
A BRANCH-AND-BOUND ALGORITHM FOR ZERO-

ONE MIXED INTEGER PROGRAMMING

PROBLEMS

Ronald E. Davis

Stanford University, Stanford, California

David A. Kendrick

University of Texas, Austin, Texas

and

Martin Weitzman

Yale University, New Haven, Connecticut

(Received August 7, 1969)

This paper presents the results of experimentation on the development of an
efficient branch-and-bound algorithm for the solution of zero-one linear
mixed integer programming problems. An implicit enumeration is em-
ployed using bounds that are obtained from the fractional variables in the
associated linear programming problem. The principal mathematical
result used in obtaining these bounds is the piecewise linear convexity of the
criterion function with respect to changes of a single variable in the interval
[0, 11. A comparison with the computational experience obtained with
several other algorithms on a number of problems is included.

MANY IMPORTANT practical problems of optimization in manage-
ment, economics, and engineering can be posed as so-called 'zero-

one mixed integer problems,' i.e., as linear programming problems in
which a subset of the variables is constrained to take on only the values
zero or one. When indivisibilities, economies of scale, or combinatoric
constraints are present, formulation in the mixed-integer mode seems
natural. Such problems arise frequently in the contexts of industrial
scheduling, investment planning, and regional location, but they are by
no means limited to these areas.

Unfortunately, at the present time the performance of most compre-
hensive algorithms on this class of problems has been disappointing. This
study was undertaken in hopes of devising a more satisfactory approach.
In this effort we have drawn on the computational experience of, and the
concepts employed in, the LAND AND DoIGE161 Healy,[13] and DRIEBEEKt' I

algorithms. Similar approaches are contained in the work of BEALE

1036

Zero-One Mixed Integer Programming Problems 1037

AND SMALL.12] A related enumeration scheme is contained in GRAVES

AND WHINSTON. JI
Our approach is basically a branch-and-bound nethod of enumeration.

While this is not generally the most 'glamorous' type of algorithm, our
experience indicates that it works well in solving practical problems. As
with any branch-and-bound algorithm, efficiency derives primarily from
choosing branches and bounds in a manner that is computationally effective.

We proceed with a discussion of the algorithm, followed by a presenta-
tion of our computational results.

1. GENERAL THEORY

LET

YUnj

be an n-vector of zero-one variables, each of which is constrained to be zero
or one. Let

be an mn-vector of continuous nonnegative variables. The standard form of
the zero-one mixed integer programming problem is the following:

minimize z=4(y, x) =cy+dx, (1)
subject to

A[Y] > b for Y >0 (2)

y<?1 for i=1, ,n, (3)

yi==Oor1 for i=1, , n. (4)

There are 2' possible y vectors satisfying (4). Some of these may admit
of no x satisfying (2) and hence are infeasible.

Consider the solution (y, x) to the problem (1), (2), (3). [We call
(y, x) the solution to the 'unconstrained' problem because the integer con-
straints (4) are missing.] If y is already a vector of zeros and ones, the
problem is solved. Far more likely, it is not. In that case, we seek more
information about the local properties of the unconstrained solution.

Consider the variable yi. Let z1Q(1) be the optimal value of the objec-
tive function defined parametrically in terms of yl for the problem (1), (2),
(3) with the additional constraint y, = Y for icE[O, 1]. It can be shown that

zl(g7) is a piecewise linear convex function of g (cf. DANTZIG,t31 p. 168).

1038 Ronald E. Davis, David A. Kendrick, and Martin Weitzman

To map out the entire function z1(pi) would require, in general, the solu-
tion of many linear programming problems. We settle instead for the more
easily attainable behavior of the two linear segments to the direct right and
left of gi. The slopes of these two segments can be read out of the linear
programming tableau. (Strictly speaking, the assertion is true only if the
basis is nondegenerate. If degeneracy is involved, we may be able to ob-
tain only a lower bound on the slope of each segment, difficult to picture
geometrically, but otherwise the results are not altered.)

zi (Yi) I

J I

0 Y1 Yi

Fig. 1. A piecewise linear convex function.

The slopes are obtained as follows. Suppose, first of all, that y, is in the
optimal basis of the associated linear program and that O<i<l<. Let
{wj:jENB} be the set of nonbasic variables, let

Y1+ Z jeNB tijWj
= y1

be the row in the updated simplex tableau corresponding to yi, and let

Z + E j,AIB e jW j = 09~ (y X)

be the reduced-cost row (where c_ 0 for jENB). Along the extreme rays
adjacent to (y, x) generated by increasing one wj and holding the other
nonbasic variables fixed, we have:

(i) If aij>O, increasing wj by 1/dj will decrease y, by 1 and increase
the objective function by cj/lij.

(ii) If Jij<O, increasing wj by l/-atj will increase y, by 1 and the
objective functioIn by ?/ -dij.

(iii) If aij =O, increasing wj has no effect on y1.
Since the feasible region is contained in the convex cone generated by

Zero-One Mixed Integer Programming Problems 1039

these rays (cf. DANTZIG,t31 p. 155), it follows that

= minjji >O jfNB j/atij and ml=min_aij >o,jEAB -C.-ai, (5)

(where mo is defined to be infinite if all atij<O, and m1 is defined to be
infinite if all dij? O) are lower bounds (which are exact except possibly in
the case of degeneracy) on the absolute value of the slopes of z1(y1) at zh.

If y, is a nonbasic variable at level 0, ml = jc; if it is a basic variable at
level 0 or 1, only ml (or mo) need be computed from (5).

From the convexity of z1(y1) it follows that [qo(j), qi(j)] given by

qo(j) -zi () +1 7rmo?z1(0), (6)

ql(j) Zl(0l) + (1 1-y1) ml_ zi(t)

are lower bounds on the objective function value if yj is forced to the values
0 or 1, respectively (cf. DRIEBEEK[61). Bounds for Y2, , y. can be com-
puted analogously. These bounds are used repeatedly in the algorithm for
branching decision, and are rapidly computed directly from quantities in
the updated simplex tableau provided bv the simplex algorithm.

2. BRANCH-AND-BOUND SEARCH

EXPOSITIONS AND EXAMPLES of branch-and-bound-search algorithms
abound in the literature (e.g., LAND AND DOiG,[161 BALAS,'1] AND GEOF-

FRION[8]); we reiterate here only that such an algorithm proceeds by se-
quentially partitioning the potential solution space into disjoint subsets
determined by specifying the values of some of the discrete variables
(called a 'partial assignment' or 'partial solution'); that a lower bound is
computed for the value of the objective on all elements of each such subset
(the set of completions of a partial assignment); and that the partitioning
process can be represented diagramatically in the form of a tree (where
nodes correspond to partial assignments).

The relative,efficiency of a branch-and-bound algorithm over total
enumeration derives from the ability to eliminate from consideration large
subsets of potential optimal solutions. Two principal ways of eliminating
such subsets are: (i) to show that no feasible completion of a given partial
assignment exists; and (ii) to show that no optimal completion of a given
partial assignment exists. Balas and others following him (see FLEISCH-

MANN, 17'] IVANESCU AND RUDEANU[141) have developed a set of additive
feasibility tests for these purposes that utilize the zero-one restriction on
the discrete variables in an essential way. Land and Doig[16' suggested
performing subset elimination by referring to the solutions to linear pro-
grams obtained by fixing the variables in a partial assignment to their
assigned values. Although developed in isolation from one another, these

1040 Ronald E. Davis, David A. Kendrick, and Martin Weitzman

two approaches are clearly not mutually exclusive; incorporation of both
into the same algorithm may yield further improvements in computational
efficiency (see Geoffrionl'9]). The algorithm reported here, however,
results from an investigation of the ways in which the Land and Doig
approach can be enhanced by using tables of bounds derived from those
described above.

Thus, if I= { 1, 2, ... , n} is the index set of the zero-one variables, and
if Io and I, are the index sets of variables in a partial assignment assigned to
zero and one, respectively, let LP(Io, I,) be the associated 'restricted' linear
program (with variables indexed by Io and I, fixed at their assigned values
and let Q(Io, I,) be the associated bounds matrix defined by (6). Then
if If is the set of free variables (If=I- [IoUI11),

T(Io, I,)=-max j,If min [qo(j), q1(j)] (7)

is a lower bound on the value of the objective function for anv completion
of (Io, I,). All completions of (Io, I,) can thus be eliminated if (i) LP
(Io, I,) is infeasible, or (ii) T(Io, I,) > , where z is an upper bound on the
optimal solution value. If neither of these conditions obtains, but qu(j) > 2
for some jEIf, u=O or 1, then all completions of (Io, I,) yielditig an improved
solution value must satisfy yj=(1-u). In this case, (Io, I1) may be
enlarged to (Io', I,'), where

Io'=IO Ii I'=IU {j} (8a)
if u=O, or

Io'=IoU{j}, I1=I1 (8b)

if u = 1; if y?j is fractional valued in the solution to LP(Io, I,), the solution
to LP(Io', I,') yields an improved set of bounds Q(Io', I,') to which the
above tests may be applied again. Augmenting partial assignments in this
way can substantially reduce computation times.

Some virtually costless improvements on the bounds matrix Q(Io, I,)
follow from the observation that, since any completion of (Io, I,) is also a
completion of (Jo, J1) if JoCIo and J1QIi,

Q(Io, I,) =supJ0CIr,j1C1r Q(Jo, J1) (9)

is another valid, and generallv improved, bounds matrix. A more readily
computable improvement over Q(Io, I,), which lends itself well to the
algorithm given below, is provided by the following updating procedure:

Q(1oU{j}, I,),-sup {Q(IoU{j}, IO), Q(Io, I]))} (10)

Q(Io, IiU{j})*--sup {Q(Io, Iu{j}), Q(Io, I1)}.

The results reported below were obtained usinlg bounds matrices updated
in this way.

Zero-One Mixed Integer Programming Problems 1041

To obtain large lower bounds and avoid redundant assignments of
variables connected by constraints, partitioning of the completions of a
partial assignment (Io, I,) that cannot be enlarged or eliminated is accom-
plished by choosing that fractional valued variable yj in the solution to
LP(Io, I,) that has maximum zero or one bound, and considering the two
sets of completions of (Io, II) determined by assigning yj to 0 or yj to 1.

3. STATEMENT AND DISCUSSION OF THE ALGORITHM

LET Z be the current upper bound on the optimal solution value, and S be
the set of partial assignments that remain to be considered at iteration v.
S0 is defined to consist of the vacuous assignment with both Io and I
empty (which is the 'specified' node for iteration 1). Then the vth itera-
tion of the algorithm proceeds as follows:

A. Node Evaluation
Solve LP(Io, I,) for the currently specified assignment (Io, I,) and, if feasible,

compute Q(Io, I,) and V1(Io, II), using (6), (10), and then (7).
(1) If LP(Io, I,) is infeasible or 4/(Io, I1) _z, form S, by removing (Ioa, II) from

S.-, and go to step C.
(2) If y satisfies (4), record the feasible solution as the best yet found, set z to

the current objective function value, form S, by removing (Io, I,) from S,-1, and
go to step C.

(3) If qo(j) _z or qi(g) >z for any free variable yj, JEIf, enlarge (Ia, I1) according
to (8), and, if any such yj is fractional valued in the solution to LP(Io, I,), repeat
step A. Otherwise, continue with step B.

B. Node Formation (or branching)
For the current (possibly enlarged) assignment (Io, I1), findj *EIf such that yj * is

the fractional-valued variable in the solution to LP(Io, I1) with the largest zero or
one bound, and form S. by replacing (Io, I,) in Sv_l with the two assignments
(IoU{j*}, I,) and (Io, IiU{j*1). lf q.(j*) <ql-f(j*) (u=0 or 1), a lower bound on
the completions with yj* =u is 4(Io, I,), and, with yj* 1 -u, is ql1u(j*).

C. Node Selection
Choose the next partial assignment to be evaluated from S, according to one of

the following rules:
Option (1). If (Io, I,) was eliminated or yields an integer solution, use option (2).

Otherwise specify the assignment determined in B where yj * is assigned to the value
with the smaller bound.

Option (2). Specify the node in S, with the least lower bound. If S, is empty
or none with lower bound less than z exist, the search is complete.

In option (1), the current assignment is partially completed at succes-
sive iterations until it becomes infeasible, is bounded off by the current
upper bound z, or produces an improved feasible solution. A disadvantage
of this approach is that many more nodes may be evaluated than are
necessary to prove convergence. One advantage is that storage require-

1042 Ronald E. Davis, David A. Kendrick, and Martin Weitzman

ments are minimal. Option (2) is the 'flooding' strategy of always evaluat-
ing the partial assignment with lowest lower bound. The advantage of
this procedure is that only those assignments that are necessary to prove
convergence are evaluated. A disadvantage is that large storage capacity
may be required. Use of random-access disk-removed computer memory
is a limiting factor for us, so this approach was usually used.

The efficacy of the tests in A depends on obtaining a good upper bound
z early in the search. One of the most successful approaches tried was to
run the algorithm with option (1) and z-= +c in the very beginning.
This usually resulted in a near-optimal feasible integer solution; then option
(2) could be applied.

4. EXPERIENCE WITH THE ALGORITHM

TABLE I gives a resume of computational experience with our algorithm
(DKW) using updated bounds matrices and the 'flooding' strategy search.
The table also gives comparisons with the experience of others where
possible. Option 2 was used for all the runs of our algorithm reported
here.

Solution time in the table refers to the time required on an IBM 7094
to obtain the optimum mixed integer solution, including the solution to
the unconstrained problem. In the solution of the Kendrick problem with
the Healy algorithm, all but four of the variables could have been bounded
off after 24 minutes using an upper bound obtained from other solutions of
the problem. Though such a bound is not available in the Healy algorithm,
it is used here for comparative purposes. It is assumed that the enumera-
tion of the remaining 16 lattice points would have required 10 minutes.
The same type of adjustment is made for the number of LP's and itera-
tions. In solving the same problem with Driebeek's algorithm, the run
was halted after enumerating 100 of the 128 'unbounded' lattice points in
44 minutes. Enumeration of the remaining 28 lattice points is assumed
to have required 12 minutes. The same type of adjustment is made for
the number of LP's and iterations.

ACKNOWLEDGMENTS

THIS RESEARCH was supported in part by the National Science Foundation
and in part by the Agency for International Development and Harvard
University. We are grateful to the referees for referring us to the related
works of BEALE AND SMALL and of GRAVES AND WHINSTON.

Of the programs we used, the Land and Doig algorithm was coded by
PAUL ROBERTS and BOB BURNS, the Healy algorithm was coded by KEN-

DRICK AND WEITZMAN, and the algorithm described in this paper was coded

Zero-One Mixed Integer Programming Problems 1043

4-J _ 00 ? 00 0 Nq

0 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 0
s-4 0 ~ ~ ~ ~ ~ ~ 00

'-

a).-

H

C

O 0 ., " . U) H 0% 00
,a 4i t

z
M H 0

o O

? O ;, .0 iH H ?? C m H O

1 4-) E ? E00 00 H N 4 H >

0 ~ ~ ~ 00

H W

0 00 H 00 0 en en 0 0 O

0 ~~~~ %0 00 %~~~C\ 0 00 0% j- 0

N Z Q Q N 0 t- 0 . 0 % Ir) d
H 00 \0 H o H (00

Oz4Z ,Cd Q 2 OO

Cd la C -dt t t td k kY t

-a a) ,N) +) xO t

0 0l H t~~ 0 0 ~ 0

g n

z4 a-) b04-4

0 H

E-)

0 d

S X a) m x m

H ,>

0~~~~~~~~~~~~~~~~~~
5
to -z--I

H 0 -~~~~~~~~vt0
0 ~ ~ ~ ~ ~~ ~ ~ ~ U

Cd ~ ~ ~ ~ H > C C ~ C
a)C CdC ~ C

1044 Ronald E. Davis, David A. Kendrick, and Martin Weitzman

by DAVIS (see Davis[5]). We are indebted to JUN ONAKA for able pro-
gramming assistance in solving the problems referred to in Table I.

REFERENCES

1. E. BALAS, "An Additive Algorithm for Solving Linear Programs with Zero-One
Variables," Opns. Res. 13, 517-546 (1965).

2. H. M. L. BEALE AND R. E. SMALL, "Mixed Integer Programming by a Branch-
and-Bound Technique," Proceedings of the IFIP Congress, 1965, pp. 450-451,
W. A. KALENICH (ed.) Spartan Press, Washington, D. C. and MacMillan,
London. See also E. M. L. BEALE Mathematical Programming in Practice, Sir
Isaac Pitman and Sons, London, 1968.

3. GEORGE B. DANTZIG, Linear Programming and Extensions, Princeton University
Press, Princeton, N. J., 1963.

4. RONALD E. DAVIS, "A Hospital Scheduling Program: Formulation and Solution
in Zero-One Variables," B.A. Thesis, Committee on Applied Mathematics,
Harvard University, 1967.

5. -, "Program Description for MFOR-(0-1) MIP: A Code for Zero-One
Mixed Integer Programming Problems," Report No. 71, Project for Quanti-
tative Research in Economic Development, Harvard University, Cambridge,
Mass., September, 1967.

6. NORMAN J. DRIEBECK, "An Algorithm for the Solution of Mixed Integer Pro-
gramming Problems," M1anagement Sci. 12, 576-587 (1966).

7. BERNHARD FLEISCHMANN, "Computational Experience with the Algorithm of
Balas," Opns. Res. 15, 153-155 (1967).

8. A. M. GEOFFRION, "An Improved Implicit Enumeration Approach for Integer
Programming," Rand Corporation Memorandum RM-5644-PR, June 1968.

9. - -, "An Improved Implicit Enumeration Approach for Integer Program-
ming," Opns. Res. 17, 437-454 (1969).

10. G. GRAVES AND A. WHINSTON, "A New Approach to Discrete Mathematical
Programming," lIManagement Sci. 15, 177-190 (1968).

11. JOHN HALDI, "Twenty-Five Integer Programming Test Problems," Working
Paper 43, Graduate School of Business, Stanford University, December
1964.

12. - AND LEONARD M. ISAACSON, "A Computer Code for Integer Solutions
to Linear Programs," Opns. Res. 13, 946-959 (1965).

13. W. C. HEALY, JR., "Multiple Choice Programming," Opns. Res. 12, 122-138
(1964).

14. P. L. IVANESCU AND S. RUDEANU, Boolean Methods in Operations Research,
Springer-Verlag, Berlin, 1968.

15. DAVID A. KENDRICK, Programming Investment in the Process Industries, M.I.T.
Press, Cambridge, Mass., 1967.

16. A. H. LAND AND A. G. DOIG, "An Automatic Method of Solving Discrete Pro-
gramming Problems," Econometrica 28, 397-520 (1960).

17. H. M. MARKOWITZ AND A. S. MANNE, "On the Solution of Discrete Program-
ming Problems," Econometrica 25, 84-98 (1957).

	p. 1036
	p. 1037
	p. 1038
	p. 1039
	p. 1040
	p. 1041
	p. 1042
	p. 1043
	p. 1044

