulo-opercular networks. Local efficiency
and intra-module correlations within the cingulo-opercular
network, the FPCN and the DMN decreased with age. These
results are in line with a recent study by Tomasi and Volkow
(2012). They examined functional connectivity in relation to
aging and showed that long range connectivity decreased from
areas within the DMN and FPCN, while long range connec-
tivity increased from areas in the somatomotor network, thala-
mus and cerebellum.

Previous research has linked age-related decreases in con-
nectivity within the DMN to decreased memory, executive
functioning and processing speed (Andrews-Hanna et al. 2007;
Sambataro et al. 2010; Geerligs et al. 2012). Decreased connec-
tivity within the FPCN with age has also been shown before
(Andrews-Hanna et al. 2007; Madden et al. 2010; Rieckmann
et al. 2011) and was associated with more efficient semantic re-
trieval in both younger and older participants (Madden et al.
2010). In line with these findings, we found that both connec-
tivity within the DMN and local efficiency within the DMN cor-
related positively with verbal learning in younger participants.
In addition, we found that connectivity changes were related
to cognitive functioning; higher connectivity within the FPCN
was associated with better working memory and crystallized
intelligence in elderly. Although these findings are in line with
the results in the literature, the correlations with behavior did
not survive corrections for multiple comparisons and should
therefore be interpreted with caution. Note that the decreases
in intra-network connections occurred in 3 networks involved in
higher level functions, while the networks involved in primary
sensory and motor processing maintained intra-network connec-
tions with age. The findings in the literature as well as the obser-
vations in the current study suggest that the decreased connectivity
within the DMN and FPCNmight be related to cognitive decline in
the aging brain.

The FPCN and the DMN formed one functional network in
elderly in the module decomposition, while they formed sep-
arate networks in younger participants. In addition, decreased
negative correlations between the FPCN and the DMN were
observed with age. In several studies, it has been shown that
older participants show reduced suppression of the DMN
during performance of cognitive tasks (Lustig et al. 2003;
Grady et al. 2006; Persson et al. 2007; Sambataro et al. 2010).
In addition, the ability to flexibly decouple the FPCN from the
DMN in tasks requiring an external focus was shown to be
reduced with age (Spreng and Schacter 2011). These findings
were argued to reflect a decline in neuromodulation at the
level of larger-scale brain networks due to deficits in executive
control. The current results suggest that the reduced integrity
of both the DMN and the FPCN, as well as the decreased nega-
tive correlations between the 2 networks, result in reduced
differentiation of these 2 networks. This dedifferentiation
might underlie the reduced ability of elderly to modulate the
2 networks separately during task performance.

The correlation with behavior suggests that increased nega-
tive correlations between the DMN and the FPCN in the elderly
might be related to improved verbal learning. This is in agree-
ment with previous studies that have shown an association
between negative correlations between FPCN and DMN and

better working memory and flanker task performance in
younger participants (Kelly et al. 2008; Hampson et al. 2010).
It has been suggested that the negative correlations between
the DMN and FPCN are due to a unilateral influence of the
DMN on the FPCN (Uddin et al. 2009). Supporting this idea,
we have shown in the present study that the negative corre-
lations between DMN and FPCN are related to the connectivity
strength within the DMN but not to the connectivity strength
within the FPCN, in older as well as younger participants. As
aging is related to a decrease in intra-DMN connectivity as well
as a decrease in DMN–FPCN negative correlations, the current
findings suggest that both phenomena might be related to the
reduction in intra-DMN connectivity.

Limitations

We found some interesting relations between performance on
neuropsychological tests and complex network measures.
Whereas some of the results are well in line with previous litera-
ture, suggesting that decreased connectivity within functional
networks is related to reduced levels of task performance, for
other results the interpretation is less straightforward. It is im-
portant to note that correlations between cognitive performance
and network measures did not survive correction for multiple
comparisons, therefore, they should be interpreted with caution
to avoid speculation. However, they do provide a starting point
for future studies.

Possibly, older and younger participants had different levels
of arousal during the scanning session. However, there are a
number of reasons why it is unlikely that such differences were
the cause of the age-related effects on functional connectivity
we observed. First of all, none of the participants mentioned
that they had fallen asleep during the debriefing. Second, pre-
vious studies, that have examined functional connectivity
differences in awake versus sleeping participants, showed only
minor changes in functional connectivity (Horovitz et al. 2008;
Larson-Prior et al. 2009). Furthermore, these changes were
very different from the effects of aging that we observed in the
current study (i.e., only a small increase in connectivity was ob-
served during sleep within the DAN and no change was ob-
served in the DMN in Larson-Prior et al. 2009).

In addition to functional changes, aging is known to be related
to changes in underlying brain structure (Park and Reuter-Lorenz
2009). The functional networks in which we identified an
age-related decrease in local efficiency in the present study show
overlap with areas that generally show age-related reductions in
gray or white matter. Reduced white matter is generally observed
in frontal areas of the aging brain, whereas gray matter reductions
are mainly found in frontal and parietal cortices, as well as in the
insula and hippocampus (Good et al. 2001; Resnick et al. 2003;
Raz et al. 2005; Gunning-Dixon et al. 2009; Madden et al. 2009).
We therefore performed additional analyses to examine the
relation between complex networkmeasures and structural differ-
ences. The observed correlations between whole-brain local effi-
ciency and modularity with the Jacobian determinant indicated
that for these measures, it was not possible to disentangle the
effects of aging on structural differences from the effects on func-
tional connectivity. However, for the measures of local efficiency
per module, we found no significant correlation with the Jacobian
determinant. In addition, only for the somatomotor network, but
not for the visual network, we observed a significant correlation
between the Jacobian determinant and the participation
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coefficient. These results demonstrate that not all of the observed
differences in complex network measures can be attributed to
age-related differences in brain structure. This is in line with the
results of a previous study (Geerligs et al. 2012), in which we
showed that changes in functional connectivity cannot be fully ex-
plained by changes in gray matter volume. Nevertheless, based on
the results of the present study, it is difficult to conclude whether
the reduction of gray matter in specific functional areas (nodes)
and/or the reduced white matter integrity between functional
areas (edges) is an underlying cause of the decline in intra-network
connections. It would be important for future longitudinal studies
to assess to what extent the changes in functional connectivity are
indeed driven by the changes in gray and white matter.

Conclusions

In the current study we have shown that aging has pronounced
effects on specific functional networks in the brain. In general,
modularity and local efficiency were reduced and the distinction
between the DMN and FPCN was diminished. Moreover, we
have shown that the decreases in intra-network connections did
not occur in primary processing networks, but were restricted to
networks involved in higher order cognitive processes. Together
with the increase in connectivity between visual and somatomo-
tor networks, these results suggest a shift in the balance between
intra- and inter-network connections. The results demonstrate
that a brain-wide analysis approach of functional connectivity in
the aging brain is fundamental to understand how age affects
integration of information, both within and between networks.

Supplementary Material

Supplementary material can be found at: http://www.cercor.oxford
journals.org/.
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