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Abstract. A computer program is described that is capable of learning multiple concepts and their structural 
descriptions from observations of examples. It decomposes this conceptual clustering problem into two modules. 
The first module is concerned with forming a generalization from a pair of examples by extracting their common 
structure and calculating an information measure for each structural description. The second module, which is the 
subject of this paper, incrementally incorporates these generalizations into a hierarchy of concepts. This second 
module operates without reference to any underlying representation language and utilizes only the information 
measure provided by the first module, while employing a branch and bound procedure to search the hierarchy 
for concepts from which to form new clusters. This ability to search the hierarchy is used as the basis of a hill 
climbing strategy which has as its goal the avoidance of local peaks so as to reduce the sensitivity of the program 
to the order in which the observations are encountered, 
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1. Introduct ion  

This pape r addresses the problem in machine learning known as conceptual clustering. A 

sequence of observations is presented which the machine must group into clusters. For 

each cluster, the machine will produce a conceptual description that represents a general- 

ization of the observations appearing in the cluster. Clusters themselves may serve as raw 

material out of which still larger clusters may be formed. This can produce a hierarchical 

organization of clusters with clusters nearer the root of the hierarchy represented by more 

general descriptions. 

Conceptual clustering involves two problems: (1) The clustering problem (i.e., the group- 

ing of observations into different clusters and incorporation of the clusters into a hierarchy) 

and (2) the characterization problem (i.e., the determination of a descriptive concept for 

each such cluster). As Fisher (1987) has pointed out, these two problems cannot be in- 

dependent in conceptual clustering since the results of characterization must be used to 

determine the quality of the clusters. 

Previous approaches to the clustering problem have depended upon some underlying rep- 

resentation language such as feature vectors (Kolodner, 1983; Lebowitz, 1987; Fisher, 1987; 

Hanson & Bauer, 1989; Hadzikadic & Yun, 1989), ordered pairs of feature vectors (Cheng 

& Fu, 1985), unordered groups of feature vectors (Gennari, Langley, & Fisher, 1989), or 

a modified first-order predicate calculus (Michalski, 1980; Michalski & Stepp, 1983). In 

each case, the underlying representation language was exploited in both the characteriza- 

tion problem and the clustering problem even though a representation language is essential 
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only for the characterization problem. The fact that "clustering" and "characterization" are 

not independent in conceptual clustering does not mean that the solution to the clustering 

problem must depend upon details of how the characterization problem was solved. It need 

only depend upon the results of characterization. 

The computer program H1ERARCH described in this paper consists of a characterization 

module and a clustering module. The approach taken in the design of HIERARCH was 

to disentangle the characterization and clustering problems from each other by freeing the 

clustering module from the constraints of any representation language. The only require- 

ment is that the solution to the characterization problem (i.e., output of the characterization 

module) provide an appropriate information measure for any conceptual description it gen- 

erates. This enables research on characterization and clustering to proceed apart from each 

other with advances in either of the two problems improving the overall effectiveness of 

the conceptual clustering algorithm. It is a step toward answering Simon's (1983) call for 

devising "learning procedures that don't involve knowing the details of the internal lan- 

guages and programs." The clustering module of HIERARCH is the subject of this paper. 

Like some previous conceptual clustering programs such as COBWEB (Fisher, 1987) 

and UNIMEM (Lebowitz, 1987), HIERARCH learns incrementally (i.e., a hierarchy is 

continually fashioned as new observations are encountered). HIERARCH is also similar 

to COBWEB and UNIMEM in that it allows partial matching. Thus, it does not insist 

that class membership depend upon satisfying an exact set of logical conditions (e.g., a 

penguin is a bird even if it is not a typical bird). However, unlike COBWEB which achieves 

partial matching through the use of probabilistic descriptions or UNIMEM which does 

it by means of parameters that govern the extent to which a mismatch will be tolerated, 

HIERARCH achieves partial matching by exploiting the information measure produced by 

the characterization module. 

An important aspect of HIERARCH is the way it controls its search for solutions. Like 

COBWEB and UNIMEM, HIERARCH is a hill-climber that builds its hierarchies in neither 

an entirely top-down nor bottom-up fashion and has operators for undoing past mistakes 

by merging and/or deleting nodes. However, like all hill-climbers, it runs the risk of 

encountering local peaks and consequently some global considerations were introduced 

into the operators used by HIERARCH. 

The ITERATE algorithm of Biswas et al. (1991) attacks this hill-climbing problem in a 

non-incremental manner by first finding an initial partition and then globally redistributing 

individual objects so as to improve partition quality. Fisher, Xu & Zard (1992) present 

evidence that even local redistribution can be superior to global redistribution if the local 

redistribution involves entire categories of objects and the global redistribution is confined 

to individual objects. The incremental ARACHNE system of McKusick & Langley (1991) 

introduces more powerful operators for redistributing categories. These operators will 

promote a child that resembles its grandparent more than its parent and merge two children 

that resemble themselves more than their parent. 

HIERARCH senses that a child has been misplaced in the hierarchy by analyzing the result 

of an information measure applied to the child and its parent. However, rather than promote 

the misplaced child, as in ARACHNE, it makes a more global attempt at redistributing the 

child by removing it from the hierarchy and then reinserting it as if it were just another 
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object to be learned. This global attempt at redistribution is done in a manner that does 

not compromise the incremental nature of the program and is not confined to individual 

objects, as was the case with ITERATE, but is applied to categories of objects. 

Since the willingness to reinsert categories into the hierarchy can necessitate repeated 

searches of the hierarchy, particular concern was given to the procedure that would be 

used for conducting the search. Initially, an effort was made to employ a procedure that 

confined the search to the "Best K" nodes at each level of the search space. The author had 

employed this procedure successfully for the balancing of assembly lines (Nevins, 1972). 

The procedure was later rediscovered and given the name "beam search" (Lowerre, 1976). 

The decision to employ beam search was influenced in part by its success at other tasks 

including speech recognition (Lowerre, 1976), image analysis (Rubin & Reddy, 1977), 

and the learning of structural descriptions from examples (Dietterich & Michalski, 1981). 

However, in the context of the current effort at conceptual clustering it did not prove to 

be as successful as anticipated and eventually it was abandoned. Instead, a branch and 

bound procedure was incorporated into HIERARCH which turned out to be more natural 

and adept at exploiting the information measures. 

The method by which HIERARCH constructs its hierarchies is described in Section 2 

followed by the application of branch and bound in Section 3. An evaluation of HIERARCH 

is the focus of Section 4 and this is followed by some concluding remarks in Section 5. 

2. Hierarchy building in HIERARCH 

HIERARCH uses the information values returned by the characterization module to guide 

its search through the hierarchy. At the root of the hierarchy is the "universal concept", 

whose description is empty. Any object is capable of being stored as a child of the universal 

concept, but that would only be done if there were no other acceptable location in the 

hierarchy at which the object could be stored. 

HIERARCH builds its hierarchy in such a way that as one descends from the root to lower 

levels of the hierarchy one will encounter nodes where the information measure yielded 

higher values. The hierarchy building module requires that the information measure return 

a higher value for a more specific concept (i.e., since a more specific concept has a lower 

probability of accepting an observation, its very act of accepting an observation is more 

informative). However, a concept with a higher information value need not be more specific. 

In particular, we say that C is an instance of P if and only if the information measure applied 

to the generalization of C and P yields a value that is equal to the value produced when the 

measure is applied to P (i.e., the generalization does not involve a loss of information). 

One could have insisted that each node in the hierarchy be more specific than any of its 

ancestors. However, the assumption of increasing specificity would have made it difficult 

if not impossible to perform partial matching, since each node then would have needed to 

meet every condition required of its parent without exception. By insisting instead that a 

node have a higher information value than its parent, one is saying in effect that the child is 

"kind of" more specific even if it does not exactly qualify as a special case of its parent. The 

philosophical position expressed here in HIERARCH is that monotonicity of"information" 

is more fundamental than monotonicity of "specificity" as one descends the hierarchy. 



8 A.J. NEVINS 

Although UNIMEM would lose an observation if the observation were a child of  a concept 

being dissolved, it was not its intention to lose track of all occurrences of  an observation. 

Both UNIMEM and COBWEB sought to retain all observations and HIERARCH does 

likewise. Genarri et al. (1989) limited the number of retained observations with the help 

of  a program parameter, but such considerations are beyond the scope of  the present paper. 

2.1. Constraints on the placement of an object in the hierarchy 

HIERARCH does not allow a node E to be placed as a child of a node B if the amount 

of  information in the parent B that is not accounted for by the child E exceeds either (1) 

the amount of  information from the parent B that is accounted for by child E or else (2) 

exceeds the amount of  information that the child E possesses in excess of that possessed 

by its parent B. Thus, rather than allow E to be placed under B on the basis of  parameters 

such as "enough" features in common or feature values sufficiently "close" to each other 

as in UNIMEM, the placement is controlled by information theoretic considerations. 

It should be noted that the acquisition of  these information values in no way depends upon 

the details of  the characterization module. In particular, if I(X) represents the amount of  

information in concept X and G(Y, Z) represents the generalization of Y and Z, then 

both I(X) and G(Y, Z) can be obtained as outputs from the characterization module. The 

amount of  information from parent B that is accounted for by child E is I(G(B, E)), 
while the amount of  information from parent B that is not accounted for by child E is 

±(B) - I ( a ( B ,  E)). 

For example, suppose each concept or observation is described by a feature vector com- 

posed of  five binary attributes, which can assume values of  1, 0, or * (unspecified). As an 

information measure, count the number of specified attributes. Thus, B = (1, , ,  0, 1, 0) 

would have an information value of 4 bits and E = (1, 0, 1, 1, 0) would have an informa- 

tion value of 5 bits. Consequently, of the 4 bits of information specified in B only 3 are 

accounted for by E,  since E conflicts with B in the third feature. This is reflected in the 

fact that their generalization G(B, E) is (1, *, *, 1, 0), which contains 3 bits of  information. 

However, since E possesses 1 bit of information in excess of B (i.e., 5 versus 4 bits) and E 

also accounts for 3 bits of the information in B and each of  these quantities (i.e., the 1 bit 

excess and 3 bits accounted for by E)  are as great as the 1 bit of information in B that is 

not accounted for by E,  the placement of  E as a child of  B would be allowed. 

By contrast, for E '  : (0, 0, 1, 1,0) the generalization G(B, E ' )  = (*,*, *, 1, 0) repre- 

sents a loss of 2 bits from B and consequently E ~ would never be allowed as a child of B, 

since the 2 bits not accounted for by E '  (i.e., I(B) - I(G(B, E~))) is greater than the 1 bit of 

information that E / possesses in excess over B. For B / = (1, *, *, 0, 0), the generalization 

G(B ~, E ~) = (*, *, *, *, 0) also represents a 2 bit information loss. Although E ~ has the 

requisite 2 bits of information in excess over B t, the placement of E ~ as a child of B t still 

would never be allowed, since E ~ only accounts for 1 of the 3 bits in B t and this is less than 

the 2 bits in B ~ that are not accounted for by E t. 
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2.2. Search for a best node 

Both concepts, which are internally created by HIERARCH, and observations can serve as 

nodes in the hierarchy. When HIERARCH incorporates an example E (i.e., observation or 

concept) into its hierarchy, it will search for a "best node" B to which E is "most strongly" 

related. Either B will serve as a "host" for E or else B will be "merged" with E. B 

becomes a host for E if E is added to the hierarchy in such a manner that it is positioned 

as a child of B (i.e., situated immediately above E in the hierarchy is its parent B). B 

is merged with E if, after removing B from the hierarchy, the generalization G(B, F,) is 

inserted into the hierarchy either at the position formerly occupied by B or at some other 

more advantageous position. Regardless of where G(B, E) gets stored, it would serve as 

the parent of both B and E, which is why this is referred to as a merger. 

When searching for the best node B for E, one needs some means of measuring the 

strength of the relationship between B and E, since the node B of greatest strength will be 

selected for association with E, either as the parent of E or, in the event that E and B are 

merged, as a sibling of E. The measure employed by HIERARCH depends upon whether 

E is being considered as a child of B or as a sibling of B. 

If E is being considered for insertion as a child of B, then this measure is the information 

in B accounted for by E minus the information in B not accounted for by E. Representing 

the second term as L(B, E) = I(B) - [(G(B, E)) this measure becomes I (G(B,  E)) - 

L(B, E) = I(B) - (I(B) - I(G(B, E)) - L(B, E) = I(B) - 2 • L(B, E). 

Suppose on the other hand that E is being considered for merger with B rather than inser- 

tion under B. HIERARCH requires of the characterization module that any generalization 

it produces must be such that each of the objects being generalized must be able to account 

for all of the information in the resulting generalization. Consequently, one possibility 

for this measure of strength could be simply the information I(G(B, E)) contained in the 

generalization. This is suggested by the fact that the strength associated with the insertion 

of E under an existing concept B would also be the information of this new parent of E if 

the child (i.e., E) could account for all the information (i.e., I(B)) in its parent. 

However, the situation is not quite symmetrical between an insertion under an existing 

concept and the creation of a new concept by means of the generalization G(B, E), since 

the latter must itself be inserted at some position in the hierarchy. What had been a good 

location for B might not be a good location for G(B, E). On the other hand, since B is 

being carried along with its new parent G(B, E), the final destination of G(B, E) could 

be a region of the hierarchy that is more conducive to G(B, E) than it is to B. Whereas 

B might be happy with its new parent G(B, E) it might not be so happy with its new 

grandparent or with its new "uncles" (i.e., the siblings of G(B, E)). For this reason, one 

does not want to make it too easy for some object like E to come along and through its 

generalization G(B, E) carry B off to another part of the hierarchy. 

The approach taken here is to exact a price from the generalization G(B, E) by deducting 

from I(G(B, E)) an amount based upon information in the children (i.e., B and E) that 

G(B, E) fails to take into account. One possibility is to deduct from I(G(B, E)) the amount 

Max(I(B) ,  I(E)) - I(G(B, E)) so that the deduction would be based on the child that 
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suffered more from the generalization. Another possibility is to deduct from I(G(/3,  E))  

the amount 

Max [Min(I(/3), I(E)) - I(G(/3, E)), 

Max(/(B),  I(E)) - Min(I(/3), I (E) ) ] ,  

which attempts to strike a compromise between the child that suffered less and the child 

that suffered more. Both of these possibilities will be explored in Section 4. 

2.3. Overall control structure 

HIERARCH would search elsewhere to store a new generalization G(B, E) than under the 

former parent P of B if insertion of G(B, E) under P would violate a constraint of Section 

2.1. If it has been decided to search elsewhere for the placement of an object, then that object 

is put on a special list called the globalization list where it awaits subsequent processing. 

Meanwhile, G(B, E) replaces B as a child of P until its final status is resolved. However, 

once it has been decided to transfer G(B, E) to some other location in the hierarchy, it is 

removed as a child of P. If this transfer leaves P with fewer than two children then P 

is dissolved unless P still possesses a child that is on the globalization list (i.e., no action 

is taken regarding the dissolution of P if its sole remaining child is still waiting to be 

processed). 

However, eventually any concept possessing fewer than two children gets dissolved, since 

the original reason for its creation no longer applies (i.e., it no longer would represent a 

merger). The child of a dissolved concept is not automatically promoted, since its new 

parent (i.e., its former grandparent) then would contain less information than the parent that 

was just dissolved. Instead, such a child is placed on the globalization list for subsequent 

processing. 

The overall control structure of the program is summarized in Figure 1. Although not 

explicitly stated in Figure 1, during the branch and bound search for the best node/3 for E, 

a merger of/3 with E is not allowed if E is currently a child of/3 and/3 does not have at 

least two children other than E. For if such a merger of G(/3, E) were allowed, the eventual 

removal of E as a child of/3 would leave/3 with fewer than two children thereby causing 

B to become dissolved, which in turn destroys the basis for the generalization G(/3, E). 
This still would not preclude/3 from serving as host for E, since its selection then would 

confirm that E currently is being stored at the appropriate location. 

The reason for bypassing anything on the globalization list GL when searching for a best 

node/3 for E is that if E merged with some/3 on GL, the subsequent processing of/3 could 

undo the merger by transferring B away from G(/3, E) to some other part of the hierarchy. 

Furthermore, if E had been allowed to merge even with a descendant of/3, the transfer of 

this merger to another part of the hierarchy could undermine the viability of/3 by removing 

this descendant from the scope of/3; by not allowing such a merger, the algorithm assures 

that when/3 eventually is selected for processing from GL its status is that of a node that 

has not already been earmarked for dissolution. 

The algorithm selects from GL the member with the least amount of information in order 

to assure that if two objects P and D are on GL and D is a descendant of P, then P will 
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Let GL represent the globalization list, which initially 

consists of just the new observation; 

CycleCount := 0; 

REPEAT CycleCount := CycleCount + i; 

E := member of GL with least amount of information; 

IF CycleCount > 1 THEN Q := parent of E; 

Use branch and bound search procedure to find node B whose 

association with E is regarded as having the greatest 

strength,where the search is confined to those nodes 

that are neither on GL nor possess ancestors on GL; 

IF CycleCount > 1 THEN remove E as a child of Q; 

IF B is designated as a host for E 

THEN BEGIN insert E into the hierarchy as a child of B; 

IF CycleCount = i THEN add all siblings of E and all 

ancestors of E to GL that are not already on it; 

END 

ELSE 

BEGIN remove B from its parent P; 

insert the generalization G(B,E) as a child of P; 

IE CycleCount = 1 

THEN add all children of P and all ancestors of G(B,E) 

GL that are not already on it 

ELSE IF insertion of G(B,E) as a child of P is not 

allowed by the constraints of Section 2.1 

THEN add G(B,E) to GL; 

END; 

Remove E from GL; 

IF CycleCount > 1 THEN 

WHILE Q is not the universal concept and 

has no child on GL and has fewer than two children 

DO BEGIN P := parent of Q; 

Remove Q as a child of P; 

IF Q has exactly one child C 

THEN BEGIN add C as a child of P; 

add C to GL; 

END; 

Q := p; 

END; 

UNTIL GL is empty; 

t o  

Figure 1. Overall control structure of HIERARCH. 

be processed before D.  For if D has been processed before P,  and D were transferred to 

another part of the hierarchy, then its removal from the scope of P could undermine the 

viability of P.  

The key to bringing the iterative process of Figure 1 to a halt is the requirement that, for 

any node B that was a participant in the merger that created its parent P in the hierarchy, 

no merger G(B, E) be allowed that does not have a higher measure of  strength than that 

associated with the formation of  P.  For without such a merger G(B, E) that might carry 

away the child B of  P to another part of  the hierarchy, the concept P would have enough 

children so that it never would get dissolved. However, since the measure of  strength 

associated with a merger cannot continue to increase indefinitely as new mergers are formed, 

it means that eventually a point must be reached when the population of concepts in the 
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hierarchy is such that it is no longer possible to dissolve an existing concept P. But since one 

cannot keep forming mergers indefinitely from a fixed pool of objects without dissolving 

at least one of the mergers somewhere along the way, the production of new mergers must 

likewise eventually cease thereby assuring that the iterative process will terminate. 

3. The branch and bound search 

Since the number of nodes tends to grow exponentially at each successive level of the 

hierarchy, it should be evident that the practicality of the above procedure depends upon 

an effective means by which one can search the hierarchy for a best node. The general 

approach employed here is known as "branch and bound." Branch and bound procedures 

have been widely used in operations research (e.g., Ignall & Schrage, 1965; Kolesar, 1967), 

and one such procedure is the basis for the well known Alpha-Beta method in game playing 

(Knuth & Moore, 1975). 

The basic idea behind "branch and bound" is that if an upper bound can be placed on 

the value a node is capable of producing, then the node can be ignored if this upper bound 

cannot meet a lower bound required of the best node. Obviously, the trick in employing 

branch and bound is to devise effective bounds, since tighter bounds enable one to steer 

clear of more paths in the search space without overlooking the best node. Fortunately, the 

use of an information measure that increases as one descends the hierarchy turns out to be 

a natural instrument for exploiting the potentiality inherent in branch and bound. 

The search for the best node/3 for E necessitates generalizing E with various alternative 

nodes in the hierarchy. However, since forming a generalization is by far the single most 

time-consuming step, it is critical that the number of these generalizations be kept to a 

minimum. Consequently, a major function of the branch and bound procedure will be to 

instruct HIERARCH as to when it should attempt a generalization. 

3.1. Finding an upper bound on the candidate generalization 

Attached to each node/3 in the hierarchy are two numbers: the information I(/3) associated 

with node B and an information loss L(P,/3) = I(P) - I(G(P,/3)) = information in the 

parent/9 of/3 that is not accounted for by/3.  

As described in Section 2.2, the search for a best node/3 for E is based upon the max- 

imization of the strength of the relationship between/3 and E, and this strength cannot 

exceed I(G(B, E)) = I(B) - L(/3, E). Obviously, the upper bound I(G(/3, E)) is of 

only theoretical interest, since it cannot be obtained without performing the generalization 

G(/3, E), which is precisely what the use of the bound is attempting to avoid. However, 

it is possible to obtain an upper bound that approximates I(G(/3, 17,)) based upon a gen- 

eralization that took place earlier between E and some ancestor o f /3  during the search 

through the hierarchy. This approximation, which will be selected as the upper bound, is 

just 1(/3) - ML(/3, E) where ML(/3, E) is a lower bound to L(B, E). This lower bound 

can be regarded as a minimum information loss derived from the experience of generalizing 

E with some ancestor of B. 
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In particular, suppose E already had been generalized with the parent P of/3. I f /3  were 

an instance of P then ML(/3, E) would equal L(P, E), since all aspects of P would be 

present in B and hence any inability of E to capture aspects of P also would mean that 

E could not capture the same aspects of /3 .  But if t3 were not an instance of P,  then 

ML(/3, E) would need to be tempered by the extent to which some of the inability of E 

to capture aspects of P might have involved aspects of P that B also could not capture. 

Consequently, ML(/3, E) = Max(0, L(P, E) - L(P, B)). 
Even if E had not been generalized with the parent P of/3, ML(/3, E) would be obtained 

as Max(0, ML(P, E) - L(P,/3)). In other words, when descending the hierarchy, the 

minimum loss is updated by deducting the failure of a node to capture information in its 

parent, with ML(RootNode ,  E)  = 0 by definition. 

Upon backtracking, HIERARCH also attempts to revise its estimate of ML(P, E) based 

upon information it uncovered during the search. In particular, if it discovered an infor- 

mation loss L(/3, E) associated with a child/3 o f / 9  such that L(/3, E) > ML(P, E) 
then it would like to reset ML(P, E) to L(/3, E). Note, however, that some of the 

loss L(/3, E) could have been based on aspects o f / 3  that were unique to /3 (i.e., as- 

pects not present in P). However, the portion that is unique to /3 could not possibly 

exceed I(/3) minus the information shared by P and/3,  with this shared amount being 

I(G(P,/3)) = I(P) - L(P,/3). Consequently it would reset ML(P, E) equal to L(/3, E) 
minus the amount I(/3) - (I(P) - L(P, B)) if doing so would raise the value ofML(P, E). 

3.2. Finding lower bounds to narrow the search 

It remains to find at least one lower bound required of a node which, by exceeding the 

node's potential (i.e., its upper bound UB), can signal that the generalization of the node 

should be avoided. One obvious choice for such a lower bound is the highest strength 

of any relationship encountered so far during the search. Denoting this lower bound by 

the name BEST, there would be no point in generalizing a node unless its generalization 

stands a chance of producing an information value as high as BEST. If its generalization 

produces information lower than BEST, it only would be rejected in favor of the node that 

produced BEST. 

There is a serious problem associated with exclusive reliance on BEST as the lower bound. 

BEST works fine i fa  good value for it can be found early in the search. However, often one 

will not be so fortunate and will find oneself with a fairly low value for BEST that easily is 

exceeded by the U/3 of many of the nodes encountered during the search. This would be 

particularly true if the search began in a region that had nothing in common with the object 

E being incorporated into the hierarchy. 

One way around this difficulty is suggested by the fact that such a region of the hierarchy 

would of necessity be accompanied by substantial information losses when generalizations 

are attempted. These information losses can be used heuristically as the basis for an addi- 

tional lower bound by focusing on the most recent ancestor RA for which a generalization 

had been performed. Prior to such a generalization, the information I(RA) attached to 

RA could serve as an optimistic information value for the generalization of E with RA. 
However, once the information loss L(RA, E) is uncovered, it exposes the undue optimism 
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of I(RA).  As seen in Section 3.1, this exerts a depressing effect on the upper hound asso- 

ciated with any descendant/3 of RA, since it raises the value of ML(B,  E) in the formula 

I(B) - ML(B ,  E) for the upper bound. As the descent continues down the hierarchy 

below RA, nodes are encountered whose increasing information values help to raise UB 

and restore confidence shaken by the information loss associated with the generalization of 

E and RA. 

This suggests that I(RA) be used as an additional lower bound along with BEST. This 

will postpone generalizing any descendant of RA until a sufficiently large UB for that 

node makes it likely that the information loss from the generalization of _RA can be re- 

covered. Thus, instead of requiring UB >_ BEST, HIERARCH requires that UB >_ 

MAX(BEST,  I ( RA ) ). 

Furthermore, if generalization of a node B were skipped but backtracking revealed that 

one of its descendants got generalized, then node B also would be generalized provided 

node B had more than one other child that had not yet been examined. The rationale for 

this generalization of node B is that, since one of its descendants already needed to be 

generalized, a higher information loss (i.e., obtained by generalizing node B) might be 

needed to avoid generalizing additional descendants of B. 

4. Evaluation of HIERARCH 

When evaluating hierarchies created by the program, it is desirable to employ some objective 

measuring instrument rather than rely just on evidence that appears "intuitively satisfying." 

The measuring instrument employed in this section assumes that each observation in the 

task domain consists of a single feature vector. Such task domains have been well studied 

in the literature on conceptual clustering (e.g., Fisher, 1987). The characterization module 

used for the experiments described in this section produces a generalization of two feature 

vectors by dropping the values of a feature whenever they disagree. This makes the feature 

"unspecified" as discussed in Section 2.1. 

The motivation for the measuring instrument employed in evaluating HIERARCH is 

discussed in Section 4.1. The measuring instrument is based on a "recognition index" 

for measuring the quality by which a given concept is capable of recognizing a given 

observation. This recognition index is described in Section 4.2 followed by a description 

of the measuring instrument in Section 4.3. Five experiments involving the use of this 

measuring instrument are described in Section 4.4 followed by their application to the 

classification by HIERARCH of soybean diseases, U.S. Senate voting records, and thyroid 

diseases in Sections 4.5, 4.6 and 4.7 respectively. 

4.1. Motivation for the measuring instrument 

One possibility would be to proceed as in Fisher (1987) where, after each observation is 

learned, an attempt is made to predict feature values associated with unseen observations. 

When the percent of correct predictions was averaged over all features for the same soybean 

task as in Section 4.5 (including a feature that represented "diagonistic condition"), the 
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successful prediction rate reported for COBWEB was 87 percent after incorporating the 

twenty-fifth observation, whereas it was only 74 percent when the prediction was based 

upon the most frequently observed value for the feature. 

The problem with this evaluation, if it were to be used to measure the quality of a 

hierarchy, is that one can also do very well by basing the predictions on the old observation 

that comes closest to matching the new observation (i.e., excluding the feature for which 

the prediction is being made, find the observation that has the greatest number of features 

with specified values that are in agreement with the new observation and then make the 

prediction based on the value of the excluded feature for the observation so selected). For 

example, the soybean experiments described in Section 4.5 involved ten different orders in 

which the observations were presented. Two of these observation sequences were decidedly 

non-random in that the observations were presented by disease category (i.e., first all the 

observations in one category were presented, then all the observations in another category, 

etc.). Excluding these two non-random sequences, this predictor (i.e., based on "closest 

match") had a success rate, after examining the twenty-fifth observation, of 88 percent on 

two occasions, 87 percent on three occasions, 86 percent on two occasions and 85 percent 

on one occasion. 

The difficulty with employing such a measure to evaluate the quality of a conceptual 

hierarchy is that it would not significantly downgrade a hierarchy that consisted exclusively 

of observations (i.e., a hierarchy in which there were no concepts and all observations were 

stored as children of the root node). Instead, the approach taken here will be to evaluate 

the hierarchy based on how well it recognizes new observations using a 'recognition index' 

that employs conditional probabilities in the same spirit as Fisher (1987). 

4.2. The recognition index 

Let P ( C I F  ~ j )  denote the probability that an observation in the hierarchy will be stored 

under concept C given the fact that the value of its jAh feature is F • j .  Let P ( F .  j I C) 

denote the probability that an observation stored in the hierarchy under concept C' will 

have a value F • j for its j_th feature. Let P(C) and P ( F  • j )  be the corresponding 

unconditional probabilities. 

When determining the quality by which a concept C is capable of recognizing a given 

observation, we will focus on the feature values {F . j  } associated with the given observation. 

For each feature value F .  j associated with the observation, one would like to take into 

account both P ( C  I F .  j )  - P(C)  (i.e., how much the feature value adds to the likelihood 

of the concept) as well as P ( F .  j I C) - P ( F .  j )  (i.e., how much the concept adds to the 

likelihood of the feature value). From Bayes Theorem, both of these two expressions must 

possess the same sign, and consequently, if one makes a positive contribution then so will the 

other. This would suggest taking the product of P( C I F . j )  - P(  C) times P( F . j [ C) - 

P ( F  • j ) ,  except that when both make a negative contribution the result would be positive. 

To prevent this occurrence, the product is multiplied by - 1  when each expression makes a 

negative contribution. This product deals directly with differences between conditional and 

unconditional probabilities and treats categories C and feature/values F .  j symmetrically. 
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Consequently, the recognition index for evaluating the quality by which concept C rec- 

ognizes an observation whose feature values are given by {F • j}  is just the sum of the 

products [P(C I F .  j )  - P(C)]  x [P(F.  j [ C) - P ( F .  j)] over all the feature vales F .  j ,  

with each product being multiplied by - 1  if .P(C I F • j )  - P ( C )  < O, and where, for 

purposes of normalization, the sum is multiplied by 100 divided by the number of features. 

4.3. The measuring instrument 

When presented with an observation to be recognized, the first step is to conduct a branch 

and bound search for the node that relates best to the observation. The next step is to 

examine the best node and all its ancestors and from them select the node that gives the 

highest value for the recognition index. While any of these nodes could be regarded as a 

"recognizer" for the observation, the one with the highest recognition index will be regarded 

as the "best recognizer." 

When evaluating how HIERARCH builds a hierarchy from a given set of observations, 

each time a new observation is incorporated into the hierarchy, the best recognizer for each 

of the remaining unincorporated observations is found and the recognition index associated 

with the best recognizer is computed. The average of these "best" recognition indices is 

then calculated, where the average is taken over the remaining unincorporated observations. 

Since this calculation of the average is repeated each time a new observation is incorporated, 

a grand average is taken of all these averages. This grand average will be referred to here 

as the measuring instrument M1. 

The measure M 1 is a kind of predictor in that it is based on unseen (i.e., as yet unincor- 

porated) observations. However, it does not directly measure the quality of the hierarchy 

that finally emerges after all the observations have been processed. In fact, it can be fairly 

sensitive to the order in which the observations are presented in that it will give a relatively 

low value if the early observations are unrepresentative. 

For this reason, a second measuring instrument, M2, is also employed that measures the 

quality of the final hierarchy for the set of observations from which it was created. The 

measure M2 is just the average recognition index associated with the best recognizer, where 

recognition is based on the final hierarchy and the average is taken over all the observations 

from the original set of observations. 

4.4. The experiments 

There were ten different orders by which the observations were presented for the soybean 

task, six different orders for the U.S. Senate voting records, and another six orders for the 

thyroid task. The measures M 1 and M2 were computed for each of these twenty-two orders 

of presentation. Since this was repeated for five different experiments E1 through E5, to be 

described below, the measures M1 and M2 were each computed 110 times. 

E1 employed an information measure that counted the number of features whose values 

were specified in the description of the concept or observation. It was the measure discussed 

in Section 2.1. 
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E2 was the same as E1 except that the globalization aspect of  HIERARCH was turned 

off. Thus, when a new observation was incorporated into the hierarchy, it was done under 

the additional constraint that no existing concept or observation would be transferred to 

another part of  the hierarchy. 

E3 was the same as E1 except that its information measure computed a weighted (rather 

than an unweighted) sum of the specified features, with each weight dependent on the 

overall probability of the value for the given feature. The idea is that a feature value with 

a very high probability of  occurrence is not interesting, since the value is expected and 

therefore conveys little information. On the other hand, a feature value with a very low 

probability of occurrence is also not very interesting, since it is so idiosyncratic that it is 

likely to be associated with a very small cluster. In order to strike a balance between these 

two considerations, if P were the probability of  some value associated with a given feature, 

then its weight would be Min(P,  1 - P )  divided by Max(P,  1 - P) .  Thus, the weight would 

reach a maximum of one when P = .5 and would gradually fall to zero as P approached 0 

or 1. 

E4 was the same as E3 except that E4 employed the first measure of  strength described 

in Section 2.2 whereas E3 (as did also E1 and E2) employed the second measure. 

E5 computed M1 and M2 for an algorithm that placed each new observation as a child of 

the root node as discussed in Section 4.1. For E5, the best recognizer was the observation 

that came closest to matching the new observation. 

4.5. Soybean diseases 

One of the more interesting applications of previous conceptual clustering programs is the 

clustering of  diseased soybean plants, as it is a real-world example of  concern to plant 

pathologists. The CLUSTER/2 program (Michalski & Stepp, 1983; Stepp, 1984) had 

classified 47 diseased soybean plants, each described by a vector of 35 feature/value pairs. 

CLUSTEPU2 was able to obtain a four cluster solution (i.e., each plant fell into one of  four 

disease categories) which agreed with the conclusions of  expert plant pathologists. 

The soybean data was presented to HIERARCH and the five experiments described in the 

previous section were carried out, once for each of ten different orders of  presentation of  the 

observations. The results are summarized in Table 1. The rows S 1 through S 10 in Table 1 

correspond to the ten different sequences of  observations, whereas the columns E 1 through 

E5 correspond to the five different experiments. The entries in the table are in the form 

MI /M2 where M1 and M2 are the two measuring instruments described in Section 4.3. 

It should perhaps not be surprising that the measure M1 shows a much greater variability 

across observation sequences than does M2, since M 1 is a predictor of  unseen observations 

and is therefore sensitive to whether or not the early observations in the sequence are 

representative of  what will come later. However, it is interesting to note that the benchmark 

experiment E5 showed by far the smallest variation across the different sequences. In fact, 

for the two non-random sequences $4 and $9, where the observations were presented by 

disease category, the gap between E5 and the other experiments narrowed considerably 

(and vanished altogether for $9). This suggests that a major benefit of a hierarchy, as 
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Table 1. The soybean experiments. 

E1 E2 E3 E4 E5 

SI 5.95/6.46 5.28/5.83 5.75/6.46 5.18/6.00 4.04/1.61 
$2 6.37/6.46 5.76/5.71 6.14/6.46 6.11/6.16 4.06/1.61 
$3 6.39/6.46 6.32/6.46 6.33/6.46 6.38/6.46 4.44/1.61 
$4 4.42/6.46 4.10/6.01 4.36/6.46 &36/6.46 3.34/1.61 
$5 6.15/6.46 5.83/6.04 6.06/6.46 5.90/5.99 4.23/1.61 
$6 6.44/6.46 5.58/5.38 6.39/6.46 6.25/6.46 4.09/1.61 
$7 6.68/6.46 5.17/5.10 6.66/6.46 6.58/6.46 4.58/1.61 
$8 6.55/6.46 5.28/5.39 6.49/6.46 6.47/6.46 4.51/1.61 
$9 3.92/6.46 2.57/3.30 3.85/6.46 3.95/6.48 3.92/1.61 
S10 6.56/6.46 6.13/6.05 6.54/6.46 6.48/6.46 4.50/1.61 

opposed to a flat linear list of observations as in E5, may lie in its ability to capitalize on 

representative observations. 

For  any given observation sequence, two experiments with different values of M 1 reflect 

different learning rates for that sequence (i.e., all other things being equal, a higher value 

for M1 would likely mean that, as new concepts are learned, higher values were more 

often obtained for the average best recognition index during the computation of  the grand 

average). However, it is the measure M2 that reflects the final state of the hierarchy after 

all the observations have been learned. 

Every entry of M2 that is as high as 6.46 in Table 1 reflects a final hierarchy that contains a 

cluster for each of the four disease categories (i.e., each of the 47 observations is contained 

in one of  these four clusters, but none of the four clusters contains an observation from 

more than one disease category). On the other hand, none of the cases where M2 was less 

than 6.46 was able to create all four of  these "correct" clusters (i.e., clusters that were able 

to cover a disease category without being corrupted by the presence of  an observation from 

some other disease category). Consequently, the value of M2 = 6.46 represents a threshold 

that needed to be attained if clusters were to be found for all four categories. 

As can be seen from the values of M2 in Table 1, Experiments E1 and E3 were able to find 

all four disease categories for each of the ten observation sequences and E4 was successful 

for seven of  the ten sequences. However, Experiment E2 (i.e., the experiment that turned 

off the globalization) was able to achieve this in only one of  ten attempts. 

When the 47 observations were presented to the final hierarchy for purposes of recogni- 

tion, it turned out that, for those hierarchies where M2 = 6.46, the best recognizer of an 

observation (i.e., the cluster with the highest value of the recognition index) was the cluster 

that represented the disease category. A cluster that represented a disease category did not 

always appear as a child of the root node, as it was often the case that it was part of  a larger 

cluster. However, regardless of where the disease category appeared in the hierarchy, the 

cluster that represented the correct disease category was always identified as the best rec- 

ognizer so long as M2 was 6.46. Since there were 47 observations and 27 occasions when 

M2 equaled 6.46, this meant that for each of the 47 * 27 = 1269 attempts at recognition 

when M2 equaled 6.46, the cluster that represented the correct disease category was also 

the best recognizer. 
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Although Experiment E4 failed on three of its attempts to reach the threshold of 6.46, 

it was the only experiment ever to exceed 6.46. It managed this for Sequence $9 when 

it achieved a value of 6.48 for M2. For the hierarchy that produced M2 = 6.48, the 

best recognizer did not always correspond to the cluster that represented the entire disease 

category, since on occasion it corresponded to a sub-cluster within the disease category. 

4.6. U.S. Senate voting records 

Another task asked of HIERARCH was to analyze a listing of fourteen "key votes" (Fisher, 

1987) of U.S. Senators during the 1985 session of Congress as published in Congressional 

Quarterly. 

All votes were described as either yes, no, or uncertain, with "uncertain" reserved for 

those situations where the Senator either did not vote or gave no indication as to how he 

would have voted. The data consisted of 100 feature vectors (one for each Senator) with 

each feature vector containing 14 feature/value pairs. The results are summarized in Table 2. 

The measure M2 proved to be useful in identifying hierarchies where there were problems. 

For example, the low value of M2 = 5.14 for Experiment E1 on Sequence $6 revealed a 

hierarchy that did not contain a large, predominantly democratic cluster. It found one 

cluster consisting of sixteen democrats and two republicans and another cluster consisting 

of fifteen democrats and one republican but was unable to bring these two clusters together 

as part of a common cluster. It fared somewhat better on the republican side, as it found 

a cluster consisting of thirty-two republicans and two democrats, but even this was not as 

good as that obtained by many of the other hierarchies. 

If one averages the results of the predominantly democratic and republican clusters ob- 

tained by Experiment E1 for the other five sequences together with those obtained for 

Experiments E3 and E4 for all six sequences, one gets a predominantly democratic cluster 

consisting of thirty nine democrats and three republicans and a predominantly republi- 

can cluster consisting of 44 republicans and two democrats, out of a U.S. Senate in 1985 

consisting of fifty-three republicans and forty-seven democrats. 

As expected, Experiment E2 did not do as well, and this was reflected in its generally 

lower values for M2. On Sequences S1, $2, and $3, it was unable to form a large, pre- 

dominantly democratic cluster. On Sequence $4, it obtained clusters of 27 democrats and 

Table 2. The Senate voting records experiments. 

El E2 E3 E4 E5 

S1 6.89/6.76 5.77/5.54 6.71/6.91 6.84/6.82 1.96/1.31 

$2 7.18/6.51 5.97/5.67 7.15/5.51 7.04/5.82 2.84/1.31 

$3 7.26/6.72 6.34/5.76 7.27/5.93 7.40/6.66 3.25/1.31 

$4 5.96/6.27 5.06/5.12 5.91/6.18 5.98/6.02 3.15/1.31 

$5 7.91/6.78 6.95/5.97 7.84/6.39 7.41/5.87 3.75/1.31 

$6 6.59/5.14 7.12/6.89 6.89/6.53 6.80/6.44 2.60/1.31 
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25 republicans, but both were still well below the previously mentioned averages of 39 

democrats and 44 republicans. 

4. 7. Thyroid diseases 

One of the more challenging tasks presented to COBWEB (Fisher, 1987) involved the 

classification of thyroid diseases. The data consisted of one hundred and fifty observations, 

fifty of which were for Hypothyroid, fifty for Sick-euthyroid, with the remaining fifty 

regarded as Negative, since they did not represent any disease. HIERARCH was presented 

this data, and the results are summarized in Table 3. 

Sequence $4 was non-random in that it consisted of first the Negative observations, 

followed by the Hypothyroid, and then the Sick-euthyroid. As had been the case for 

the soybean diseases, the measure M1 showed the smallest gap between Experiment E5 

and the other experiments when the observations were presented by disease category (i.e., 

non-randomly). 

It was hoped that Experiment E3 would continue its success demonstrated in the previous 

two tasks. This turned out not to be the case, at least for two of the sequences. The low 

values that E3 recorded of M2 = 2.77 for Sequence $2 and M2 = 2.56 for Sequence 

$6 reflected an inability to coalesce Hypothyroid observations into a single huge cluster. 

However, Experiment E3 did very well for the other four sequences. If one averages the 

results of the sequences S1, $3, $4 and $5 for Experiment E3, one finds that 90.5 percent 

of the Hypothyroid observations are contained in a single cluster consisting exclusively of 

Hypothyroid, while 86.5 percent of the Sick-euthyroid observations are in a single cluster 

of which 91.1 percent are Sick-euthyroid. 

It should be recalled that Experiment E4 used the same information measure as E3 and 

differed only in that it employed a different measure of strength. One strategy, explored 

further in the concluding section, is to combine the results of E3 and E4 by selecting 

the hierarchy that gave the larger value for M2. This combination strategy would have 

performed very well for all six sequences of observations. If one averages the results of all 

six sequences using this strategy, one finds that 90 percent of the Hypothyroid observations 

are contained in a single cluster that is 99.6 percent Hypothyroid, while 84 percent of the 

Sick-euthyroid observations are in a single cluster that is 92 percent Sick-euthyroid. 

Table 3. The thyroid experiments. 

E1 E2 E3 E4 E5 

SI 3.16/3.33 2.82/2.92 3.15/3.41 3.03/2.67 1.59/0.93 
$2 3.12/3.55 2.29/3.29 2.94/2.77 3.13/3.29 1.73/0.93 
$3 3.28/3.00 3.23/3.09 3.17/3.32 3.07/3.48 1.31/0.93 
$4 2.80/3.48 2.27/2.96 2.30/3.55 2.57/3.53 1.89/0.93 
$5 2.91/3.36 2.47/2.86 2.75/3.41 2.95/3.39 1.52/0.93 
$6 3.02/3.34 2.84/2.84 3.00/2.56 3.09/3.15 1.57/0.93 
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5. Concluding remarks 

The present approach to conceptual clustering is one of 'divide and conquer' through a 

clean separation of the characterization and clustering modules. The clustering module 

of HIERARCH does not even look at any of the conceptual descriptions produced by the 

characterization module. It only needs to know the amount of information associated with 

a concept and requires only that the information measure be a local property of the concept 

and never increase when two concepts are generalized. Thus, the clustering module of 

HIERARCH can be regarded as a 'knowledge weak' problem solver that derives its ability 

by virtue of a search procedure that can exploit the information measure that is applied 

to concepts in the hierarchy. Its knowledge ultimately is obtained from the characteri- 

zation module, and its enrichment depends indirectly upon the knowledge representation 

employed by the characterization module as transmitted through the medium of the infor- 

mation measure. 

As suggested at the end of the previous section, one possible extension of the algorithm 

would be to employ a number of different measures of strength, each based on the same 

information measure. As new observations arrive, a separate hierarchy could be formed for 

each measure of strength. After a certain number of observations have been processed, one 

hierarchy could be selected based on the best value obtained for some global measuring 

instrument. The process then could be repeated as additional observations arrive, only this 

time each measure of strength would begin with the hierarchy that was selected by the 

global measuring instrument at the end of the previous cycle. 

More research also is needed that is directed at developing and improving such global 

instruments for measuring the quality of a hierarchy, especially for domains involving 

structured objects. Although the experiments of the previous section were confined to un- 

structured objects (i.e., individual feature vectors), there is nothing in the clustering module 

of HIERARCH that suggests any dependence on feature vectors. Indeed, experience with 

HIERARCH has indicated an ability at classifying structured objects when the characteri- 

zation module was able consistently to produce good generalizations. The development of 

more effective and efficient characterization modules for such domains is an important and 

challenging task. 
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