
Machine Learning, 18, 5-22 (1995)
© 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

A Branch and Bound Incremental

Conceptual Clusterer

ARTHUR J. NEVINS
Department of Computer lnJbrmation Systems, Georgia State University, Atlanta, GA 30302

Editor: Tom Dietterich

Abstract. A computer program is described that is capable of learning multiple concepts and their structural
descriptions from observations of examples. It decomposes this conceptual clustering problem into two modules.
The first module is concerned with forming a generalization from a pair of examples by extracting their common
structure and calculating an information measure for each structural description. The second module, which is the
subject of this paper, incrementally incorporates these generalizations into a hierarchy of concepts. This second
module operates without reference to any underlying representation language and utilizes only the information
measure provided by the first module, while employing a branch and bound procedure to search the hierarchy
for concepts from which to form new clusters. This ability to search the hierarchy is used as the basis of a hill
climbing strategy which has as its goal the avoidance of local peaks so as to reduce the sensitivity of the program
to the order in which the observations are encountered,

Keywords: Conceptual clustering, characterization module, information measure, branch and bound, incremental
learning, hill climbing

1. Introduct ion

This pape r addresses the problem in machine learning known as conceptual clustering. A

sequence of observations is presented which the machine must group into clusters. For

each cluster, the machine will produce a conceptual description that represents a general-

ization of the observations appearing in the cluster. Clusters themselves may serve as raw

material out of which still larger clusters may be formed. This can produce a hierarchical

organization of clusters with clusters nearer the root of the hierarchy represented by more

general descriptions.

Conceptual clustering involves two problems: (1) The clustering problem (i.e., the group-

ing of observations into different clusters and incorporation of the clusters into a hierarchy)

and (2) the characterization problem (i.e., the determination of a descriptive concept for

each such cluster). As Fisher (1987) has pointed out, these two problems cannot be in-

dependent in conceptual clustering since the results of characterization must be used to

determine the quality of the clusters.

Previous approaches to the clustering problem have depended upon some underlying rep-

resentation language such as feature vectors (Kolodner, 1983; Lebowitz, 1987; Fisher, 1987;

Hanson & Bauer, 1989; Hadzikadic & Yun, 1989), ordered pairs of feature vectors (Cheng

& Fu, 1985), unordered groups of feature vectors (Gennari, Langley, & Fisher, 1989), or

a modified first-order predicate calculus (Michalski, 1980; Michalski & Stepp, 1983). In

each case, the underlying representation language was exploited in both the characteriza-

tion problem and the clustering problem even though a representation language is essential

6 A.J. NEVINS

only for the characterization problem. The fact that "clustering" and "characterization" are

not independent in conceptual clustering does not mean that the solution to the clustering

problem must depend upon details of how the characterization problem was solved. It need

only depend upon the results of characterization.

The computer program H1ERARCH described in this paper consists of a characterization

module and a clustering module. The approach taken in the design of HIERARCH was

to disentangle the characterization and clustering problems from each other by freeing the

clustering module from the constraints of any representation language. The only require-

ment is that the solution to the characterization problem (i.e., output of the characterization

module) provide an appropriate information measure for any conceptual description it gen-

erates. This enables research on characterization and clustering to proceed apart from each

other with advances in either of the two problems improving the overall effectiveness of

the conceptual clustering algorithm. It is a step toward answering Simon's (1983) call for

devising "learning procedures that don't involve knowing the details of the internal lan-

guages and programs." The clustering module of HIERARCH is the subject of this paper.

Like some previous conceptual clustering programs such as COBWEB (Fisher, 1987)

and UNIMEM (Lebowitz, 1987), HIERARCH learns incrementally (i.e., a hierarchy is

continually fashioned as new observations are encountered). HIERARCH is also similar

to COBWEB and UNIMEM in that it allows partial matching. Thus, it does not insist

that class membership depend upon satisfying an exact set of logical conditions (e.g., a

penguin is a bird even if it is not a typical bird). However, unlike COBWEB which achieves

partial matching through the use of probabilistic descriptions or UNIMEM which does

it by means of parameters that govern the extent to which a mismatch will be tolerated,

HIERARCH achieves partial matching by exploiting the information measure produced by

the characterization module.

An important aspect of HIERARCH is the way it controls its search for solutions. Like

COBWEB and UNIMEM, HIERARCH is a hill-climber that builds its hierarchies in neither

an entirely top-down nor bottom-up fashion and has operators for undoing past mistakes

by merging and/or deleting nodes. However, like all hill-climbers, it runs the risk of

encountering local peaks and consequently some global considerations were introduced

into the operators used by HIERARCH.

The ITERATE algorithm of Biswas et al. (1991) attacks this hill-climbing problem in a

non-incremental manner by first finding an initial partition and then globally redistributing

individual objects so as to improve partition quality. Fisher, Xu & Zard (1992) present

evidence that even local redistribution can be superior to global redistribution if the local

redistribution involves entire categories of objects and the global redistribution is confined

to individual objects. The incremental ARACHNE system of McKusick & Langley (1991)

introduces more powerful operators for redistributing categories. These operators will

promote a child that resembles its grandparent more than its parent and merge two children

that resemble themselves more than their parent.

HIERARCH senses that a child has been misplaced in the hierarchy by analyzing the result

of an information measure applied to the child and its parent. However, rather than promote

the misplaced child, as in ARACHNE, it makes a more global attempt at redistributing the

child by removing it from the hierarchy and then reinserting it as if it were just another

BRANCH AND BOUND CLUSTERER 7

object to be learned. This global attempt at redistribution is done in a manner that does

not compromise the incremental nature of the program and is not confined to individual

objects, as was the case with ITERATE, but is applied to categories of objects.

Since the willingness to reinsert categories into the hierarchy can necessitate repeated

searches of the hierarchy, particular concern was given to the procedure that would be

used for conducting the search. Initially, an effort was made to employ a procedure that

confined the search to the "Best K" nodes at each level of the search space. The author had

employed this procedure successfully for the balancing of assembly lines (Nevins, 1972).

The procedure was later rediscovered and given the name "beam search" (Lowerre, 1976).

The decision to employ beam search was influenced in part by its success at other tasks

including speech recognition (Lowerre, 1976), image analysis (Rubin & Reddy, 1977),

and the learning of structural descriptions from examples (Dietterich & Michalski, 1981).

However, in the context of the current effort at conceptual clustering it did not prove to

be as successful as anticipated and eventually it was abandoned. Instead, a branch and

bound procedure was incorporated into HIERARCH which turned out to be more natural

and adept at exploiting the information measures.

The method by which HIERARCH constructs its hierarchies is described in Section 2

followed by the application of branch and bound in Section 3. An evaluation of HIERARCH

is the focus of Section 4 and this is followed by some concluding remarks in Section 5.

2. Hierarchy building in HIERARCH

HIERARCH uses the information values returned by the characterization module to guide

its search through the hierarchy. At the root of the hierarchy is the "universal concept",

whose description is empty. Any object is capable of being stored as a child of the universal

concept, but that would only be done if there were no other acceptable location in the

hierarchy at which the object could be stored.

HIERARCH builds its hierarchy in such a way that as one descends from the root to lower

levels of the hierarchy one will encounter nodes where the information measure yielded

higher values. The hierarchy building module requires that the information measure return

a higher value for a more specific concept (i.e., since a more specific concept has a lower

probability of accepting an observation, its very act of accepting an observation is more

informative). However, a concept with a higher information value need not be more specific.

In particular, we say that C is an instance of P if and only if the information measure applied

to the generalization of C and P yields a value that is equal to the value produced when the

measure is applied to P (i.e., the generalization does not involve a loss of information).

One could have insisted that each node in the hierarchy be more specific than any of its

ancestors. However, the assumption of increasing specificity would have made it difficult

if not impossible to perform partial matching, since each node then would have needed to

meet every condition required of its parent without exception. By insisting instead that a

node have a higher information value than its parent, one is saying in effect that the child is

"kind of" more specific even if it does not exactly qualify as a special case of its parent. The

philosophical position expressed here in HIERARCH is that monotonicity of"information"

is more fundamental than monotonicity of "specificity" as one descends the hierarchy.

8 A.J. NEVINS

Although UNIMEM would lose an observation if the observation were a child of a concept

being dissolved, it was not its intention to lose track of all occurrences of an observation.

Both UNIMEM and COBWEB sought to retain all observations and HIERARCH does

likewise. Genarri et al. (1989) limited the number of retained observations with the help

of a program parameter, but such considerations are beyond the scope of the present paper.

2.1. Constraints on the placement of an object in the hierarchy

HIERARCH does not allow a node E to be placed as a child of a node B if the amount

of information in the parent B that is not accounted for by the child E exceeds either (1)

the amount of information from the parent B that is accounted for by child E or else (2)

exceeds the amount of information that the child E possesses in excess of that possessed

by its parent B. Thus, rather than allow E to be placed under B on the basis of parameters

such as "enough" features in common or feature values sufficiently "close" to each other

as in UNIMEM, the placement is controlled by information theoretic considerations.

It should be noted that the acquisition of these information values in no way depends upon

the details of the characterization module. In particular, if I(X) represents the amount of

information in concept X and G(Y, Z) represents the generalization of Y and Z, then

both I(X) and G(Y, Z) can be obtained as outputs from the characterization module. The

amount of information from parent B that is accounted for by child E is I(G(B, E)),
while the amount of information from parent B that is not accounted for by child E is

±(B) - I (a (B , E)).

For example, suppose each concept or observation is described by a feature vector com-

posed of five binary attributes, which can assume values of 1, 0, or * (unspecified). As an

information measure, count the number of specified attributes. Thus, B = (1, , , 0, 1, 0)

would have an information value of 4 bits and E = (1, 0, 1, 1, 0) would have an informa-

tion value of 5 bits. Consequently, of the 4 bits of information specified in B only 3 are

accounted for by E, since E conflicts with B in the third feature. This is reflected in the

fact that their generalization G(B, E) is (1, *, *, 1, 0), which contains 3 bits of information.

However, since E possesses 1 bit of information in excess of B (i.e., 5 versus 4 bits) and E

also accounts for 3 bits of the information in B and each of these quantities (i.e., the 1 bit

excess and 3 bits accounted for by E) are as great as the 1 bit of information in B that is

not accounted for by E, the placement of E as a child of B would be allowed.

By contrast, for E ' : (0, 0, 1, 1,0) the generalization G(B, E ') = (*,*, *, 1, 0) repre-

sents a loss of 2 bits from B and consequently E ~ would never be allowed as a child of B,

since the 2 bits not accounted for by E ' (i.e., I(B) - I(G(B, E~))) is greater than the 1 bit of

information that E / possesses in excess over B. For B / = (1, *, *, 0, 0), the generalization

G(B ~, E ~) = (*, *, *, *, 0) also represents a 2 bit information loss. Although E ~ has the

requisite 2 bits of information in excess over B t, the placement of E ~ as a child of B t still

would never be allowed, since E ~ only accounts for 1 of the 3 bits in B t and this is less than

the 2 bits in B ~ that are not accounted for by E t.

BRANCH AND BOUND CLUSTERER 9

2.2. Search for a best node

Both concepts, which are internally created by HIERARCH, and observations can serve as

nodes in the hierarchy. When HIERARCH incorporates an example E (i.e., observation or

concept) into its hierarchy, it will search for a "best node" B to which E is "most strongly"

related. Either B will serve as a "host" for E or else B will be "merged" with E. B

becomes a host for E if E is added to the hierarchy in such a manner that it is positioned

as a child of B (i.e., situated immediately above E in the hierarchy is its parent B). B

is merged with E if, after removing B from the hierarchy, the generalization G(B, F,) is

inserted into the hierarchy either at the position formerly occupied by B or at some other

more advantageous position. Regardless of where G(B, E) gets stored, it would serve as

the parent of both B and E, which is why this is referred to as a merger.

When searching for the best node B for E, one needs some means of measuring the

strength of the relationship between B and E, since the node B of greatest strength will be

selected for association with E, either as the parent of E or, in the event that E and B are

merged, as a sibling of E. The measure employed by HIERARCH depends upon whether

E is being considered as a child of B or as a sibling of B.

If E is being considered for insertion as a child of B, then this measure is the information

in B accounted for by E minus the information in B not accounted for by E. Representing

the second term as L(B, E) = I(B) - [(G(B, E)) this measure becomes I (G(B, E)) -

L(B, E) = I(B) - (I(B) - I(G(B, E)) - L(B, E) = I(B) - 2 • L(B, E).

Suppose on the other hand that E is being considered for merger with B rather than inser-

tion under B. HIERARCH requires of the characterization module that any generalization

it produces must be such that each of the objects being generalized must be able to account

for all of the information in the resulting generalization. Consequently, one possibility

for this measure of strength could be simply the information I(G(B, E)) contained in the

generalization. This is suggested by the fact that the strength associated with the insertion

of E under an existing concept B would also be the information of this new parent of E if

the child (i.e., E) could account for all the information (i.e., I(B)) in its parent.

However, the situation is not quite symmetrical between an insertion under an existing

concept and the creation of a new concept by means of the generalization G(B, E), since

the latter must itself be inserted at some position in the hierarchy. What had been a good

location for B might not be a good location for G(B, E). On the other hand, since B is

being carried along with its new parent G(B, E), the final destination of G(B, E) could

be a region of the hierarchy that is more conducive to G(B, E) than it is to B. Whereas

B might be happy with its new parent G(B, E) it might not be so happy with its new

grandparent or with its new "uncles" (i.e., the siblings of G(B, E)). For this reason, one

does not want to make it too easy for some object like E to come along and through its

generalization G(B, E) carry B off to another part of the hierarchy.

The approach taken here is to exact a price from the generalization G(B, E) by deducting

from I(G(B, E)) an amount based upon information in the children (i.e., B and E) that

G(B, E) fails to take into account. One possibility is to deduct from I(G(B, E)) the amount

Max(I(B) , I(E)) - I(G(B, E)) so that the deduction would be based on the child that

10 A.J. NEVINS

suffered more from the generalization. Another possibility is to deduct from I(G(/3, E))

the amount

Max [Min(I(/3), I(E)) - I(G(/3, E)),

Max(/(B), I(E)) - Min(I(/3), I (E))] ,

which attempts to strike a compromise between the child that suffered less and the child

that suffered more. Both of these possibilities will be explored in Section 4.

2.3. Overall control structure

HIERARCH would search elsewhere to store a new generalization G(B, E) than under the

former parent P of B if insertion of G(B, E) under P would violate a constraint of Section

2.1. If it has been decided to search elsewhere for the placement of an object, then that object

is put on a special list called the globalization list where it awaits subsequent processing.

Meanwhile, G(B, E) replaces B as a child of P until its final status is resolved. However,

once it has been decided to transfer G(B, E) to some other location in the hierarchy, it is

removed as a child of P. If this transfer leaves P with fewer than two children then P

is dissolved unless P still possesses a child that is on the globalization list (i.e., no action

is taken regarding the dissolution of P if its sole remaining child is still waiting to be

processed).

However, eventually any concept possessing fewer than two children gets dissolved, since

the original reason for its creation no longer applies (i.e., it no longer would represent a

merger). The child of a dissolved concept is not automatically promoted, since its new

parent (i.e., its former grandparent) then would contain less information than the parent that

was just dissolved. Instead, such a child is placed on the globalization list for subsequent

processing.

The overall control structure of the program is summarized in Figure 1. Although not

explicitly stated in Figure 1, during the branch and bound search for the best node/3 for E,

a merger of/3 with E is not allowed if E is currently a child of/3 and/3 does not have at

least two children other than E. For if such a merger of G(/3, E) were allowed, the eventual

removal of E as a child of/3 would leave/3 with fewer than two children thereby causing

B to become dissolved, which in turn destroys the basis for the generalization G(/3, E).
This still would not preclude/3 from serving as host for E, since its selection then would

confirm that E currently is being stored at the appropriate location.

The reason for bypassing anything on the globalization list GL when searching for a best

node/3 for E is that if E merged with some/3 on GL, the subsequent processing of/3 could

undo the merger by transferring B away from G(/3, E) to some other part of the hierarchy.

Furthermore, if E had been allowed to merge even with a descendant of/3, the transfer of

this merger to another part of the hierarchy could undermine the viability of/3 by removing

this descendant from the scope of/3; by not allowing such a merger, the algorithm assures

that when/3 eventually is selected for processing from GL its status is that of a node that

has not already been earmarked for dissolution.

The algorithm selects from GL the member with the least amount of information in order

to assure that if two objects P and D are on GL and D is a descendant of P, then P will

BRANCH AND BOUND CLUSTERER 11

Let GL represent the globalization list, which initially

consists of just the new observation;

CycleCount := 0;

REPEAT CycleCount := CycleCount + i;

E := member of GL with least amount of information;

IF CycleCount > 1 THEN Q := parent of E;

Use branch and bound search procedure to find node B whose

association with E is regarded as having the greatest

strength,where the search is confined to those nodes

that are neither on GL nor possess ancestors on GL;

IF CycleCount > 1 THEN remove E as a child of Q;

IF B is designated as a host for E

THEN BEGIN insert E into the hierarchy as a child of B;

IF CycleCount = i THEN add all siblings of E and all

ancestors of E to GL that are not already on it;

END

ELSE

BEGIN remove B from its parent P;

insert the generalization G(B,E) as a child of P;

IE CycleCount = 1

THEN add all children of P and all ancestors of G(B,E)

GL that are not already on it

ELSE IF insertion of G(B,E) as a child of P is not

allowed by the constraints of Section 2.1

THEN add G(B,E) to GL;

END;

Remove E from GL;

IF CycleCount > 1 THEN

WHILE Q is not the universal concept and

has no child on GL and has fewer than two children

DO BEGIN P := parent of Q;

Remove Q as a child of P;

IF Q has exactly one child C

THEN BEGIN add C as a child of P;

add C to GL;

END;

Q := p;

END;

UNTIL GL is empty;

t o

Figure 1. Overall control structure of HIERARCH.

be processed before D. For if D has been processed before P, and D were transferred to

another part of the hierarchy, then its removal from the scope of P could undermine the

viability of P.

The key to bringing the iterative process of Figure 1 to a halt is the requirement that, for

any node B that was a participant in the merger that created its parent P in the hierarchy,

no merger G(B, E) be allowed that does not have a higher measure of strength than that

associated with the formation of P. For without such a merger G(B, E) that might carry

away the child B of P to another part of the hierarchy, the concept P would have enough

children so that it never would get dissolved. However, since the measure of strength

associated with a merger cannot continue to increase indefinitely as new mergers are formed,

it means that eventually a point must be reached when the population of concepts in the

12 A.J. NEVINS

hierarchy is such that it is no longer possible to dissolve an existing concept P. But since one

cannot keep forming mergers indefinitely from a fixed pool of objects without dissolving

at least one of the mergers somewhere along the way, the production of new mergers must

likewise eventually cease thereby assuring that the iterative process will terminate.

3. The branch and bound search

Since the number of nodes tends to grow exponentially at each successive level of the

hierarchy, it should be evident that the practicality of the above procedure depends upon

an effective means by which one can search the hierarchy for a best node. The general

approach employed here is known as "branch and bound." Branch and bound procedures

have been widely used in operations research (e.g., Ignall & Schrage, 1965; Kolesar, 1967),

and one such procedure is the basis for the well known Alpha-Beta method in game playing

(Knuth & Moore, 1975).

The basic idea behind "branch and bound" is that if an upper bound can be placed on

the value a node is capable of producing, then the node can be ignored if this upper bound

cannot meet a lower bound required of the best node. Obviously, the trick in employing

branch and bound is to devise effective bounds, since tighter bounds enable one to steer

clear of more paths in the search space without overlooking the best node. Fortunately, the

use of an information measure that increases as one descends the hierarchy turns out to be

a natural instrument for exploiting the potentiality inherent in branch and bound.

The search for the best node/3 for E necessitates generalizing E with various alternative

nodes in the hierarchy. However, since forming a generalization is by far the single most

time-consuming step, it is critical that the number of these generalizations be kept to a

minimum. Consequently, a major function of the branch and bound procedure will be to

instruct HIERARCH as to when it should attempt a generalization.

3.1. Finding an upper bound on the candidate generalization

Attached to each node/3 in the hierarchy are two numbers: the information I(/3) associated

with node B and an information loss L(P,/3) = I(P) - I(G(P,/3)) = information in the

parent/9 of/3 that is not accounted for by/3.

As described in Section 2.2, the search for a best node/3 for E is based upon the max-

imization of the strength of the relationship between/3 and E, and this strength cannot

exceed I(G(B, E)) = I(B) - L(/3, E). Obviously, the upper bound I(G(/3, E)) is of

only theoretical interest, since it cannot be obtained without performing the generalization

G(/3, E), which is precisely what the use of the bound is attempting to avoid. However,

it is possible to obtain an upper bound that approximates I(G(/3, 17,)) based upon a gen-

eralization that took place earlier between E and some ancestor o f /3 during the search

through the hierarchy. This approximation, which will be selected as the upper bound, is

just 1(/3) - ML(/3, E) where ML(/3, E) is a lower bound to L(B, E). This lower bound

can be regarded as a minimum information loss derived from the experience of generalizing

E with some ancestor of B.

BRANCH AND BOUND C L U S T E R E R 13

In particular, suppose E already had been generalized with the parent P of/3. I f /3 were

an instance of P then ML(/3, E) would equal L(P, E), since all aspects of P would be

present in B and hence any inability of E to capture aspects of P also would mean that

E could not capture the same aspects of /3 . But if t3 were not an instance of P, then

ML(/3, E) would need to be tempered by the extent to which some of the inability of E

to capture aspects of P might have involved aspects of P that B also could not capture.

Consequently, ML(/3, E) = Max(0, L(P, E) - L(P, B)).
Even if E had not been generalized with the parent P of/3, ML(/3, E) would be obtained

as Max(0, ML(P, E) - L(P,/3)). In other words, when descending the hierarchy, the

minimum loss is updated by deducting the failure of a node to capture information in its

parent, with ML(RootNode , E) = 0 by definition.

Upon backtracking, HIERARCH also attempts to revise its estimate of ML(P, E) based

upon information it uncovered during the search. In particular, if it discovered an infor-

mation loss L(/3, E) associated with a child/3 o f / 9 such that L(/3, E) > ML(P, E)
then it would like to reset ML(P, E) to L(/3, E). Note, however, that some of the

loss L(/3, E) could have been based on aspects o f / 3 that were unique to /3 (i.e., as-

pects not present in P). However, the portion that is unique to /3 could not possibly

exceed I(/3) minus the information shared by P and/3, with this shared amount being

I(G(P,/3)) = I(P) - L(P,/3). Consequently it would reset ML(P, E) equal to L(/3, E)
minus the amount I(/3) - (I(P) - L(P, B)) if doing so would raise the value ofML(P, E).

3.2. Finding lower bounds to narrow the search

It remains to find at least one lower bound required of a node which, by exceeding the

node's potential (i.e., its upper bound UB), can signal that the generalization of the node

should be avoided. One obvious choice for such a lower bound is the highest strength

of any relationship encountered so far during the search. Denoting this lower bound by

the name BEST, there would be no point in generalizing a node unless its generalization

stands a chance of producing an information value as high as BEST. If its generalization

produces information lower than BEST, it only would be rejected in favor of the node that

produced BEST.

There is a serious problem associated with exclusive reliance on BEST as the lower bound.

BEST works fine i fa good value for it can be found early in the search. However, often one

will not be so fortunate and will find oneself with a fairly low value for BEST that easily is

exceeded by the U/3 of many of the nodes encountered during the search. This would be

particularly true if the search began in a region that had nothing in common with the object

E being incorporated into the hierarchy.

One way around this difficulty is suggested by the fact that such a region of the hierarchy

would of necessity be accompanied by substantial information losses when generalizations

are attempted. These information losses can be used heuristically as the basis for an addi-

tional lower bound by focusing on the most recent ancestor RA for which a generalization

had been performed. Prior to such a generalization, the information I(RA) attached to

RA could serve as an optimistic information value for the generalization of E with RA.
However, once the information loss L(RA, E) is uncovered, it exposes the undue optimism

14 A.J. NEVINS

of I(RA). As seen in Section 3.1, this exerts a depressing effect on the upper hound asso-

ciated with any descendant/3 of RA, since it raises the value of ML(B, E) in the formula

I(B) - ML(B , E) for the upper bound. As the descent continues down the hierarchy

below RA, nodes are encountered whose increasing information values help to raise UB

and restore confidence shaken by the information loss associated with the generalization of

E and RA.

This suggests that I(RA) be used as an additional lower bound along with BEST. This

will postpone generalizing any descendant of RA until a sufficiently large UB for that

node makes it likely that the information loss from the generalization of _RA can be re-

covered. Thus, instead of requiring UB >_ BEST, HIERARCH requires that UB >_

MAX(BEST, I (RA)).

Furthermore, if generalization of a node B were skipped but backtracking revealed that

one of its descendants got generalized, then node B also would be generalized provided

node B had more than one other child that had not yet been examined. The rationale for

this generalization of node B is that, since one of its descendants already needed to be

generalized, a higher information loss (i.e., obtained by generalizing node B) might be

needed to avoid generalizing additional descendants of B.

4. Evaluation of HIERARCH

When evaluating hierarchies created by the program, it is desirable to employ some objective

measuring instrument rather than rely just on evidence that appears "intuitively satisfying."

The measuring instrument employed in this section assumes that each observation in the

task domain consists of a single feature vector. Such task domains have been well studied

in the literature on conceptual clustering (e.g., Fisher, 1987). The characterization module

used for the experiments described in this section produces a generalization of two feature

vectors by dropping the values of a feature whenever they disagree. This makes the feature

"unspecified" as discussed in Section 2.1.

The motivation for the measuring instrument employed in evaluating HIERARCH is

discussed in Section 4.1. The measuring instrument is based on a "recognition index"

for measuring the quality by which a given concept is capable of recognizing a given

observation. This recognition index is described in Section 4.2 followed by a description

of the measuring instrument in Section 4.3. Five experiments involving the use of this

measuring instrument are described in Section 4.4 followed by their application to the

classification by HIERARCH of soybean diseases, U.S. Senate voting records, and thyroid

diseases in Sections 4.5, 4.6 and 4.7 respectively.

4.1. Motivation for the measuring instrument

One possibility would be to proceed as in Fisher (1987) where, after each observation is

learned, an attempt is made to predict feature values associated with unseen observations.

When the percent of correct predictions was averaged over all features for the same soybean

task as in Section 4.5 (including a feature that represented "diagonistic condition"), the

BRANCH AND BOUND CLUSTERER 15

successful prediction rate reported for COBWEB was 87 percent after incorporating the

twenty-fifth observation, whereas it was only 74 percent when the prediction was based

upon the most frequently observed value for the feature.

The problem with this evaluation, if it were to be used to measure the quality of a

hierarchy, is that one can also do very well by basing the predictions on the old observation

that comes closest to matching the new observation (i.e., excluding the feature for which

the prediction is being made, find the observation that has the greatest number of features

with specified values that are in agreement with the new observation and then make the

prediction based on the value of the excluded feature for the observation so selected). For

example, the soybean experiments described in Section 4.5 involved ten different orders in

which the observations were presented. Two of these observation sequences were decidedly

non-random in that the observations were presented by disease category (i.e., first all the

observations in one category were presented, then all the observations in another category,

etc.). Excluding these two non-random sequences, this predictor (i.e., based on "closest

match") had a success rate, after examining the twenty-fifth observation, of 88 percent on

two occasions, 87 percent on three occasions, 86 percent on two occasions and 85 percent

on one occasion.

The difficulty with employing such a measure to evaluate the quality of a conceptual

hierarchy is that it would not significantly downgrade a hierarchy that consisted exclusively

of observations (i.e., a hierarchy in which there were no concepts and all observations were

stored as children of the root node). Instead, the approach taken here will be to evaluate

the hierarchy based on how well it recognizes new observations using a 'recognition index'

that employs conditional probabilities in the same spirit as Fisher (1987).

4.2. The recognition index

Let P (C I F ~ j) denote the probability that an observation in the hierarchy will be stored

under concept C given the fact that the value of its jAh feature is F • j . Let P (F . j I C)

denote the probability that an observation stored in the hierarchy under concept C' will

have a value F • j for its j_th feature. Let P(C) and P (F • j) be the corresponding

unconditional probabilities.

When determining the quality by which a concept C is capable of recognizing a given

observation, we will focus on the feature values {F . j } associated with the given observation.

For each feature value F . j associated with the observation, one would like to take into

account both P (C I F . j) - P(C) (i.e., how much the feature value adds to the likelihood

of the concept) as well as P (F . j I C) - P (F . j) (i.e., how much the concept adds to the

likelihood of the feature value). From Bayes Theorem, both of these two expressions must

possess the same sign, and consequently, if one makes a positive contribution then so will the

other. This would suggest taking the product of P(C I F . j) - P(C) times P(F . j [C) -

P (F • j) , except that when both make a negative contribution the result would be positive.

To prevent this occurrence, the product is multiplied by - 1 when each expression makes a

negative contribution. This product deals directly with differences between conditional and

unconditional probabilities and treats categories C and feature/values F . j symmetrically.

16 a.J. NEVINS

Consequently, the recognition index for evaluating the quality by which concept C rec-

ognizes an observation whose feature values are given by {F • j} is just the sum of the

products [P(C I F . j) - P(C)] x [P(F. j [C) - P (F . j)] over all the feature vales F . j ,

with each product being multiplied by - 1 if .P(C I F • j) - P (C) < O, and where, for

purposes of normalization, the sum is multiplied by 100 divided by the number of features.

4.3. The measuring instrument

When presented with an observation to be recognized, the first step is to conduct a branch

and bound search for the node that relates best to the observation. The next step is to

examine the best node and all its ancestors and from them select the node that gives the

highest value for the recognition index. While any of these nodes could be regarded as a

"recognizer" for the observation, the one with the highest recognition index will be regarded

as the "best recognizer."

When evaluating how HIERARCH builds a hierarchy from a given set of observations,

each time a new observation is incorporated into the hierarchy, the best recognizer for each

of the remaining unincorporated observations is found and the recognition index associated

with the best recognizer is computed. The average of these "best" recognition indices is

then calculated, where the average is taken over the remaining unincorporated observations.

Since this calculation of the average is repeated each time a new observation is incorporated,

a grand average is taken of all these averages. This grand average will be referred to here

as the measuring instrument M1.

The measure M 1 is a kind of predictor in that it is based on unseen (i.e., as yet unincor-

porated) observations. However, it does not directly measure the quality of the hierarchy

that finally emerges after all the observations have been processed. In fact, it can be fairly

sensitive to the order in which the observations are presented in that it will give a relatively

low value if the early observations are unrepresentative.

For this reason, a second measuring instrument, M2, is also employed that measures the

quality of the final hierarchy for the set of observations from which it was created. The

measure M2 is just the average recognition index associated with the best recognizer, where

recognition is based on the final hierarchy and the average is taken over all the observations

from the original set of observations.

4.4. The experiments

There were ten different orders by which the observations were presented for the soybean

task, six different orders for the U.S. Senate voting records, and another six orders for the

thyroid task. The measures M 1 and M2 were computed for each of these twenty-two orders

of presentation. Since this was repeated for five different experiments E1 through E5, to be

described below, the measures M1 and M2 were each computed 110 times.

E1 employed an information measure that counted the number of features whose values

were specified in the description of the concept or observation. It was the measure discussed

in Section 2.1.

BRANCH AND BOUND CLUSTERER 17

E2 was the same as E1 except that the globalization aspect of HIERARCH was turned

off. Thus, when a new observation was incorporated into the hierarchy, it was done under

the additional constraint that no existing concept or observation would be transferred to

another part of the hierarchy.

E3 was the same as E1 except that its information measure computed a weighted (rather

than an unweighted) sum of the specified features, with each weight dependent on the

overall probability of the value for the given feature. The idea is that a feature value with

a very high probability of occurrence is not interesting, since the value is expected and

therefore conveys little information. On the other hand, a feature value with a very low

probability of occurrence is also not very interesting, since it is so idiosyncratic that it is

likely to be associated with a very small cluster. In order to strike a balance between these

two considerations, if P were the probability of some value associated with a given feature,

then its weight would be Min(P, 1 - P) divided by Max(P, 1 - P) . Thus, the weight would

reach a maximum of one when P = .5 and would gradually fall to zero as P approached 0

or 1.

E4 was the same as E3 except that E4 employed the first measure of strength described

in Section 2.2 whereas E3 (as did also E1 and E2) employed the second measure.

E5 computed M1 and M2 for an algorithm that placed each new observation as a child of

the root node as discussed in Section 4.1. For E5, the best recognizer was the observation

that came closest to matching the new observation.

4.5. Soybean diseases

One of the more interesting applications of previous conceptual clustering programs is the

clustering of diseased soybean plants, as it is a real-world example of concern to plant

pathologists. The CLUSTER/2 program (Michalski & Stepp, 1983; Stepp, 1984) had

classified 47 diseased soybean plants, each described by a vector of 35 feature/value pairs.

CLUSTEPU2 was able to obtain a four cluster solution (i.e., each plant fell into one of four

disease categories) which agreed with the conclusions of expert plant pathologists.

The soybean data was presented to HIERARCH and the five experiments described in the

previous section were carried out, once for each of ten different orders of presentation of the

observations. The results are summarized in Table 1. The rows S 1 through S 10 in Table 1

correspond to the ten different sequences of observations, whereas the columns E 1 through

E5 correspond to the five different experiments. The entries in the table are in the form

MI /M2 where M1 and M2 are the two measuring instruments described in Section 4.3.

It should perhaps not be surprising that the measure M1 shows a much greater variability

across observation sequences than does M2, since M 1 is a predictor of unseen observations

and is therefore sensitive to whether or not the early observations in the sequence are

representative of what will come later. However, it is interesting to note that the benchmark

experiment E5 showed by far the smallest variation across the different sequences. In fact,

for the two non-random sequences $4 and $9, where the observations were presented by

disease category, the gap between E5 and the other experiments narrowed considerably

(and vanished altogether for $9). This suggests that a major benefit of a hierarchy, as

18 A.J. NEVINS

Table 1. The soybean experiments.

E1 E2 E3 E4 E5

SI 5.95/6.46 5.28/5.83 5.75/6.46 5.18/6.00 4.04/1.61
$2 6.37/6.46 5.76/5.71 6.14/6.46 6.11/6.16 4.06/1.61
$3 6.39/6.46 6.32/6.46 6.33/6.46 6.38/6.46 4.44/1.61
$4 4.42/6.46 4.10/6.01 4.36/6.46 &36/6.46 3.34/1.61
$5 6.15/6.46 5.83/6.04 6.06/6.46 5.90/5.99 4.23/1.61
$6 6.44/6.46 5.58/5.38 6.39/6.46 6.25/6.46 4.09/1.61
$7 6.68/6.46 5.17/5.10 6.66/6.46 6.58/6.46 4.58/1.61
$8 6.55/6.46 5.28/5.39 6.49/6.46 6.47/6.46 4.51/1.61
$9 3.92/6.46 2.57/3.30 3.85/6.46 3.95/6.48 3.92/1.61
S10 6.56/6.46 6.13/6.05 6.54/6.46 6.48/6.46 4.50/1.61

opposed to a flat linear list of observations as in E5, may lie in its ability to capitalize on

representative observations.

For any given observation sequence, two experiments with different values of M 1 reflect

different learning rates for that sequence (i.e., all other things being equal, a higher value

for M1 would likely mean that, as new concepts are learned, higher values were more

often obtained for the average best recognition index during the computation of the grand

average). However, it is the measure M2 that reflects the final state of the hierarchy after

all the observations have been learned.

Every entry of M2 that is as high as 6.46 in Table 1 reflects a final hierarchy that contains a

cluster for each of the four disease categories (i.e., each of the 47 observations is contained

in one of these four clusters, but none of the four clusters contains an observation from

more than one disease category). On the other hand, none of the cases where M2 was less

than 6.46 was able to create all four of these "correct" clusters (i.e., clusters that were able

to cover a disease category without being corrupted by the presence of an observation from

some other disease category). Consequently, the value of M2 = 6.46 represents a threshold

that needed to be attained if clusters were to be found for all four categories.

As can be seen from the values of M2 in Table 1, Experiments E1 and E3 were able to find

all four disease categories for each of the ten observation sequences and E4 was successful

for seven of the ten sequences. However, Experiment E2 (i.e., the experiment that turned

off the globalization) was able to achieve this in only one of ten attempts.

When the 47 observations were presented to the final hierarchy for purposes of recogni-

tion, it turned out that, for those hierarchies where M2 = 6.46, the best recognizer of an

observation (i.e., the cluster with the highest value of the recognition index) was the cluster

that represented the disease category. A cluster that represented a disease category did not

always appear as a child of the root node, as it was often the case that it was part of a larger

cluster. However, regardless of where the disease category appeared in the hierarchy, the

cluster that represented the correct disease category was always identified as the best rec-

ognizer so long as M2 was 6.46. Since there were 47 observations and 27 occasions when

M2 equaled 6.46, this meant that for each of the 47 * 27 = 1269 attempts at recognition

when M2 equaled 6.46, the cluster that represented the correct disease category was also

the best recognizer.

BRANCH AND BOUND CLUSTERER 19

Although Experiment E4 failed on three of its attempts to reach the threshold of 6.46,

it was the only experiment ever to exceed 6.46. It managed this for Sequence $9 when

it achieved a value of 6.48 for M2. For the hierarchy that produced M2 = 6.48, the

best recognizer did not always correspond to the cluster that represented the entire disease

category, since on occasion it corresponded to a sub-cluster within the disease category.

4.6. U.S. Senate voting records

Another task asked of HIERARCH was to analyze a listing of fourteen "key votes" (Fisher,

1987) of U.S. Senators during the 1985 session of Congress as published in Congressional

Quarterly.

All votes were described as either yes, no, or uncertain, with "uncertain" reserved for

those situations where the Senator either did not vote or gave no indication as to how he

would have voted. The data consisted of 100 feature vectors (one for each Senator) with

each feature vector containing 14 feature/value pairs. The results are summarized in Table 2.

The measure M2 proved to be useful in identifying hierarchies where there were problems.

For example, the low value of M2 = 5.14 for Experiment E1 on Sequence $6 revealed a

hierarchy that did not contain a large, predominantly democratic cluster. It found one

cluster consisting of sixteen democrats and two republicans and another cluster consisting

of fifteen democrats and one republican but was unable to bring these two clusters together

as part of a common cluster. It fared somewhat better on the republican side, as it found

a cluster consisting of thirty-two republicans and two democrats, but even this was not as

good as that obtained by many of the other hierarchies.

If one averages the results of the predominantly democratic and republican clusters ob-

tained by Experiment E1 for the other five sequences together with those obtained for

Experiments E3 and E4 for all six sequences, one gets a predominantly democratic cluster

consisting of thirty nine democrats and three republicans and a predominantly republi-

can cluster consisting of 44 republicans and two democrats, out of a U.S. Senate in 1985

consisting of fifty-three republicans and forty-seven democrats.

As expected, Experiment E2 did not do as well, and this was reflected in its generally

lower values for M2. On Sequences S1, $2, and $3, it was unable to form a large, pre-

dominantly democratic cluster. On Sequence $4, it obtained clusters of 27 democrats and

Table 2. The Senate voting records experiments.

El E2 E3 E4 E5

S1 6.89/6.76 5.77/5.54 6.71/6.91 6.84/6.82 1.96/1.31

$2 7.18/6.51 5.97/5.67 7.15/5.51 7.04/5.82 2.84/1.31

$3 7.26/6.72 6.34/5.76 7.27/5.93 7.40/6.66 3.25/1.31

$4 5.96/6.27 5.06/5.12 5.91/6.18 5.98/6.02 3.15/1.31

$5 7.91/6.78 6.95/5.97 7.84/6.39 7.41/5.87 3.75/1.31

$6 6.59/5.14 7.12/6.89 6.89/6.53 6.80/6.44 2.60/1.31

20 a.J. NEVINS

25 republicans, but both were still well below the previously mentioned averages of 39

democrats and 44 republicans.

4. 7. Thyroid diseases

One of the more challenging tasks presented to COBWEB (Fisher, 1987) involved the

classification of thyroid diseases. The data consisted of one hundred and fifty observations,

fifty of which were for Hypothyroid, fifty for Sick-euthyroid, with the remaining fifty

regarded as Negative, since they did not represent any disease. HIERARCH was presented

this data, and the results are summarized in Table 3.

Sequence $4 was non-random in that it consisted of first the Negative observations,

followed by the Hypothyroid, and then the Sick-euthyroid. As had been the case for

the soybean diseases, the measure M1 showed the smallest gap between Experiment E5

and the other experiments when the observations were presented by disease category (i.e.,

non-randomly).

It was hoped that Experiment E3 would continue its success demonstrated in the previous

two tasks. This turned out not to be the case, at least for two of the sequences. The low

values that E3 recorded of M2 = 2.77 for Sequence $2 and M2 = 2.56 for Sequence

$6 reflected an inability to coalesce Hypothyroid observations into a single huge cluster.

However, Experiment E3 did very well for the other four sequences. If one averages the

results of the sequences S1, $3, $4 and $5 for Experiment E3, one finds that 90.5 percent

of the Hypothyroid observations are contained in a single cluster consisting exclusively of

Hypothyroid, while 86.5 percent of the Sick-euthyroid observations are in a single cluster

of which 91.1 percent are Sick-euthyroid.

It should be recalled that Experiment E4 used the same information measure as E3 and

differed only in that it employed a different measure of strength. One strategy, explored

further in the concluding section, is to combine the results of E3 and E4 by selecting

the hierarchy that gave the larger value for M2. This combination strategy would have

performed very well for all six sequences of observations. If one averages the results of all

six sequences using this strategy, one finds that 90 percent of the Hypothyroid observations

are contained in a single cluster that is 99.6 percent Hypothyroid, while 84 percent of the

Sick-euthyroid observations are in a single cluster that is 92 percent Sick-euthyroid.

Table 3. The thyroid experiments.

E1 E2 E3 E4 E5

SI 3.16/3.33 2.82/2.92 3.15/3.41 3.03/2.67 1.59/0.93
$2 3.12/3.55 2.29/3.29 2.94/2.77 3.13/3.29 1.73/0.93
$3 3.28/3.00 3.23/3.09 3.17/3.32 3.07/3.48 1.31/0.93
$4 2.80/3.48 2.27/2.96 2.30/3.55 2.57/3.53 1.89/0.93
$5 2.91/3.36 2.47/2.86 2.75/3.41 2.95/3.39 1.52/0.93
$6 3.02/3.34 2.84/2.84 3.00/2.56 3.09/3.15 1.57/0.93

BRANCH AND BOUND CLUSTERER 21

5. Concluding remarks

The present approach to conceptual clustering is one of 'divide and conquer' through a

clean separation of the characterization and clustering modules. The clustering module

of HIERARCH does not even look at any of the conceptual descriptions produced by the

characterization module. It only needs to know the amount of information associated with

a concept and requires only that the information measure be a local property of the concept

and never increase when two concepts are generalized. Thus, the clustering module of

HIERARCH can be regarded as a 'knowledge weak' problem solver that derives its ability

by virtue of a search procedure that can exploit the information measure that is applied

to concepts in the hierarchy. Its knowledge ultimately is obtained from the characteri-

zation module, and its enrichment depends indirectly upon the knowledge representation

employed by the characterization module as transmitted through the medium of the infor-

mation measure.

As suggested at the end of the previous section, one possible extension of the algorithm

would be to employ a number of different measures of strength, each based on the same

information measure. As new observations arrive, a separate hierarchy could be formed for

each measure of strength. After a certain number of observations have been processed, one

hierarchy could be selected based on the best value obtained for some global measuring

instrument. The process then could be repeated as additional observations arrive, only this

time each measure of strength would begin with the hierarchy that was selected by the

global measuring instrument at the end of the previous cycle.

More research also is needed that is directed at developing and improving such global

instruments for measuring the quality of a hierarchy, especially for domains involving

structured objects. Although the experiments of the previous section were confined to un-

structured objects (i.e., individual feature vectors), there is nothing in the clustering module

of HIERARCH that suggests any dependence on feature vectors. Indeed, experience with

HIERARCH has indicated an ability at classifying structured objects when the characteri-

zation module was able consistently to produce good generalizations. The development of

more effective and efficient characterization modules for such domains is an important and

challenging task.

Acknowledgments

This research was supported in part by the National Science Foundation under Grant DCR-

8408389.

References

Biswas, G., Weinberg, J.B., Yang, Q., & Kollar, G.R. (199 l). Conceptual clustering and exploratory data analysis.
Proceedings (~f the Eighth International Machine Learning Workshop (pp. 591-595). Evanston, I1: Morgan
Kanfmann.

Cheng, Y., & Fu, K. (1985). Conceptual clustering in knowledge organization. IEEE Transactions on Pattern

Analysis and Machine Intelligence, PAMI-7,592-598.

2 2 A.J. NEVINS

Dietterich, T., & Michalski, R. (1981). Inductive learning of structural descriptions. Artificial Intelligence, 16,

257-294.
Fisher, D. (1987). Knowledge acquisition via incremental conceptual clustering. Machine Learning, 2, 139-172.
Fisher, D., Xu, L., & Zard, N. (1992). Ordering effects in clustering. Proceedings qfthe Ninth International

Machine Learning Workshop (pp. 163-168). San Mateo, CA: Morgan Kanfmann.
Genarri, J., Langley, E, & Fisher, D. (1989). Models of incremental concept formation. ArtificialIntelligence,

40, 11-61.
Hadzikadic, M., & Yun, D. (1989). Concept formation by incremental conceptual clustering. Proceedings of"

the Eleventh International Joint Conference on Artificial Intelligence (pp. 831-836). Detroit, MI: Morgan

Kanfmann.
Hanson, S., & Bauer, M. (1989). Conceptual clustering, categorization, and polymorpby. Machine Learning, 3,

343-372.
Ignall, E., & Schrage, L. (1965). Application of the branch and bound technique to some flow-shop scheduling

problems. Operations Research, 13,400-412.
Kolesar, P. (1967). A branch and bound algorithm for the knapsack problem. Management Science, 13, 723-735.
Kolodner, J. (1983). Maintaining organization in a dynamic long-term memory. Cognitive Science, 7, 243-280.

Knuth, D., & Moore, R. (1975). An analysis of alpha-beta pruning. Artificial Intelligence, 6,293-326.
Lebowitz, M. (1987). Experiments with incremental concept formation: UNIMEM. Machine Learning, 2, 103-

136.
Lowerre, B. (1976). The HARPY Speech Recognition System. Ph.D. thesis, Carnegie-Mellon University, De-

partment of Computer Science.
McKusick, K.B., & Langley, R (1991). Constraints on tree structure in concept formation. Proceedings of the

Twelfth International Joint ConJ~rence on Artificial Intelligence (pp. 810-816), Sydney: Morgan Kaufmann.
Michalski, R. (1980). Pattern recognition as rule-guided inductive inference. IEEE Transactions on Pattern

Analysis and Machine Intelligence, PAMI-2, 349-361.
Michalski, R., Stepp, R., & Diday, E. (1981). A recent advance in data analysis: Clustering objects into classes

characterized by conjunctive concepts. In L. Kanal & E. Rosenfield (Eds.), Progress in Pattern Recognition, 1,

33-55.
Michalski, R., & Stepp, R. (1983). Automated construction of classifications: conceptual clustering versus

numerical taxonomy. IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-5, 396-4 10.

Nevins, A. (1972). Assembly line balancing using best bud search. Management Science, 18,529-539.
Rubin, S., & Reddy, R. (1977). The locus model of search and its use in image interpretation. Proceedings ~fthe

Fifth International Joint Conference on Artificial Intelligence (pp. 590-595). Cambridge, MA.
Simon, H. (1983). Why machines should learn? In R. Michalski, J. Carbonell, & T. Mitchell (Eds.), Machine

Learning: An Artificial Intelligence Approach. Los Altos, CA: Morgan Kaufmann.
Stepp., R. (1984). Conjunctive conceptual clustering." A methodology and experimentation. Ph.D. thesis, Univer-

sity of Illinois at Urbana-Champaign, Department of Computer Science.

Received May 7, 1993
Accepted August 3, 1993
Final Manuscript September 27, 1993

