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This paper presents the results of experimentation on the development of an 
efficient branch-and-bound algorithm for the solution of zero-one linear 
mixed integer programming problems. An implicit enumeration is em- 
ployed using bounds that are obtained from the fractional variables in the 
associated linear programming problem. The principal mathematical 
result used in obtaining these bounds is the piecewise linear convexity of the 
criterion function with respect to changes of a single variable in the interval 
[0, 11. A comparison with the computational experience obtained with 
several other algorithms on a number of problems is included. 

MANY IMPORTANT practical problems of optimization in manage- 
ment, economics, and engineering can be posed as so-called 'zero- 

one mixed integer problems,' i.e., as linear programming problems in 
which a subset of the variables is constrained to take on only the values 
zero or one. When indivisibilities, economies of scale, or combinatoric 
constraints are present, formulation in the mixed-integer mode seems 
natural. Such problems arise frequently in the contexts of industrial 
scheduling, investment planning, and regional location, but they are by 
no means limited to these areas. 

Unfortunately, at the present time the performance of most compre- 
hensive algorithms on this class of problems has been disappointing. This 
study was undertaken in hopes of devising a more satisfactory approach. 
In this effort we have drawn on the computational experience of, and the 
concepts employed in, the LAND AND DoIGE161 Healy,[13] and DRIEBEEKt' I 

algorithms. Similar approaches are contained in the work of BEALE 
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AND SMALL.12] A related enumeration scheme is contained in GRAVES 

AND WHINSTON. JI 
Our approach is basically a branch-and-bound nethod of enumeration. 

While this is not generally the most 'glamorous' type of algorithm, our 
experience indicates that it works well in solving practical problems. As 
with any branch-and-bound algorithm, efficiency derives primarily from 
choosing branches and bounds in a manner that is computationally effective. 

We proceed with a discussion of the algorithm, followed by a presenta- 
tion of our computational results. 

1. GENERAL THEORY 

LET 

YUnj 

be an n-vector of zero-one variables, each of which is constrained to be zero 
or one. Let 

be an mn-vector of continuous nonnegative variables. The standard form of 
the zero-one mixed integer programming problem is the following: 

minimize z=4(y, x) =cy+dx, (1) 
subject to 

A[Y] > b for Y >0 (2) 

y<?1 for i=1, ,n, (3) 

yi==Oor1 for i=1, , n. (4) 

There are 2' possible y vectors satisfying (4). Some of these may admit 
of no x satisfying (2) and hence are infeasible. 

Consider the solution (y, x) to the problem (1), (2), (3). [We call 
(y, x) the solution to the 'unconstrained' problem because the integer con- 
straints (4) are missing.] If y is already a vector of zeros and ones, the 
problem is solved. Far more likely, it is not. In that case, we seek more 
information about the local properties of the unconstrained solution. 

Consider the variable yi. Let z1Q(1) be the optimal value of the objec- 
tive function defined parametrically in terms of yl for the problem (1), (2), 
(3) with the additional constraint y, = Y for icE[O, 1]. It can be shown that 

zl(g7) is a piecewise linear convex function of g (cf. DANTZIG,t31 p. 168). 



1038 Ronald E. Davis, David A. Kendrick, and Martin Weitzman 

To map out the entire function z1(pi) would require, in general, the solu- 
tion of many linear programming problems. We settle instead for the more 
easily attainable behavior of the two linear segments to the direct right and 
left of gi. The slopes of these two segments can be read out of the linear 
programming tableau. (Strictly speaking, the assertion is true only if the 
basis is nondegenerate. If degeneracy is involved, we may be able to ob- 
tain only a lower bound on the slope of each segment, difficult to picture 
geometrically, but otherwise the results are not altered.) 

zi (Yi) I 

J I 

0 Y1 Yi 

Fig. 1. A piecewise linear convex function. 

The slopes are obtained as follows. Suppose, first of all, that y, is in the 
optimal basis of the associated linear program and that O<i<l<. Let 
{wj:jENB} be the set of nonbasic variables, let 

Y1+ Z jeNB tijWj 
= y1 

be the row in the updated simplex tableau corresponding to yi, and let 

Z + E j,AIB e jW j = 09~ ( y X) 

be the reduced-cost row (where c_ 0 for jENB). Along the extreme rays 
adjacent to (y, x) generated by increasing one wj and holding the other 
nonbasic variables fixed, we have: 

(i) If aij>O, increasing wj by 1/dj will decrease y, by 1 and increase 
the objective function by cj/lij. 

(ii) If Jij<O, increasing wj by l/-atj will increase y, by 1 and the 
objective functioIn by ?/ -dij. 

(iii) If aij =O, increasing wj has no effect on y1. 
Since the feasible region is contained in the convex cone generated by 
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these rays (cf. DANTZIG,t31 p. 155), it follows that 

= minjji >O jfNB j/atij and ml=min_aij >o,jEAB -C.-ai, (5) 

(where mo is defined to be infinite if all atij<O, and m1 is defined to be 
infinite if all dij? O) are lower bounds (which are exact except possibly in 
the case of degeneracy) on the absolute value of the slopes of z1(y1) at zh. 

If y, is a nonbasic variable at level 0, ml = jc; if it is a basic variable at 
level 0 or 1, only ml (or mo) need be computed from (5). 

From the convexity of z1(y1) it follows that [qo(j), qi(j)] given by 

qo(j) -zi () +1 7rmo?z1(0), (6) 

ql(j) Zl(0l) + (1 1-y1) ml_ zi( t) 

are lower bounds on the objective function value if yj is forced to the values 
0 or 1, respectively (cf. DRIEBEEK[61). Bounds for Y2, , y. can be com- 
puted analogously. These bounds are used repeatedly in the algorithm for 
branching decision, and are rapidly computed directly from quantities in 
the updated simplex tableau provided bv the simplex algorithm. 

2. BRANCH-AND-BOUND SEARCH 

EXPOSITIONS AND EXAMPLES of branch-and-bound-search algorithms 
abound in the literature (e.g., LAND AND DOiG,[161 BALAS,'1] AND GEOF- 

FRION[8]); we reiterate here only that such an algorithm proceeds by se- 
quentially partitioning the potential solution space into disjoint subsets 
determined by specifying the values of some of the discrete variables 
(called a 'partial assignment' or 'partial solution'); that a lower bound is 
computed for the value of the objective on all elements of each such subset 
(the set of completions of a partial assignment); and that the partitioning 
process can be represented diagramatically in the form of a tree (where 
nodes correspond to partial assignments). 

The relative,efficiency of a branch-and-bound algorithm over total 
enumeration derives from the ability to eliminate from consideration large 
subsets of potential optimal solutions. Two principal ways of eliminating 
such subsets are: (i) to show that no feasible completion of a given partial 
assignment exists; and (ii) to show that no optimal completion of a given 
partial assignment exists. Balas and others following him (see FLEISCH- 

MANN, 17'] IVANESCU AND RUDEANU[141) have developed a set of additive 
feasibility tests for these purposes that utilize the zero-one restriction on 
the discrete variables in an essential way. Land and Doig[16' suggested 
performing subset elimination by referring to the solutions to linear pro- 
grams obtained by fixing the variables in a partial assignment to their 
assigned values. Although developed in isolation from one another, these 
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two approaches are clearly not mutually exclusive; incorporation of both 
into the same algorithm may yield further improvements in computational 
efficiency (see Geoffrionl'9]). The algorithm reported here, however, 
results from an investigation of the ways in which the Land and Doig 
approach can be enhanced by using tables of bounds derived from those 
described above. 

Thus, if I= { 1, 2, ... , n} is the index set of the zero-one variables, and 
if Io and I, are the index sets of variables in a partial assignment assigned to 
zero and one, respectively, let LP(Io, I,) be the associated 'restricted' linear 
program (with variables indexed by Io and I, fixed at their assigned values 
and let Q(Io, I,) be the associated bounds matrix defined by (6). Then 
if If is the set of free variables (If=I- [IoUI11), 

T(Io, I,)=-max j,If min [qo(j), q1(j)] (7) 

is a lower bound on the value of the objective function for anv completion 
of (Io, I,). All completions of (Io, I,) can thus be eliminated if (i) LP 
(Io, I,) is infeasible, or (ii) T(Io, I,) > , where z is an upper bound on the 
optimal solution value. If neither of these conditions obtains, but qu(j) > 2 
for some jEIf, u=O or 1, then all completions of (Io, I,) yielditig an improved 
solution value must satisfy yj=(1-u). In this case, (Io, I1) may be 
enlarged to (Io', I,'), where 

Io'=IO Ii I'=IU {j} (8a) 
if u=O, or 

Io'=IoU{j}, I1=I1 (8b) 

if u = 1; if y?j is fractional valued in the solution to LP(Io, I,), the solution 
to LP(Io', I,') yields an improved set of bounds Q(Io', I,') to which the 
above tests may be applied again. Augmenting partial assignments in this 
way can substantially reduce computation times. 

Some virtually costless improvements on the bounds matrix Q(Io, I,) 
follow from the observation that, since any completion of (Io, I,) is also a 
completion of (Jo, J1) if JoCIo and J1QIi, 

Q(Io, I,) =supJ0CIr,j1C1r Q(Jo, J1) (9) 

is another valid, and generallv improved, bounds matrix. A more readily 
computable improvement over Q(Io, I,), which lends itself well to the 
algorithm given below, is provided by the following updating procedure: 

Q(1oU{j}, I,),-sup {Q(IoU{j}, IO), Q(Io, I]))} (10) 

Q(Io, IiU{j})*--sup {Q(Io, Iu{j}), Q(Io, I1)}. 

The results reported below were obtained usinlg bounds matrices updated 
in this way. 
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To obtain large lower bounds and avoid redundant assignments of 
variables connected by constraints, partitioning of the completions of a 
partial assignment (Io, I,) that cannot be enlarged or eliminated is accom- 
plished by choosing that fractional valued variable yj in the solution to 
LP(Io, I,) that has maximum zero or one bound, and considering the two 
sets of completions of (Io, II) determined by assigning yj to 0 or yj to 1. 

3. STATEMENT AND DISCUSSION OF THE ALGORITHM 

LET Z be the current upper bound on the optimal solution value, and S be 
the set of partial assignments that remain to be considered at iteration v. 
S0 is defined to consist of the vacuous assignment with both Io and I 
empty (which is the 'specified' node for iteration 1). Then the vth itera- 
tion of the algorithm proceeds as follows: 

A. Node Evaluation 
Solve LP(Io, I,) for the currently specified assignment (Io, I,) and, if feasible, 

compute Q(Io, I,) and V1(Io, II), using (6), (10), and then (7). 
(1) If LP(Io, I,) is infeasible or 4/(Io, I1) _z, form S, by removing (Ioa, II) from 

S.-, and go to step C. 
(2) If y satisfies (4), record the feasible solution as the best yet found, set z to 

the current objective function value, form S, by removing (Io, I,) from S,-1, and 
go to step C. 

(3) If qo(j) _z or qi(g) >z for any free variable yj, JEIf, enlarge (Ia, I1) according 
to (8), and, if any such yj is fractional valued in the solution to LP(Io, I,), repeat 
step A. Otherwise, continue with step B. 

B. Node Formation (or branching) 
For the current (possibly enlarged) assignment (Io, I1), findj *EIf such that yj * is 

the fractional-valued variable in the solution to LP(Io, I1) with the largest zero or 
one bound, and form S. by replacing (Io, I,) in Sv_l with the two assignments 
(IoU{j*}, I,) and (Io, IiU{j*1). lf q.(j*) <ql-f(j*) (u=0 or 1), a lower bound on 
the completions with yj* =u is 4(Io, I,), and, with yj* 1 -u, is ql1u(j*). 

C. Node Selection 
Choose the next partial assignment to be evaluated from S, according to one of 

the following rules: 
Option (1). If (Io, I,) was eliminated or yields an integer solution, use option (2). 

Otherwise specify the assignment determined in B where yj * is assigned to the value 
with the smaller bound. 

Option (2). Specify the node in S, with the least lower bound. If S, is empty 
or none with lower bound less than z exist, the search is complete. 

In option (1), the current assignment is partially completed at succes- 
sive iterations until it becomes infeasible, is bounded off by the current 
upper bound z, or produces an improved feasible solution. A disadvantage 
of this approach is that many more nodes may be evaluated than are 
necessary to prove convergence. One advantage is that storage require- 
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ments are minimal. Option (2) is the 'flooding' strategy of always evaluat- 
ing the partial assignment with lowest lower bound. The advantage of 
this procedure is that only those assignments that are necessary to prove 
convergence are evaluated. A disadvantage is that large storage capacity 
may be required. Use of random-access disk-removed computer memory 
is a limiting factor for us, so this approach was usually used. 

The efficacy of the tests in A depends on obtaining a good upper bound 
z early in the search. One of the most successful approaches tried was to 
run the algorithm with option (1) and z-= +c in the very beginning. 
This usually resulted in a near-optimal feasible integer solution; then option 
(2) could be applied. 

4. EXPERIENCE WITH THE ALGORITHM 

TABLE I gives a resume of computational experience with our algorithm 
(DKW) using updated bounds matrices and the 'flooding' strategy search. 
The table also gives comparisons with the experience of others where 
possible. Option 2 was used for all the runs of our algorithm reported 
here. 

Solution time in the table refers to the time required on an IBM 7094 
to obtain the optimum mixed integer solution, including the solution to 
the unconstrained problem. In the solution of the Kendrick problem with 
the Healy algorithm, all but four of the variables could have been bounded 
off after 24 minutes using an upper bound obtained from other solutions of 
the problem. Though such a bound is not available in the Healy algorithm, 
it is used here for comparative purposes. It is assumed that the enumera- 
tion of the remaining 16 lattice points would have required 10 minutes. 
The same type of adjustment is made for the number of LP's and itera- 
tions. In solving the same problem with Driebeek's algorithm, the run 
was halted after enumerating 100 of the 128 'unbounded' lattice points in 
44 minutes. Enumeration of the remaining 28 lattice points is assumed 
to have required 12 minutes. The same type of adjustment is made for 
the number of LP's and iterations. 
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by DAVIS (see Davis[5]). We are indebted to JUN ONAKA for able pro- 
gramming assistance in solving the problems referred to in Table I. 
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