A Branch and Cut Algorithm for
Nonconvex Quadratically
Constrained Quadratic
Programming

Charles Audet, Pierre Hansen, Brigitte
Jaumard, and Gilles Savard

CRPC-TR99783-S
January 1999

Center for Research on Parallel Computation
Rice University

6100 South Main Street

CRPC - MS 41

Houston, TX 77005

Submitted January 1999

A Branch and Cut Algorithm for Nonconvex
Quadratically Constrained Quadratic Programming

Charles Audet
Rice University, CAAM -MS134
6100 Main Street
Houston, Texas, 77005-1892 USA

Pierre Hansen
GERAD and Ecole des Hautes Etudes Commerciales
Département MQ), 5255 avenue Decelles
Montréal (Québec), H3T 1V6, Canada.

Brigitte Jaumard and Gilles Savard
GERAD and Ecole Polytechnique de Montréal
Département de Mathématiques et de Génie Industriel
C.P. 6079, Succursale “Centre-Ville”
Montréal (Québec), H3C 3A7, Canada.

January 21, 1999

Acknowledgments: Work of the first author was supported by a NSERC fellowship.
Work of the second and third authors was supported by FCAR grant #95ER1048.
Work of the second author was also supported by NSERC grant #GP0105574. Work
of the third author was also supported by NSERC grant #GP0036426, and a FRSQ
fellowship. Work of the fourth author was supported by NSERC grant #0GP0046405,
and FCAR grant #93ER0141. This paper was also subsidized in part by a grant
from CETAI, Ecole des Hautes Etudes Commerciales and GERAD and a grant from
Ultramar Canada, thanks to Luc Massé, as well as by matching funds of NCM;, of
NSERC. We thank an anonymous referee for comments which helped to improve the
paper’s presentation.

Abstract

We present a branch and cut algorithm that yields in finite time, a globally
e-optimal solution (with respect to feasibility and optimality) of the nonconvex
quadratically constrained quadratic programming problem. The idea is to es-
timate all quadratic terms by successive linearizations within a branching tree
using Reformulation-Linearization Techniques (RLT). To do so, four classes of
linearizations (cuts), depending on one to three parameters, are detailed. For
each class, we show how to select the best member with respect to a precise
criterion. The cuts introduced at any node of the tree are valid in the whole
tree, and not only within the subtree rooted at that node. In order to enhance
the computational speed, the structure created at any node of the tree is flexible
enough to be used at other nodes. Computational results are reported. Some
problems of the literature are solved, for the first time with a proof of global
optimality.

Key words: Nonconvex programming, quadratic programming, RLT, lineariza-
tion, outer-approximation, branch and cut, global optimization.

1 Introduction

The nonconvex quadratically constrained quadratic programming problem (QQP) is
a structured global optimization problem, which encompasses many others. Indeed,
linear mixed 0-1, fractional, bilinear, bilevel, generalized linear complementarity, and
many more programming problems are or can easily be reformulated as particular cases
of QQP. This generality has its price: there are theoretical and practical difficulties
in the process of solving such problems.

QQ P’s complexity is present at two levels. The problem of finding a feasible
solution is NP-hard as it generalizes the linear complementarity problem (Chung [10]
analyzes the complexity of the latter problem); the nonlinear constraints define a fea-
sible region which is in general neither convex nor connected. Moreover, even if the
feasible region is a polyhedron, optimizing the quadratic objective function is strongly
NP-hard as the resulting problem subsumes the disjoint bilinear programming problem
(Hansen, Jaumard and Savard [21] show that an equivalent problem, the linear maxmin
problem, is strongly NP-hard). It follows that finding a finite and exact algorithm that
solves large Q@) P’s is probably out of reach.

The nonconvex quadratically constrained quadratic programming problem may
be stated in its most general form as follows
min Q°(z)

P reX _
0¢ st QF(x) by k=1,2,... k,

where X = {z € R": Az < a}, and for each index k in the set K = {0,1,... ,k}

Q" :R* — R
r = QFz)= Z C’;}:ci;cj—FZch:f—Fdexi,

(i,5)EM ieN ieEN

are quadratic functions where N = {1,2,... ;n} and M ={(i,j) € N X N : 1> j} are
sets of indices. The symbol < signifies that constraints may be equalities or inequalities.
The dimension of the matrices and vectors are the following:

z€R™AcR™™ qacR™bc RF,
Ck.ck d* € R for all (4,5) € M and k € K.

150 710 e

The only further assumptions made in this paper concern the boundedness of the vari-
ables. We assume that the constraint = > 0 is either present in Az < a or implicit
through all the constraints. We also suppose that it is possible to obtain valid up-
per bounds on each variable. This hypothesis is discussed in Section 2.3 below. No

restrictions are imposed regarding convexity or concavity of the objective function or
constraints.

In this paper, we develop an algorithm based on approximation of quadratic
terms by means of Reformulation-Linearization Techniques (RLT). As surveyed in Sec-
tion 2.1, such an approach is not new, but is extended here in several ways. First, cuts
associated to linearizations are generalized as members of different classes, that depend
on one to three parameters. One of them, namely Class C;; defined below, contains a
new type of linearization. Second, these classes being defined, we pose and answer the
natural question of selecting the best member of each of them under a precise crite-
rion. Third, this outer-approximation scheme is incorporated in the first branch and
cut algorithm for Q@ P. Cuts generated at any node of the exploration tree are valid
at all other nodes. Moreover, a key algorithmic element is that the branching structure
developed at a node of the tree is reused at several other nodes.

The paper is organized in the following way. The next section introduces lin-
earization of quadratic terms. We present a brief survey of the literature and lay down
our assumptions regarding boundedness of the variables. In Section 3, we describe the
four classes of valid cuts derived from linearization of quadratic functions. These cuts
are used to refine the outer-approximation of quadratic terms, and to eliminate the
current relaxed solution. For each class, we show in Section 4 how to select the best
cut, i.e., that one which minimizes the worst potential error of the refined approxima-
tion. These results lead in Section 5, to a branch and cut algorithm which is shown to
converge in finite time within a given tolerance. This final section also details execution
of the algorithm on a small example, and reports computational results on a series of
problems from the literature. Several of them are solved for the first time with a proof
of global optimality.

2 Initial Linearization of Quadratic Terms

The difficulty of Q@ P lies in the presence of quadratic terms in both objective function
and constraints. Throughout this paper, we consider the quadratic functions

f*IR - R and g: R® = R
v, — f(z;) =a? (zi,25) — glzg,z)) = iz,

Approximation of the function f is easier than that of g since it is convex on its domain.
Any line tangent to f defines a valid under-estimation on the whole domain IR. Over-
estimations are obtained by piecewise linear functions. A more detailed analysis is
required for the function g. The plane tangent to ¢ at any given point defines both an

under and over-estimation in different directions. The basic approach described in this

paper relies on piecewise estimations of such quadratic functions.

2.1 Survey

The bilinear programming problem (BIL) is equivalent to QQP. The variables of the
former problem are partitioned into two sets in such a way that when either set is fixed,
the resulting problem has a linear objective function and a polyhedral feasible domain,
thus it becomes a linear program. Obviously, BIL is a particular instance of Q@ P.
Reciprocally, any instance of QQFP may be reformulated as a BIL by introducing
additional variables and constraints. Hansen and Jaumard [19] present various ways
of doing so.

In the last few years, several authors studied linearization of quadratic functions.
Al-Khayyal and Falk [3] developed an infinitely convergent branch and bound scheme
for a problem more general than BIL. The variables of this problem are partitioned
into two sets, and require only the three following properties: (i) the objective function
is biconvex; (ii) the feasible region is closed and convex; (iii) finite bounds on every
variable may be obtained: z; € [{;,u;]. Their method relies on outer-approximation
of the function g(z;,x;) = z;x; using the convex envelope over the hyper-rectangle
[li,ui] x [€j,u;]. Such a linearization is exact only on the boundary of the hyper-
rectangle. If the solution (ay, ;) of the corresponding relaxation lies in the strict
interior of the hyper-rectangle, then the approximation needs refinement. This is done
by adding linearizations over the four sub-intervals [(;, a;] X [(;, o;], [evi, wi] X [45, e],
[li, o] X [ej,u;] and [y, ;] X [, u;]. The branch and bound method generates a new
problem for each of these intervals.

Al-Khayyal [1] strengthens this method by also evaluating the concave envelope.
Afterwards, Al-Khayyal [2], adapts this idea to BIL by adding linearizations not only
to the objective function, but also to the domain. Finally, Al-Khayyal, Larsen and Van
Voorhis [4] illustrate a slightly different version of this method on QQP. Instead of
generating four new subproblems as above, the proposed method generates only two
subproblems by splitting the longest interval in its middle. Computational experiments
on randomly generated problems having up to sixteen variables and eight constraints
are presented. It appears that the difficulty of a problem is directly related to the
number of variables present in quadratic terms that are not at one of their bounds.

Sherali and Alameddine [27] [28] improve the linearization for BIL (where there
are no quadratic constraints) by considering the constraints defining the polyhedron X
instead of using only the bounding constraints. Sherali and Tuncbilek [29] generalize

this branch and bound method to the case where the functions Q* are polynomi-
als. Their approach does not consist in reformulating the polynomial problem into a
quadratic one by adding new variables and constraints. Instead, they add lineariza-
tions of degree higher than two. Sherali and Tuncbilek [30] specialize this method to
() P where there are no quadratic constraints. They discuss several improvements such
as linearization of cubic terms, diagonalization of the matrix Q° (when possible), con-
vex approximation of the function f, and resolution of the relaxation by a Lagrangian
method. Ryoo and Sahinidis [26] propose a branch and bound algorithm in which the
product z;z; is replaced by %(u2 -z — .rf
a sequence of convex underestimating subproblems. Range reduction techniques are

) where w = x; + ;. The algorithm solves

used to tighten the bounds on the variables of the subproblems. Sherali and Tunc-
bilek [31] compare different methods to evaluate bounds for polynomial optimization.
Sherali and Tuncbilek [32] present classes of constraints for univariate and multivariate
versions of this problem. The branch and bound algorithm uses constraints selection
and range reduction strategies.

Generalized Benders decomposition [7] provides a different approach to solve
BIL. 1t is studied in Geoffrion [18], Wolsey [35], Simoes [33], Flippo [13], Floudas
and Visweswaran [15], [16], Visweswaran and Floudas [34], and Flippo and Rinnooy
Kan [14].

QQ P can also be written as a d.c. (difference of convex) programming problem
in which the objective function is linear and each function Q* is expressed as a d.c.
function. Phong, Tao and Hoai An [24] presents an outer-approximation method for
such problems.

2.2 Initial Relaxation

The classes of cuts associated to quadratic functions presented in Section 3 below
lead to outer-approximations of the feasible region. For each ¢ in N, the variable v,
is introduced to estimate the square x?, and for each (i,7) in M, the variable w;; is
used to estimate the product z;z;. Constraints regarding v; and w;; are successively
added to refine the approximation while insuring that the solutions where v; = z# and
w;; = x;x; remain feasible.

Let us define precisely the terminology used throughout this paper. The vari-
ables v; and w;; are estimations of the quadratic terms z? and z;x;. The linearization
of a quadratic function is obtained by replacing all quadratic terms by their estima-
tions. A wvalid inequality on a given domain is an inequality that does not eliminate any
point belonging to both that domain and the feasible region. When valid inequalities

are combined, the resulting feasible region is an outer-approximation of the original
domain. Solution of this relaxed problem yields the current point. A cut is a valid
inequality that eliminates the current point. In Section 3, specific cuts derived from
linearization of a quadratic functions are called linearizations.

We use the RLT notation introduced by Sherali and Tuncbilek [29]; the lin-
earization described above, in which the quadratic terms are replaced by linear ones,
is denoted by [-],. Typically, [(a, — Ap.x)(a, — A,.7)]e (where A,. is the p® row of the
matrix A) denotes the linearization of the product

(ap — Apx)(ag — Agx) = Z Z ApiAgjziz; — Z(%Aqi + agApi) i + apay,

tEN jEN teEN

and 1s explicitly written through introduction of the linearization variables v and w

Z (ApiAgj + ApjAg)wi; + Z ApiAgivi — Z(%Aqi + agAp)T; + apay.

(i,j)EM ieN iEN

Since the definition of the polyhedron X contains the constraints A,z < a, and
A,z < a,, one can obtain a valid inequality in a higher dimensional space by im-
posing linearization of the product to be greater than or equal to zero. We are now
able to formulate an initial linear relaxation of Q@) P, which is a RLT relaxation as in

Sherali and Tuncbilek [29] [31] [32].

Proposition 2.1 Let P be a subset of indices of {1,2,... ,m}, and Q, a subset of
{p,p+1,... ,m} for each p of P. The problem
: 0
,min - [Q%()le -
[QQP, st [Q%(x))0 2 b k=1,2,... ,k,
[(ap — Ap.x)(ag — Aga)]e > 0 pEP qeQ,

is a linear relaxation of QQP.

Proof: Let z* be an optimal solution of QQP. Set v’ = z}* for each i belonging to
N, and w}; = z7x} for each (7,7) in M.

For each index k of K, the value [Q%(z*)], = Yo j)eM Crwli+ ey v
Y ien dial, is identical to Q*(z*). Moreover, by replacing the variables v} and w”
by the respective products z* and zix?, the linearization constraints become (a, —
A, x*)(ag — Agx*) > 0 for p € P and ¢ € @,. The point (z*,v*, w*) is feasible for the
problem [QQ P], and its objective value is equal to Q°(z*), thus the result follows. m

In the case where all possible valid inequalities derived from the linearizations
are present in the relaxation, i.e., when P = {1,2,... ,m},and Q, = {p,p+1,... ,m}

for each p of P, Sherali and Tuncbilek [30] show that if at least one of the variables
x; is lower and upper bounded in X, then the constraint x € X is redundant for that
linearization. It can therefore be withdrawn from [QQ P],.

This linearization technique provides a general framework for an outer-appro-
ximation method that consists essentially in a sequence of refinements of approxima-
tions of quadratic functions.

2.3 Computation of Bounds on Each Variable

Due to the nonconvex nature of the constraints of Q@) P, obtaining tight bounds on
the variables is a nontrivial problem. The range reduction strategy that we use is that
of [32]. Let 7, 2™ be bounds on x; such that 0 < 27 < z; < 2%, and v™,v™ be bounds
on v; such that 0 < v~ < v; < v™ obtained by replacing [QQ P],’s objective function
by +z; and then by +v;. Let ¢; = max{z~, \/v__} and u; = min{z*, \/v_+} Ifl; <y,
then ¢; and u; are valid bounds for the variable z; over the feasible domain of Q@) P.
If 7; > w;, then the feasible domain of Q@) P is empty.

These bounds may be improved if ¢; > min{z; : * € X} or if u; < max{z; : z €
X}. After adding the bounding constraints ¢; < x; < u; to the polyhedron X, one can
reiterate the process in order to tighten the interval. Consider the following example.

Example 2.2 Let a feasible domain be defined by the two constraints
:vl—l—:I;fSG and x; > 1.

One can easily verify that the feasible interval is [1,2]. The approach described above
yields the constraints of the relazation [QQ P)y:

1 +v <6, 1y >1 and [(z; —1)*], =v; — 22, +1>0.

The first computed bounds are x| € [1,%] and vy € [1,5], from which it follows that
z1 € [1,V/5]. Since X = {x : &1 > 1} has no upper bound, it is possible that the new
upper bound /5 can be improved. By adding the constraint x; < /5 to X, we obtain
the new linearizations

[(\/5 - xl)Z]z = v, — 252, +5 > 0 and
(V5 —z)(zi— D] = —vi+(1+V5)a —v5 > 0.

Once again, these constraints generate new bounds: x, € [1,%] and vy € [1,13 —

4\/5] Since ﬁ ~ 2.010 < V13 —4V5 =~ 2.014 < V5 =~ 2.236, the constraint

z1 < V5 can be improved to z, < ﬁ Repetition of this process converges to the
feasible interval of xq, i.e., to [1,2]. .

Any valid inequality belonging to the two first linearization classes presented
in the following section can also be added when evaluating bounds. It is then possi-
ble that better bounds are generated. In Section 5, we present an algorithm whose
pre-processing phase consists in iterating this bounding process until improvement is
negligible. The only assumption made in this paper concerning Q@ P is that finite
bounds may be obtained in this way for every variable.

3 Classes of Linearizations

In this section, we present four classes of linearizations. Each class consists of a set of
inequalities which are valid over the intervals [¢;, u;] for i € N.

The first class of linearizations, due to Al-Khayyal and Falk [3], contains under-
estimations of the square function. For «; € [¢;,u;],7 € N consider the RLT constraints

Vilai): [(wi —ai)*]e > 0.

For a given value of a4, the valid inequality defines the half-space tangent to the convex
function z; at the point x; = a;. The first class of valid inequalities is

Cr = {Vi(ai): ai €[li,ul,i e N}.

The second class of linearizations, which is new, contains under-estimations of a
paraboloid. For o; € [(;,u;], a5 € [{;,u;],1,7 € N,y € IR consider the RLT constraints

Pllai,a) 0 [((as = 2i) +7(aj — 27))]e > 0.

For given values of a5, o; and v, the valid inequality defines the half-space tangent to
the convex paraboloid (x; + yz7)? at the point (z;,7;) = (as,a;). The second class of
valid inequalities is

CII = {B;'Yj(ai7aj) o € [ziaui]aaj € [Eﬁuj]aiaj € N77 S IR} .

Both the inequalities of the above classes are tangent linear under-estimations
of convex functions, and thus are valid everywhere. The inequalities of the next two
classes are not. Dichotomy is used to refine the approximations of the quadratic terms
on subintervals. The branch and cut algorithm introduces some variables §;(a;) € [0, 1]
where «; € [{;,u;] for i € N. The branching process of the algorithm fixes these
variables to either 0 or 1. When backtracking, the variables are freed in [0,1]. The
same variable d;(c;) can be used at different branches of the enumeration tree.

The branch and cut algorithm presented in Section 5 uses a best first strategy.
When the algorithm unfolds, it often jumps from one branch to another. The RLT
inequalities valid at one branch may not be valid at another. Instead of adding and
deleting inequalities when moving along the branches, the introduction of the variables
§ ensures that the inequalities are valid everywhere.

The constraints of classes III and IV are constructed in such a way that they
are active only when the variables are fixed at either 0 or 1. When these are free, the
constraints are redundant. The variables §;(¢;) and &;(u;) are respectively fixed to 1
and 0. Moreover, if {; < o; < 3; < u; then §;(3;) > d;(a;). Therefore, if d;(c;) = 0
then 6;(3;) = 0, and if §;(3;) = 1 then §;(c;) = 1.

The third class of linearizations are over-estimations of the square function. For
a;, Bi € iy ui], a; < i1 € N consider the constraints

Vilai, Bi) : (o — i) (B — @i)]e > (ui — £)*(8i(i) — 6:(Bi) — 1).

For given values of «; and [;, the valid inequality defines the half-space obtained
through the cord from (z;,v;) = (a4, a?) to (8;, 5%). If §;(c;) = 1 and 6,(3;) = 0, then
the inequality reduces to [(c; — z;)(3; — x;)]e > 0, and is thus valid when o; < z; < ;.
Otherwise, the right-hand-side of the inequality becomes —(u; — £;)*, and thus the

inequality remains valid when ¢; < x; < a; or 3; < x; < u;. The second class of valid
inequalities is

CIII = {Kz(al)vzz(ﬁl)vvl(aﬂﬁl) : a’ivﬁi € [giaui]vai < 527Z S N} .

By combining V;(a;, 3;) with V.(a;) and V.(3;), it follows that if §;(c;) = 1 and
5:(3:) = 0 then o; < z; < 3, thus making V;(a;, 3;) the concave hull of x;z; on that
subinterval.

The fourth class of linearizations are estimations of the product of two variables.
Consider the tangent plane Il to the function g¢(x;,z;) = z;x; at the point
(i, j). This plane satisfies the three following properties:
i- (2, 2;,w;;) belongs to Il if and only if z; = a; or x; = «;.

ii- II strictly under-estimates (z;, 2, w;;) if and only if both z; < a; and z; < a;, or
both z; > a; and z; > «;.

iii- II strictly over-estimates (z;, z;, w;;) if and only if both z; < «; and z; > a5, or
both z; > a; and z; < ¢;.

We define the four quadrants associated to the point (o, «;):
O = Alenag) e > a2 0}, QY = {(wn) e <o > g
oM = {(wag) rae S ary <oyl QY = {(xi2g) 2 > anay < o

For o; € [li,wi], 5 € [45,u4],0,5 € N, set L; = a; — 4;,L; = a; — {;, and
Ui =u; — o, U; = u; — a; and consider the constraints

Wiiai,a;) s [(w = ai)(z; — ag)le > Lillj(8:(cw) = 1) + UiLj(6;(;) — 1),
Wiiaa) s [—a)(a; — o))l < UUdi(es) + Lil(1 — §5(ay)),
Will(ai,a;) : (@ — i)z — ag)le > =UiLidi(a) — LiU;65(),

Wi (ai0g): [(w— ai)(e; — a)le < Lili(1 = bi(as)) + UsU;85(0).

For given values of a; and «;, the valid inequalities Efj(ai, a;) and EZ'I]'H(%, «;) define
the convex hulls of the function z;z; on the respective domains Q! and Q1. Indeed,
on their respective domains the right-hand-sides of these inequalities becomes 0, thus
the inequalities are those of Al-Khayyal and Falk [3]. Similarly, the valid inequalities
Eijj](ai,aj) and Efjv(ozi,aj) define the concave hulls of the function x;z; on the re-
spective domains Q7 and QY. The fourth class of valid inequalities is partitioned
into

Crv = { Wi, 05), Wi (ai, ;) : i € [i,wi], 05 € [, u5),1,5 € N }

—II ——IV .o
Crv = { Wij (ai7aj)7 Wij (aiaaj) TS [ziaui]aaj S [gj,uj],l,] eEN }

4 Selection of the Best Linearization

In this section, we study how to find among the four classes of cuts presented above,
that one which should be added to the relaxation in order to obtain the best possible
estimation of quadratic terms, according to a precise criterion. In a branching algo-
rithm, selecting the branching value in such a way may reduce the number of nodes
generated by the algorithm. This is illustrated in Section 5.5.

4.1 Refinement of Under-Estimation of the Square Function

We consider in this section the case where the current point satisfies ¥; < #?. The
question studied here consists in finding the best linearization among all V() that
eliminate the current point. The point (Z;,?;) is obtained by solving a relaxation of

10

QQP. The fact that #7 is not well-approximated by ¢; can be interpreted in two ways:
either the value v; is too small, or that of Z; is too large. Therefore, we propose to
select the point « (and thus the linearization V,(«)) that minimizes a potential error
over the interval [/0;, &;].

The error to minimize is the largest value between e; = v; — (2a\/i’7 — a?) and

~2
aeqy where eq = (;—& + %) — ;. The weight of the second error term « compensates for
the fact that e; represents a difference of squared values, but not e;. Figure 1 illustrates
these error terms as well as the linearization V,(«) tangent to the curve z?.
Vi vy =2
~2
xi K (a) Ul- 2 20{.:62 _ a
B g [.
............................ o
: €2
; ! Z; z;

Figure 1: Minimization of the error for under-estimating a square

Slight variations of the following observation are used when minimizing various
weighted errors: the least value of the maximum of e; and ae; is attained when e; =
aeg, since e; monotonically increases from 0 and ae; monotonically decreases to 0 when
a varies continuously from /9; to Z;.

Proposition 4.1 The value a = (\/5— Dz, + (2 — \/5)\/137 € [Vv;, x;] minimizes the

mazimum belween e, = O; — (2a/0; — a*) and aey where eg = (;—; +5) — 2.

Proof: The least value of the maximum between e; and ae; is attained when both
terms are equal. One can easily verify that e; = aey if and only if

o + 2(&; — 2¢/0;)a + 26; — &2 = 0.

The root of this quadratic function that lies in the interval [\/v,, 2;] is a convex com-

bination of the endpoints a = (2 — \/ﬁ)\/ﬁj + (\/5 —1)z,. .

11

4.2 Refinement of Under-Estimation of a Paraboloid

The inequality Byj(ai, «;) depends on the three parameters a;, a; and v. The firt two
of them define the point where the tangent plane is evaluated, the third parameter, v,
describes the curvature of the paraboloid. In order to select its value, we rewrite the
valid inequality:

(v; — 2ajx; + a?)fyz + 2(wy; — iy — ajz; + ogap)y + (v — 2052 — of) > 0. (1)

In the case where the left-hand-side is convex with respect to v, we choose the value of
v, specified in the next proposition, that corresponds to the minimum of this quadratic
function. The case where it is concave is not developed since it reduces to the use of
an arbitrarily large v, and the linearizations become equivalent to those of class Cj.

In order to lighten the notation, we write

A A 2 A A 2 A A A
i :UZ'—QOQJ}Z'—I-O[Z», T :vj—Zajxj—l—aj, g :wij—ozia:j—aj:z:i—l—aiaj.

Proposition 4.2 If{; < &; < v/?; < u; and U < & < £/0; < wuj and if T, < 7

I
then for any a; €)2:,\/0;| and o; €)1, \/E[the value of v for which the cul PJi(c, a;)
is the deepest at the current point (i.e., the value of [((c; — &i) + vy(a; — &;))*]s is

minimal) is v = — =2
J

, and it eliminates the current point.

Proof: At the current point (Z;,2;,0;,0;,%;;), the value of the left-hand-side of

sz(ai,aj) becomes 7;4% 4+ 2m;;v + 7. It is convex with respect ‘t.o ~ since 7; >

:i’? — 2052 + af > 0, and its minimum is attained when v = —7%] (this choice of
J

v maximizes in that way the depth of the inequality). It can be written

2 92
7) 2
— ———+7>0 or @ <7
7 7;
Since 7;7; < 7TZ-2J-, the current point is eliminated. .

We now show how to obtain the point where the tangent plane is evaluated, i.e.,
the values of o; and a; that minimize the greatest potential error are selected.

Proposition 4.3 The value (i, ;) = (& + V05, &5 + /5;)/2 € [2i,v/0,] X [2;,/V]]
minimizes the mazimum between the distances from the paraboloid to the tangent plane
at the point (&;, \/137) s ep = ho(, ﬁ)—7(£¢+7ﬁ)+72/2 and at the point (\/0;,%;):
ez = h(VOi, 2;) — T(VO; + v2;) + 72/2, where T = 2(a; + ya;).

12

Proof: The minimal value of the maximum between e; and e, is attained when both
terms are equal. One can easily verify that e; = ey if and only if

T=(&; + \/@7) + (85 + V/55).

Since 7 = 2(a; +7a;), the values a; = (&; +/9;)/2 and o; = (&; + \/E)/Q satisfy the

criterion. n

Similarly, it can be shown that the same point minimizes the maximal distance
between the paraboloid and the tangent plane at the points (&, ;) and (v/%;, \/0;)-

4.3 Refinement of Over-Estimation of the Square Function

Suppose now that we wish to eliminate an over-approximation of the function f, when
the current point satisfies ¢; > 2?. We discuss the choice of the value a that minimizes
the greatest potential weighted error. The choice of this parameter is more delicate
than that of the under-estimation since a linearization at a point depends on two other
parameters: the values of both inferior and superior evaluation points. Let 3 and 3 be
such evaluation points satisfying [2;, v/2;] C]3, B[. We wish to refine the app;oximation
on this first interval. B

Proposition 4.4 The value o = — CHHEHT [xi,1/v;] where p = (& — B) +

(B — V%) and g = (%; — BB — &) — (B — Vi)\/0i, minimizes the mazimum between
e1 = (B4 a)t; — fa — i? and aey where e; = \/0; — %

Proof: The least value of the maximum between e; and ae; is attained when both
terms are equal. It can be shown that e; = aey if and only if

(B+ a)(a+B)ii — Pala+P) — i (a+B) = Vola+B)a— (b + af)a

—
(8 = B+ B = Vii)a® + (& = B)(B — &) — (B — Vo)Voi)a — (& — B)Bdi = 0
—

pa® + qa — (& — B)Bi; = 0.

This convex quadratic equation necessarily possesses a root in the interval
[#:,v/0;]. Indeed, if a = Z; then ¢; = 0 and aey > 0, then by continuously increasing o
up to v/9;, e; becomes and remains positive, and ae, decreases to 0. Therefore, there
exists a value of a in the interval such that e; = aes.

13

The second root is negative. Indeed, if & = 0 then e; < 0 and aey; = 0, thus by
continuously decreasing «, the value of ce; decreases more rapidly than that of e;, and
so there exists an o < 0 such that e; = aey. Therefore, the desired root is the positive
one. .

4.4 Refinement of the Product of Two Variables

We finally consider the case where we wish to refine the estimation of the product of
two variables z; and x;. We only cover explicitly the case of the over-approximation
since the under-estimation is symmetrical.

Let w;; be an estimation of Z;z; such that @;; > &;2;, and é and 3 the evaluation

points such that [Z;, wz—‘j] C]B,B[. We wish to obtain an evaluation point a € [i;, L;;J]
for the variable z;, in order to refine the approximation of the product z;z; when
(zi,2) € 24 u;j] x [8,0] to eliminate the over-estimation. Since in the algorithm
presented in Section 5 branching is done on a single variable, we fix variable z; to
a; = (& + \/E)/Q Therefore, we select the value of o that minimizes the greatest

potential weighted error in the interval [#;, =2].
J

Proposition 4.5 The value

(- L)+ (-2

@y

(=) + (-

ay

(S5

)5

)

|

o =

Iw|& !

minimizes the mazimum between e; = (B&; + a(a; — B) — o;T; and ajey, where ey =
Dij (ozju?g] o O‘(O‘J_E))
& 50 g '

Proof: The least value of the maximum between e; and oje; is attained when both
terms are equal. Figure 2 illustrates these error terms. One can verify that e; = aje;
if and only if

— ajla; —P) Wij oy

= —Bii + oj(di + =2 — =

)

The results follows by solving for the variable a. .

Similar results can be obtained for the case of under-approximation of the prod-
uct of two variables.

14

wij
IV
Wi] (a@)? wi]fﬁfi‘*'a(aj_@)
Wij =0T
QWi |
&y I, — _ : _
Wi] (avﬁ): Wiy S5I1+a(a]_ﬁ)
erd :
T
€2
A Wi
ZT; « i’j Z;

Figure 2: Minimization of the error for over-estimating a product
5 Branch and Cut Algorithm

In this section, we use the linearizations described above in order to construct a solution
method for QQP. We seek an approximate solution in terms of both feasibility and
objective function value.

Definition 5.1 For a feasibility tolerance parameter ¢, > 0, a solution (Z,0,w) is said
to be e.-~approximate if it satisfies the three following conditions: (i) & € X;

(ii) |#? — 0;| < €, for each i of N; (iii) |&;2; — ;| < € for each (i,7) of M.
Moreover, let z* be the minimum value of the linearization [Q°], over all €.-approximate
solutions. For an objective tolerance €, > 0, the solution is said to be €,-¢,-optimal if
it is €.-approzimate and if z* — [Q%(Z, D,)], < €,. .

The following notation is used throughout this section. The branch and cut
algorithm generates a branching ¢ree. The initial node of the tree is called the root.
When a node is processed and needs further refinement, the branching step creates two
new nodes: these are called sons of the father. The incumbent solution refers to the
best solution currently found by the algorithm. Its objective value is the incumbent
value which is set to 400 at the beginning of the execution.

This section is divided into five parts. We first describe the pre-processing step
done on the instance to obtain valid bounds on the variables, and the initialization
steps at the root of the tree. Second, we discuss the branching strategy that selects

15

at each node a branching variable and a branching value. Third, we detail the cutting
step which refines the outer-approximation. Fourth, all these steps are combined in a
branch and cut algorithm. Finally, the method is illustrated on a small example and
computational results on problems of the literature are reported.

5.1 Root Node

At the root node, the linear problem [QQ P]; is created and contains a number of lin-
earizations. Next, bounds are evaluated for each variable through the iterative process
described in Section 2.3. Then, the outer-approximation of quadratic terms is refined
using the linearizations presented in Section 3, without however adding any variables d;.
In this process, only cuts associated to convex and concave envelopes are introduced.

The first phase of the algorithm, the pre-processing, consists of the iteration of
these steps until no bound is improved by more than ¢.. This relaxation tightening
is performed only at the root node. Although repeating this at other nodes might be
useful, it would change the algorithm from a branch and cut one into a branch and
bound one (and thus some cuts would be valid only in parts of the tree).

After the pre-processing phase at the root node, further refinement of the outer-
approximation requires introduction of cuts from class Cry;. The algorithm moves on
to the branching process.

5.2 Branching

When the need for refining the outer-approximation is felt at a node of the enumeration
tree, the branching step of the algorithm is invoked. Then, branching variable and
branching value are selected in the following way, by considering the optimal solution
(Z,0,w) of the current linear relaxation.

Selection of the branching variable z;:

}. If the error
associated to the indices (k, j) is larger than that of the index 7, then reset ¢ to be the

Select i in argmax;{|6; — 27|}, and (k,j) in argmax j){|tr; — Zx2;
index corresponding to the largest error between |0, — 3| and [6; — 3|. The selected

branching variable is z;. .

If the error (either |6;— 27| or |wg; —2x,|) associated to the branching variable is
less than €., then the branching step does not need to be pursued as the corresponding
solution is ¢,-feasible. Otherwise, a branching value must be evaluated.

16

At various nodes of the tree, branching structures have been developed for differ-
ent values of z;. Let 3 be the greatest branching value less than z; currently produced
by the algorithm. If there are none, set 3 to £;. Similarly, let 3 be the smallest branch-
ing value greater than z; currently proguced by the algorithm. If there are none, set
B to u;. It is possible that the branching done to reach the current node from the

root does not require fixation of §;(3) or of 6;(3), i.e., at least one of these variables is
free. In that case, the branching Stgp selects that branching value (and so, the whole
branching structure already present in the model is reused). Otherwise, the branching
value is chosen according to the results presented in Section 4. This process is now

described in algorithmic terms.

Selection of the branching value o:
One of the four following cases occurs.

i- Both 4;(3) and 5:(B) are free in [0, 1]: Set a to be the value among B and 3 that
is the closest to 0 (3 is selected in the unlikely event of equality).
ii- Only 6;(3) is free in [0, 1]: Set « to 3.

iii- Only §;(3) is free in [0, 1]: Set a to (3.

iv- Both 6;(3) and §;(3) are fixed: Select a according to the corresponding mini-
mization of error criterion of Proposition 4.4 or 4.5 (the latter criterion is used
when the branching variable is associated to |dg; — #1%;| and not to |0; — &7]).

Add to the linear relaxation the variable §;(«) and linearizations of class Cyy;.

The branching value is a. .

Branching is done by creating two sons of the current node: one in which the
variable §;(«) is fixed at 0, and the other in which it is fixed at 1. In the first son,
the variable z; is constrained to be less than or equal to «, and in the second son it is
forced to be greater than or equal to a. Note that this branching rule is discrepancy

based; other such rules are discussed in Sherali and Tuncbilek [29], [29], [32].

5.3 Cutting

The objective of the cutting step of the algorithm is to refine as much as possible (up to
the feasibility parameter ¢,) the outer-approximation using only linear cuts. The idea
consists in iterating the four following steps, as long as at least one new linearization
is added to the relaxation. The point (&, v, w) still refers to the optimal solution of the
current linear relaxation.

17

Optimality test:

If the optimal value of the relaxation is greater than the incumbent (minus e,), then
no cutting is necessary, the current node may be discarded. Otherwise, the algorithm
goes on with the next steps.

Refinement of an under-estimation of a square (class C;):
For each 7 € N such that ¢; < #? — ¢,, add the linearization V,;(a) where a is defined
through Proposition 4.1.

Refinement of a paraboloid (class C;j):
For each (i, 7) € M and 5 such that the conditions in Proposition 4.2 are satisfied, add
the linearization P7.(a;, a;), where (a;, ;) is defined through Proposition 4.3,

Refinement of a product (classes C;, and Cjv):
For each (i,7) € M such that w;; < ;2; — ¢, add the linearizations EZI](@, B) and
EZ-IJ-H(@, 3) if they are not already present (using the current variables d;(-) and §,(+)),

where 3 and (3 are evaluation points such that the interval [3,3] D [w”,:f:Z] is the
— J

T

smallest possible.

For each (i,7) € M such that w;; > %;2; + €., add the linearizations ijl(ﬁ,ﬁ) and
IV, = . . . R

W, (8,8) if tEey are not already present (using the current Varlal)les 5i(+) aEnd 5;(+)),
where 3 and (3 are evaluation points such that the interval [3,3] D [, =] is the

smallest possible. .

Note that if the relaxation is infeasible, then convention ensures that its optimal
value will be equal to 400, and so the optimality test will stop processing the node.

The cuts of classes C; and Cj; are independent of the variables §;(+) since they
are linear under-approximations of convex functions. These cuts are inexpensive to
add to the linear relaxation. Only the cuts associated to the classes Crrr, C;y and Crv
use the variables §;(-) that are already fixed at either 0 or 1. Cuts from Cyy; are only
added and activated at the branching step. Cuts from the two other classes are added
to the outer-approximation only when they are needed, thus keeping the size of the
relaxation from growing.

5.4 Description of the whole Algorithm

We are now able to construct the branch and cut algorithm. The method can be
divided in two main steps. The Pre-Processing step is used to create the initial outer-
approximation and to obtain valid bounds on each variable. The Enumeration Tree step
recursively processes nodes of the tree in a best-first manner (preference with respect
to the optimal objective value of the relaxation). At each node, one of two outcomes

18

is possible: either the node is discarded (when infeasible, solved or eliminated), or
it 1s split into two new nodes. For clarity, only the main ideas of the algorithm are
presented. Details of the steps appear in the previous sections.

ALGORITHM.

Pre-Processing.
The list £ of nodes to be explored is initialized to contain only the root node.

Enumeration Tree.
While £ is not empty, repeat the three sub-steps.
e Select and remove the best-first node from L.
e Perform the cutting steps:
Add linearizations from classes Cy, Crr, Cjy and Crv.
If the optimal relaxed solution is ¢,-feasible, then update the incumbent.
Otherwise, pursue at the branching step if the relaxation is feasible and
its optimal objective value is less than the incumbent objective value (minus ¢,).
e Perform the branching step.
Obtain the branching variable z; and value a and dichotomous variable §;(«)
(if possible, reuse the structure created at other nodes).
If the structure is not reused, introduce cuts from class Cyyy.
Add to £ nodes corresponding to both sons. .

This is indeed a branch and cut algorithm in the sense that the cuts from classes
Cr and Cyy introduced at any node of the tree are valid at all other nodes. The cuts
derived from the other classes are valid everywhere in the subtree rooted at the node
where they were generated. At all other nodes, these cuts are relaxed as long as the
corresponding variable §; is free in [0,1]. They are valid at all times, but become
non-redundant as soon as the branching structure is reused, i.e., when the variable §;
is fixed at either 0 or 1. The next theorem shows finiteness and correctness of the
algorithm.

Theorem 5.2 The above algorithm finds in finite time an ¢.-¢,-optimal solution of

problem QQP.

Proof: The Pre-Processing step stops as soon as two successive iterations do not
improve any bound by a value of at least ¢.. Only a finite number of iterations are
therefore possible. At each iteration, a finite number of linear programs are solved. It
follows that the Pre-Processing phase is completed in finite time.

Consider a node generated by the Enumeration Tree phase where the over-
approximation of the square function is refined. Let a €]¢;, u;[be the point where the

19

linearization was done.

We now show that the linearizations associated to both sons of the current node
eliminate a non-negligible region of the relaxed domain. For the node where z; < a,
the linearization of the variable z; is within the required tolerance if z; > a — ¢, /u;.
So, if this condition is satisfied, the maximal error will be

€ €., ae lie, € ae,

e e £

< €.

Uq

For the son where x; > a, the linearization of the variable x; is within the
required tolerance if z; < a+ ¢, /u;. So, if this condition is satisfied, the maximal error

will be)
(a—l—ui)(a—l—e—r)—aui—(a—l—é—r)z:6T—6—g— Qe <e,.

For each son an interval of length ¢, /u; > 0 is linearized within the error toler-
ance, and so, if a solution lying in that domain is generated, then the linearization will
not be refined anymore. Therefore, there can only be a finite number of cuts for each
variable.

The same reasoning applies for the approximation of a product of two variables.
The solution produced will thus be ¢,-feasible.

The propositions from Section 3 imply that the inequalities are valid and so,
the optimal solution (within the e, optimality tolerance) is never eliminated. It follows
that there exists a node of the enumeration tree where an ¢.-¢,-optimal solution will

be identified.

Since the Pre-Processing and Enumeration Tree phases stop in finite time, the
algorithm finds in finite time an ¢,-¢,-optimal solution of QQ P. .

In the following subsection, we illustrate the performance of this algorithm on
different examples taken from the literature.

5.5 Numerical Results

The algorithm is coded in C4++ and uses the CPLEX4.0 library to solve the linear pro-
grams. Computational experiments were made on a Ultra-1/167 station using Solaris

2.5-06.

The following example is a quadratic reformulation of a fourth degree polynomial
problem found in Bartholomew-Biggs [8]. It is restated in Hock and Schittkowski [23]

20

(No 71) and in Hansen and Jaumard [19] (No 5). The reformulation (that introduces
the variables x5 and x¢) is stated as follows.

min 3 + 175 + TaTs5 + TaTs
s.t. x5 —ay24 =0,
xg — w3 = 0,
ri + x5 + 23 + 23 = 40,
TsTe > 25,
1<z, <5 1 <a3 <5,
1<z, <5 1 <y <5,

Using the precision ¢, = ¢, = 107%, the Pre-Processing phase spends 2.69 sec-
onds to improve bounds on both variables x5 and z¢ to [1.33975,18.6603]. Then, the
Enumeration Tree phase finds in 4.49 seconds the solution

2 = (1,4.74319, 3.8209, 1.37944, 1.37944, 18.1233)

having objective value 17.014 by exploring a total of 69 nodes, adding 25 variables
di(a), and 599 linear cuts. The total time required to solve this problem is 7.18 seconds.
In order to compare the usefulness of selecting the branching values using the error
minimization criteria developed in Section 4, the same instance was solved by selecting
the branching value to be the mid-point of the current interval. This strategy generated

189 nodes, added 55 variables d;(«), and 1076 linear cuts.

Figure 3 illustrates aspects of the resolution. The enumeration tree is detailed
only to a depth of six. The circled numbers indicate the order in which the nodes
were generated. One can deduce from them the order in which they are processed (i.e.,
removed from the list £). Directly below each node is the corresponding branching
variable, except at node 12 where the relaxation was proven infeasible. The four
numbers around each node represent the number of cuts of each class (as illustrated
to the right of the tree) generated at the corresponding node. The dots under nodes
13 and 30 indicate that there are further branches in the tree underneath them. The
other leaves (nodes 3, 7, 10, 20, 21, 18, 31) are not developed as their lower bound,
that is, the optimal value of the relaxation, is greater than the incumbent value.

The enumeration tree suggests the following observations. The nodes are pro-
cessed using a best-first strategy, and so the order in which they are selected is not
predictable only by simple inspection of the tree.

Most of the cuts introduced come from the classes C; and Cy;. That situation
is desirable since these cuts correspond to linear under-estimations of convex functions

and do not require dichotomy, hence no extra variable is needed and a single constraint

21

Figure 3: Partial branch and cut tree

is added to the outer-approximation. Moreover, the large number of cuts from class
Cyr is explained by the flexibility involved in their generation. The three required
parameters allow frequent elimination of the current point.

Only some of the cuts available from classes C;y, and Cry are added. This limits
the growth in size of the relaxation.

At any node, there is never more than one new cut from class Cy;;. This is
expected since the branching process is invoked as soon as one such cut is added.
When no cut of that class is introduced (nodes 6, 11, 20, 21, 18, 19, 31), a previously
created branching variable and structure is reused. This is a key element to keep
reasonable the size of the relaxation.

The algorithm also solved several global optimization problems from the liter-
ature. These problems were first reformulated as instances of Q@) P using techniques
described in Hansen and Jaumard [19]. In particular, polynomial terms of degree
more than two were rewritten, as in the example above, as quadratic ones. The same
type of transformations was applied to fractions involving quadratic terms. Moreover,
monotonicity analysis (as described in Hansen, Jaumard and Lu [20]) and variable elim-
ination allowed significant simplifications of these problems. No comparison between

22

the several possible reformulations and their effect on the tightness of the relaxation
was performed here. The final reformulations on which the algorithm was executed are
detailed in Audet [5]. We present here the largest of these reformulations, i.e., problem
7 below, along with our €.-¢,-optimal solution.

mxin z(x) = 12.62626(x12 + x13 + T14 + T15 + T16)
—1.231059(z1 212 + x2213 + 3214 + TaZ15 + T5Ti6)
s.t. 50 < z(z) < 250,
—3.4752; +100x; + .09752% — 9.75z,2; <0 1=1,2,3,4,5,7 =1+ 5,
—TeT11 + T7T1 — T1T12 + TeT1z 2> 0,
90x7 — 50x8 — 1712 + T2T13 + X712 — 28713 = 0,
90z + 50x9 — Tow13 + T3T14 + T8T13 — Tox14 < 500,
—930x9 + 50210 — 314 + T4T15 — T8T15 + ToT14 < 0,
90z4 — 50210 — T4T15 — T4T16 + T5T16 + T10T15 < 0,

50{1/’4 — X416 + T5T16 Z 450 — X + 2.1’7 S 1,

r1 Sy S w3 <4 S5 re < X7 s < 29 < w10 < X4
0§l’11-l’12§50 001§l’6§1,

1 <z <8.03773157 1 <7 <4.51886579 1077 < xq5 < 100,
1<y <9 I <zg<9 I < zy3 <50,
45§$4§9 1§l’10§9 50§$15§100,

9 S Ts S 10 1 g T11 S 100 10_7 S T16 S 50.

Solution: ¢, = ¢, = 107°,
z* = (8.03773,8.161,9,9,9,1,1.07026, 1.90837, 1.90837,
1.90837, 50.5042, .504236, 7.26387, 50, 50, 0), z(z*) = 174.788.

Table 1 presents some important characteristics of these instances. The first
column indicates the reference in which the first untransformed formulation of the
problem appears, the other columns quantify aspects of the reformulated quadratic
instances. The next three respectively contain the number of variables that are not
involved in quadratic terms, the number of variables that are, and the total number
of variables. The middle column indicates the total number of different quadratic
terms. The last three presents the number of linear inequalities (including bounds
on variables), and the number of nonlinear inequalities and equalities. There is no
linear equality since the process of reformulating the problems into quadratic instances
removed them by variable elimination.

The first example stems from the bilinear pooling problem encountered in the
petrochemical industry. The next one describes a situation at Proctor and Gamble
Co. The third one is a simple 3-stage heat exchanger design problem. The fourth

23

Variables Quad | Constraints

Ex Source Lin Quad Tot|Terms|Lin Qua
< < =

1 Haverly [22] 2 3 5 2 T 2 0
2 Colville [11] 0 4 4 6 8§ 3 0
3 Avriel and Williams [6] 0 4 4 2 9 2 0
4 Bartholomew-Biggs [§] 0 6 6 9 § 1 3
5 Bracken and McCormick [9]| 0 7 7 6 14 4 2
6 Dembo [12] 0 10 10| 15 |26 9 2
7 Dembo [12] 0 16 16 24 42 10 1

Table 1: Characteristics of the problems

one is more academic, and is the one described in details at the beginning of this
section. The fifth one models an alkylation of olefin process. The two last ones arise
from membrane separation in respectively three and five phases; the largest is written
above. The diversity of these applications indicates the modeling flexibility of Q@ P.

Table 2 displays the result of the application of the algorithm to these problems.
The column bound indicates the number of variables that are not, at optimality, at one
of their bounds obtained in the pre-processing phase. Computational difficulty of a
problem is closely related to that number since linearization is exact when the variable
is at one of its bound. The columns entitled § and Add cir respectively contain the
number of variables and constraints that were introduced in the solution process. The
column Nodes shows the number of nodes required by the exploration tree. The columns
Time indicate the pre-processing, the enumeration tree and the total time in seconds
used by the algorithm. Finally, the last column displays the precision factors supplied
to the algorithm.

Ex|| Variables | Add | Nodes Time (sec) € =€,
bound 4 | ctr PP Tree Tot

2 5 | 34 9 64 01 65| 10°°
6 69 7 1.25 .04 1.29| 10-S
39 | 378 | 191 | 1.1 38 49| 10°°
251599 | 69 |27 45 72| 10°°
66 |1335| 357 | 4.3 65.6 69.9| 1075
41 [1088| 259 | 148 61 209 | 10=°
2356205 | 2847 | 222 7329 7551| 10°

=1 O O = W N
=~ =1 O T = N

Table 2: Performance of the algorithm

Even if the problems considered above arise from different sources and rely on
different modeling structure, all of them are now solved to global optimality within
a good precision. Prior to our work, other authors studied these problems. Our

24

algorithm confirmed that the heuristic solutions of problems 3 and 4 presented in
Hock and Schittkowski [23] are indeed ¢,-¢,-optimal, and it slightly improved that of
problem 6. Problem 1 was solved by Foulds, Haugland and Jornsten [17], but the
tolerance parameter is not specified (however, their discussion implies that it is small).
Problems 2 and 3 were solved to optimality by Hansen et al. [20] using monotonicity
analysis together with a branch and bound scheme. Problem 5 was solved by Quesada
and Grossmann [25] within a 5% tolerance using a branch and bound algorithm for
fractional programs that uses convex nonlinear under-estimators. To the best of our
knowledge, problems 6 and 7 are solved to €,-¢,-optimality for the first time.

Based on the theoretical and algorithmic framework described herein, we intend
in further work to pursue the study of such linearization approaches for other classes
of problems, and to compare the results with alternate methods.

References

[1] AL-KHAYYAL F.A.(1990), “Jointly Constrained Bilinear Programs and Related
Problems: An Overview,” Computers & Mathematics with Applications 19, 53—
62.

[2] AL-KHAYYAL F.A.(1992), “Generalized Bilinear Programming, Part I: Models,
Applications and Linear Programming Relaxation,” European Journal of Opera-

tional Research 60, 306-314.

3] AL-KHAYYAL F.A. and FALK J.E.(1983), “Jointly Constrained Biconvex Pro-
gramming,” Mathematics of Operations Research 8, 273-286.

[4] AL-KHAYYAL F.A., LARSEN C. and VAN VOORHIS T.(1995), “A Relaxation
Method for Nonconvex Quadratically Constrained Quadratic Programs,” Journal

of Global Optimization 6, 215-230.

[5] AUDET C.(1997), “Optimisation globale structurée: propriétés, équivalences et
résolution,” These de Doctorat, Ecole Polytechnique de Montréal.

[6] AVRIEL M. and WILLIAMS A.C.(1971), “An Extension of Geometric Program-
ming with Applications in Engineering Optimization,” Journal of Engineering

Mathematics 5, 187-194.

[7] BENDERS J.F.(1962), “Partitioning Procedures for Solving Mixed-Variables
Programming Problems,” Numerische Mathematik 4, 238-252.

8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

25

BARTHOLOMEW-BIGGS M.C.(1976), “A Numerical Comparison Between
Two Approaches to Nonlinear Programming Problems,” Technical Report #77,
Numerical Optimization Center, Hatfield England.

BRACKEN J. and McCORMICK G.P.(1968), Selected Applications of Nonlinear
Programming John Wiley and Sons, New York.

CHUNG S.J.(1989), “NP-Completeness of the Linear Complementarity Prob-
lem,” Journal of Optimization Theory and Applications 60, 393-399.

COLVILLE A.R.(1970), A Comparative Study of Nonlinear Programming Codes,
In Princeton Symposium on Mathematical Programming, KUHN H.W. (ed),
Princeton University Press.

DEMBO R.S.(1976), “A Set of Geometric Programming Test Problems and their
Solutions,” Mathematical Programming 10, 192-213.

FLIPPO 0.E.(1989), “Stability, Duality and Decomposition in General Mathe-

matical Programming,” Ph.D Thesis, Rotterdam: Erasmus University.

FLIPPO O.E. and RINNOOY KAN A.H.G.(1993), “Decomposition in General
Mathematical Programming,” Mathematical Programming 60, 361-382.

FLOUDAS C.A. and VISWESWARAN V.(1990), “A Global Optimization Al-
gorithm (GOP) for Certain Classes of Nonconvex NLPs-1. Theory,” Compulers
and Chemical Engineering 14, 1397-1417.

FLOUDAS C.A. and VISWESWARAN V.(1993), “Primal-Relaxed Dual Global
Optimization Approach,” Journal of Optimization Theory and Applications 78,
237-260.

FOULDS L.R, HAUGLAND D. and JORNSTEN K.(1992), “A Bilinear Ap-
proach to the Pooling Problem,” Optimization 24, 165—180.

GEOFFRION A.M.(1972), “Generalized Benders Decomposition,” Journal of
Optimization Theory and Applications 10, 237-260.

HANSEN P. and JAUMARD B.(1992), “Reduction of Indefinite Quadratic Pro-

grams to Bilinear Programs,” Journal of Global optimization 2, 41-60.

HANSEN P., JAUMARD B. and LU S5.(1991), “An analytical Approach to Global
Optimization,” Mathematical Programming 52, 227-254.

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

26

HANSEN P., JAUMARD B. and SAVARD G.(1992), “New Branch-and-Bound
Rules for Linear Bilevel Programming,” SIAM Journal on Scientific and Statis-
tical Compuling 13, 1194-1217.

HAVERLY C.A.(1978), “Studies of the Behaviour of Recursion for the Pooling
Problem,” ACM SIGMAP Bulletin 25, 19-28.

HOCK W. and SCHITTKOWSKI K.(1981), Test Examples for Nonlinear Pro-
gramming Codes, Lecture Notes in Fconomics and Mathematical Systems ,187,
Springer-Verlag, Berlin, New-York.

PHONG T.Q., TAO P.D. and HOAT AN L.T.(1995), “A Method for Solving D.C.
Programming Problems. Application to Fuel Mixture Nonconvex Optimization

Problem.” Journal of Global Optimization 6, 87-105.

QUESADA 1. and GROSSMANN LE.(1995), “A Global Optimization Algorithm
for Linear Fractional and Bilinear Programs,” Journal of Global Optimization 6,

39-76.

RYOO H.S. and SAHINIDIS N.V.(1995), “Global Optimization of Nonconvex
NLPs and MINLPs with Applications in process design,” Computers & Chemical
Engineering 19, 551-566.

SHERALI H.D. and ALAMEDDINE A.(1990), “An Explicit Characterization of
the Convex Envelope of a Bivariate Bilinear Function over Special Polytopes,”

Annals of Operations Research 25, 197-210.

SHERALI H.D. and ALAMEDDINE A.(1992), “A New Reformulation-Li-
nearization Technique for Bilinear Programming Problems,” Journal of Global
Optimization 2, 379-410.

SHERALI H.D. and TUNCBILEK C.H.(1992), “A Global Optimization Algo-
rithm for Polynomial Programming Using a Reformulation-Linearization Tech-
nique,” Journal of Global Optimization 2, 101-112.

SHERALI H.D. and TUNCBILEK C.H.(1995), “A Reformulation-Convexi-
fication Approach for Solving Nonconvex Quadratic Programming Problems,”
Journal of Global Optimization 7, 1-31.

SHERALI H.D. and TUNCBILEK C.H.(1997), “Comparison of Two Refo-
rmulation-Linearization Technique Based Linear Programming Relaxations for

Polynomial Programming Problems,” Journal of Global Optimization 10, 381-
390.

32]

33]

[34]

[35]

27

SHERALI H.D. and TUNCBILEK C.H.(1997), “New Reformulation Lineariza-
tion/Convexification Relaxations for Univariate and Multivariate Polynomial
Programming Problems,” Operations Research Letters 21, 1-9.

SIMOES L.M.C.(1987), “Search for the Global Optimum of Least Volume
Trusses,” Engineering Optimization 11, 49-63.

VISWESWARAN V. and FLOUDAS C.A.(1990), “A Global Optimization Algo-
rithm (GOP) for Certain Classes of Nonconvex NLPs-II. Applications of Theory
and Test Problems,” Computers and Chemical Engineering 14, 1419-1434.

WOLSEY L.A.(1981), “A Resource Decomposition Algorithm for General Math-
ematical Programs,” Mathematical Programming Study 14, 244-257.

