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Abstract.  In the Swapping Problem (SP), every vertex of a complete graph may supply 

and demand an object of a known type. A vehicle of unit capacity starting and ending its 

tour at an arbitrary vertex is available for carrying objects of given types between vertices. 

The SP consists of determining a minimum cost route that allows the vehicle to satisfy 

every supply and demand. This article investigates the preemptive version of the SP in 

which the objects are allowed to be dropped at temporary locations along the route. The 

problem is modeled as a mixed integer linear program which is solved by branch-and-cut. 

Computational results on random geometric instances containing up to 100 vertices and 

eight object types are reported. 
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1 Introduction

The purpose of this paper is to describe a branch-and-cut algorithm for the Swap-
ping Problem (SP) defined as follows. Let G = (V,A) be a complete directed
graph, where V = {1, . . . , n} is the vertex set and A = {(i, j) | i ∈ V, j ∈ V, i 6=
j} is the arc set. Without loss of generality, vertex 1 is arbitrarily designated as a
depot. A cost matrix (cij) satisfying the triangular inequality is defined on A. We
consider a set O = {1, . . . ,m} of m object types located at the vertices. With ver-
tex i is associated a pair (ai, bi) of object types corresponding to its supply and its
demand. Initially, the supply object is located at the vertex. Each object has a unit
weight and appears the same number of times as a supply object and as a demand
object. In the SP, the aim is to carry the objects using a unit capacity vehicle, in
such a way that all vertices receive their demand object and the total cost is mini-
mized. The vehicle can perform empty trips (called deadheading), in which case
it is assumed to carry a null object denoted by 0. The version of the SP considered
in this paper is called preemptive, meaning that the objects are droppable, i.e., they
can be dropped at temporary locations along the route before being moved to their
final destination.

The SP was introduced by Anily and Hassin [3] who proved it is NP-hard by
reduction to the Traveling Salesman Problem (TSP), and derived interesting struc-
tural properties of optimal solutions. They also developed a 2.5-approximation
algorithm based on matching and patching methods. The case of a linear graph
was analyzed by Anily et al. [1] and was shown to be solvable in O(n2) time. The
same authors ([2]) proved that the preemptive SP on a tree is NP-hard by reduction
to the Steiner Tree Problem on a bipartite graph, but the case where m = 2 can be
solved in polynomial time. The authors developed a 1.5-approximation heuristic
for the case where m ≥ 3.

A well known problem closely related to the SP is the Stacker Crane Problem
(SCP) in which each vertex has a supply or a demand, but not both, and each object
appears only once as a supply and as a demand. This NP-hard problem is a special
case of the asymmetric TSP and also corresponds to a special case of the SP in
which there exists only one object for each type. Atallah and Kosaraju [9] proved
that the preemptive SCP on a line and on a circle can be solved in O(m + n)
time. Frederickson and Guan [17] showed that the preemptive SCP on a tree can
also be solved in polynomial time, and proposed two exact algorithms of order
O(m + n log n) and O(m + qn) (where q ≤ min{m,n}). Table 1 summarizes
known complexity results for the preemptive versions of the SCP and the SP.

Another related problem is the One-commodity Pickup-and-Delivery TSP (m-
PDTSP when m commodities are considered) investigated by Hernández-Pérez
and Salazar González [21, 22]. In the 1-PDSTP, each vertex of a complete graph
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Graph structure Preemptive SCP Preemptive SP

General NP-hard1 NP-hard [3]
Tree Polynomial [17] NP-hard [2]
Circle Polynomial [9] ?
Line Polynomial [9] Polynomial [1]
1By reduction to the TSP

Table 1: Complexity results for the preemptive SCP and the preemptive SP

is associated with a non-negative demand or supply of a single product. The prob-
lem consists of determining a shortest Hamiltonian tour for a capacitated vehicle,
starting and ending its route at an arbitrary vertex, in such a way that every request
is satisfied. The 1-PDTSP and the SP belong to the class of the many-to-many
routing problems ([11]), in which multiple supplies can serve multiple demands.
The authors have proposed a branch-and-cut algorithm that combines standard TSP
constraints with Benders cuts, clique cuts and multistar inequalities (see [23] and
[25]). Optimal solutions on instances containing up to 100 vertices were reported.

Finally, routing problems with precedence constraints are also related to the
preemptive SP. These include the Sequential Ordering Problem (SOP) introduced
by Escudero [16]. The SOP is defined on a complete directed graph G = (V,A),
where the vertex set V represents jobs to be processed on a single machine, and
the arc set A represents sequencing of the jobs. A cost matrix representing pro-
cessing and setup times is defined on A. Given an additional precedence graph that
specifies sequencing relationships between the different jobs, the SOP consists of
determining a minimum cost Hamiltonian path in which no precedence constraints
are violated. Ascheuer et al. [6, 7], and Ascheuer [5] have proposed branch-and-
cut algorithms that make use of various types of valid inequalities for solving this
NP-hard problem. It should be noted that in the preemptive SP, unlike in the SOP,
the precedence relationships are not known a priori, but they are induced by the
solution.

Our aim is to develop, for the first time, an exact branch-and-cut algorithm for
the preemptive SP on a general graph. The remainder of the paper is organized as
follows. In Section 2 we prove some properties of optimal solutions and present our
approach to handle preemption. Sections 3 and 4 cover the mathematical model and
the branch-and-cut algorithm. Computational results are presented in Section 5. A
description of how the algorithm can be modified to solve the general or mixed SP
is given in Section 6, followed by conclusions in Section 7.
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2 Properties of optimal solutions

After recalling an important result presented in [3] and exhibiting some structural
properties of optimal solutions, we introduce our technique for the handling of
precedence relationships induced by droppable objects. We use the same definition
of optimality as in [3].

Definition 1. A solution is called optimal if it has minimum cardinality among all
solutions that minimize the objective function.

2.1 Structural properties

Theorem 1 (Anily and Hassin [3]). There exists an optimal solution in which
every vertex i ∈ V satisfies the following properties: 1) i is incident to at most one
incoming arc carrying an object of type bi, one outgoing arc carrying an object of
type ai, and at most one additional pair of deadheadings (one entering i, the other
leaving it); 2) if there is a drop at i, then i is different from the depot and the drop
is associated with the first entry in i and the last exit from it.

Theorem 1 is the backbone of our model. It implies that there exists an optimal
solution in which every vertex is visited at most three times. It also indicates the
possible order in which the vehicle traverses the arcs incident to a given vertex.
In the remainder of this section we will use this theorem to describe all possible
configurations that can be part of an optimal solution.

Proposition 1. In an optimal solution the depot can be possibly visited twice if and
only if a1 6= 0 and b1 6= 0.

Proof. Consider an optimal solution S.
⇒ Suppose the depot is visited twice (i.e., it is incident to four arcs), and a1 = 0
or b1 = 0 (or both). By Theorem 1, there exists at most one incoming arc carrying
b1 and one outgoing arc carrying a1 (actually since the depot must necessarily be
visited at least once in any solution, “at most once” means “exactly once”). There-
fore no additional null object can be carried to or from the depot. Furthermore, by
Theorem 1, there is no drop at the depot. Then the depot is incident to two arcs,
thus contradicting our assumption.
⇐ Suppose a1 6= 0 and b1 6= 0 like in the instance shown in Figure 1 (the depot
is represented as a square dot). On such a small instance it is easy to check by
enumeration that the optimal solution is the one depicted in Figure 2. The depot is
incident to four arcs: a pair associated with the carrying of its demand and supply
and a pair of deadheadings (incoming and outgoing).
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Figure 1: Instance with a1 6= 0 and b1 6=
0

� �

� �

	

2 1

3

0

4

0

Figure 2: Optimal solution

Definition 2. A vertex i with ai = bi is called a transshipment vertex.

Proposition 2. In an optimal solution no transshipment vertex different from the
depot can be visited exactly once.

Proof. Consider an optimal solution S. Suppose there exists a transshipment ver-
tex i ∈ V \ {1} that is visited exactly once. Then there exists an incoming arc
(u, i) carrying object type bi and an outgoing arc (i, v) carrying ai. By Defini-
tion 2, ai = bi. Replacing these two arcs with a unique arc (u, v) carrying ai = bi,
yields a new feasible solution S ′ which is no worse than S and contains fewer
arcs, thus contradicting the optimality of S. The proposition does not hold for the
depot because by definition the depot belongs to all feasible solutions and there-
fore cannot be skipped by the vehicle (the contraction described above cannot be
applied).

Proposition 3. If object type k is dropped at vertex i, then k 6= ai and k 6= bi.

Proof. By Theorem 1, there exists at most one incoming arc carrying bi and one
outgoing arc carrying ai. Therefore the dropped object, if any, must be different
from ai and bi.

Proposition 4. There exists an optimal solution that does not contain two consec-
utive arcs associated with the same object type.

Proof. Follows from the triangular inequality of the cost matrix and Definition 1.
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The structural properties of optimal solutions are summarized in Figure 3 which
depicts all possible configurations for a vertex, in terms of incoming and outgoing
arcs, in an optimal solution. Numerical values have been added for the sake of
clarity. When an object of type k is used, it is assumed to be different from the null
object, from the supply, and from the demand (i.e., k 6= 0, k 6= ai and k 6= bi).

Depot Non-depot vertex

a1 = b1 = 0 ai = bi = 0

�
(0, 0)

0 0 �(0, 0) �(0, 0)
k

0

k

0

a1 = b1, a1 6= 0 ai = bi, ai 6= 0

�
(1, 1)

1 1 �(1, 1)
0

1

0

1

�
(1, 1) �(1, 1)

k

1

k

1

�
(1, 1)

0

1

0

1

�
(1, 1)

k

0

1

k

0

1

a1 6= b1, a1 or b1 = 0 ai 6= bi, ai or bi = 0

	
(1, 0)

0 1 
(1, 0)
0 1 �(1, 0)

k

0

k

1

�
(0, 1)

1 0 
(0, 1)
1 0 �(0, 1)

k

1

k

0

a1 6= b1, a1 6= 0, b1 6= 0 ai 6= bi, ai 6= 0, bi 6= 0

�
(1, 2)

2 1 �(1, 2)
0

2

0

1

�
(1, 2)

2 1 �(1, 2)
k

2

k

1

�
(1, 2)

0

2

0

1

�
(1, 2)

k

0

2

k

0

1

Figure 3: All possible configurations for a vertex in an optimal solution
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Proposition 5. The choice of the depot may influence the value of the optimal
solution.

Proof. Consider the instance and solution shown in Figure 4 in which the depot
is located at the center of the unit square. On such a small instance it is easy to
check by enumeration that the solution is optimal and has a cost of 6.4. Now if we
choose the upper-left vertex as the depot, the optimal solution has a cost of 5.4 (see
Figure 5).

� �

� �

�

(3, 4) (4, 3)

(1, 2) (2, 1)

(0, 0)

2

1

4

3

0

0

0

Figure 4: Optimal solution of cost 6.4

� �

�

�	

(3, 4) (4, 3)

(1, 2) (2, 1)

(0, 0)1

4

3

1

2

Figure 5: Optimal solution of cost 5.4

2.2 Handling preemption

Handling preemption generates a significant level of difficulty to the formulation of
the SP since it is necessary to keep information on the portion of the vehicle route
prior to visiting a vertex. This stems from the fact that the vehicle cannot reload
an object at a vertex if the object has not been previously dropped at that vertex.
We must somehow keep track of the vertices already visited. To this end, we split
each vertex into three vertices i, i + n and i + 2n such that ai = ai+n = ai+2n,
bi = bi+n = bi+2n and ci,i+n = ci,i+2n = ci+n,i+2n = 0 (see Figures 6 and 7).
This triplication is justified by Theorem 1 which implies that the vehicle may visit
the same vertex at most three times in an optimal solution. In this representation,
a vertex i is used for a first visit, whereas i + n and i + 2n represent a second and
third visit to i respectively. This precedence relationship is denoted by the symbol
≺. For example i ≺ i + n means that vertex i must be visited prior i + n in any
feasible solution.

In what follows we use the sets V1 = {1, . . . , n}, V2 = {n + 1, . . . , 2n} and
V3 = {2n + 1, . . . , 3n} to distinguish between the triplicates. The full set of
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�
(ai, bi)

i

Figure 6: Original vertex

� � �
(ai, bi) (ai, bi) (ai, bi)

i i+n i+2n

Figure 7: Vertex triplication (copies)

vertices is denoted by V = V1 ∪ V2 ∪ V3. To avoid confusion between the vertices,
a vertex of V is called the original vertex and the triplicates are referred to as its
copies. We also consider an additional object, noted −1, that can only be carried
between two consecutive copies of the same vertex (i.e., from i to i + n and from
i +n to i +2n). More precisely, if the vehicle visits an original vertex three times,
then after triplication object −1 is not used among the arcs incident to its copies.
Otherwise, −1 is carried from i to i+n and from i+n to i+2n when the original
vertex is visited only once, and from i + n to i + 2n when the original vertex is
visited twice. This representation will allow us to introduce some constraints to
handle preemption, i.e., to force the vehicle to always visit the first copy before the
second copy, and the second copy before the third one.

2.3 Discardable arcs

From Theorem 1 many arcs associated with an object type can be discarded be-
cause there exists an optimal solution that does not contain them. Let O be the
set containing all object types that can be carried between two vertices, i.e., O =
O ∪ {−1, 0}.

Definition 3. A triplet (i, j, k), i ∈ V , j ∈ V , j 6= i, k ∈ O, is called discardable if
the carrying of object type k from vertex i to vertex j cannot be part of an optimal
solution. Denote by N the subset of non-discardable triplets.

We begin by enumerating some discardable triplets that concern every vertex
(Propositions 6 and 7), and then analyze particular cases based on the supply and
the demand object. All cases are in a way or another implied by Theorem 1 and
the vertex triplication described in Section 2.2.

Proposition 6. If i ∈ V1, then the following triplets are discardable: 1) (j ∈
V, i,−1); 2) (i, j ∈ V \ {i + n},−1); 3) (i + n, j ∈ V \ {i + 2n}; 4) (i + 2n, j ∈
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V,−1); 5) (i + n, i, k ∈ O); 6) (i + 2n, i, k ∈ O); 7) (i + 2n, i + n, k ∈ O); 8)
(i, i+n, k ∈ O \{−1}); 9) (i+n, i+2n, k ∈ O \{−1}); 10) (i, i+2n, k ∈ O).

Proof. 1) to 4): by definition object −1 can only be carried between two consecu-
tive copies of the same vertex, i.e., from i to i + n and from i + n to i + 2n; 5): by
definition i ≺ i+n; 6): by definition i ≺ i+2n; 7): by definition i+n ≺ i+2n; 8)
and 9): by definition object type −1 is the only available object that can be carried
between two consecutive copies of the same vertex; 10): i and i + 2n cannot be
connected by any arc since i ≺ i + n ≺ i + 2n.

Proposition 7. If i ∈ V1 and ai 6= bi, then the following triplets are discardable:
1) (j ∈ V, i, ai); 2) (j ∈ V, i + n, ai); 3) (j ∈ V, i + 2n, ai); 4) (i + n, j ∈ V, bi);
5) (i + 2n, j ∈ V, bi); 6) (i, j ∈ V, bi).

Proof. 1) to 5): by Theorem 1 the only objects that can be carried to an original
vertex are the null object, the demand object or a dropped object, therefore when
ai 6= bi there exists an optimal solution in which the supply object is never carried
to any of the copies of that original vertex; 6): by Theorem 1 again, there exists an
optimal solution in which the vehicle can only carry from an original vertex the null
object, the supply object or an object that has been dropped previously; therefore
the demand object never exits any of the copies of that original vertex.

Now consider the depot and its copies. There are two cases depending on the
supply and the demand object (Propositions 8 and 9).

Proposition 8. If a1 = 0 or b1 = 0 or both, then the following triplets are
discardable: 1) (j ∈ V, 1, k ∈ O \ {b1}); 2) (1, j ∈ V, k ∈ O \ {−1});
3) (j ∈ V \ {1}, 1 + n, k ∈ O); 4) (1 + n, j ∈ V \ {1 + 2n}, k ∈ O); 5)
(j ∈ V, 1 + 2n, k ∈ O \ {−1}); 6) (1 + 2n, j ∈ V, k ∈ O \ {a1}).

Proof. 1): if ai or bi is the null object, then by Theorem1 no additional deadhead-
ing can be incident to the original depot, and there is no drop at the depot. Then
there exists an optimal solution in which the original depot is visited only once.
Therefore the demand object must be carried to the first copy; 2) and 3): by defini-
tion, when the original vertex is visited only once, object −1 must be carried from
i to i + n; 4) and 5): by definition, when the original vertex is visited only once,
object −1 must be carried from i+n to i+2n; 6): since there is no null object nor
a dropped object entering the original vertex, the only available object at the last
copy is the supplied object.

Proposition 9. If a1 = b1 and a1 6= 0, or if a1 6= b1, then the following triplets are
discardable: 1) (j ∈ V, 1, k ∈ O \ {0, b1}); 2) (1, j ∈ V, k ∈ O \ {−1, 0, a1});
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3) (j ∈ V, 1 + n, k ∈ O \ {−1, 0, b1}); 4) (1 + n, j ∈ V \ {1 + 2n}, k ∈ O); 5)
(j ∈ V, 1 + 2n, k ∈ O \ {−1}); 6) (1 + 2n, j ∈ V, k ∈ O \ {0, a1}).

Proof. By Theorem 1 there is no drop at the original depot. Therefore, there exists
an optimal solution in which the original depot is visited at most twice, where the
two visits case corresponds to an additional pair of deadheadings (incoming and
outgoing). Then we deduce that: 1): only a deadheading or an arc carrying the
demand object can enter the first copy; 2): object −1 is carried from 1 to 1 + n
when the original vertex is visited only once, otherwise the two possibilities are a
deadheading or an arc carrying the supply object; 3): similar to 2) but consider the
demand instead of the supply because it is an incoming arc; 4) and 5): since the
original vertex is visited at most twice, by definition 1+n and 1+2n are connected
by an arc carrying object −1; 6): since there is no drop at the original depot, the
only available objects at the last copy are the null object or the supply object.

We now enumerate the discardable triplets related to a non-depot vertex. There
are four cases (Propositions 10, 11, 12 and 13).

Proposition 10. If ai = bi = 0, i ∈ V1 \ {1}, then the following triplets are
discardable: 1) (j ∈ V, i, 0); 2) (i, j ∈ V, k ∈ O \ {0}); 3) (j ∈ V, i + n, k ∈
O \ {0}); 4) (i + n, j ∈ V, k ∈ O \ {−1}); 5) (j ∈ V, i + 2n, k ∈ O \ {−1}); 6)
(i + 2n, j ∈ V, k ∈ O \ {0}).

Proof. By Theorem 1 and Proposition 2 there exists an optimal solution in which
an original vertex is either visited twice or not visited at all.
1): if the vehicle carries the null object to the first copy, then there will be two
consecutive deadheadings because ai = bi = 0 (see Proposition 4); 2): the null
object (i.e., the supply object here) is the only available type at the first copy; 3):
similar to 2) but consider the supply instead of the demand (they are actually the
same here) since it is an incoming arc; 4) and 5): since the original vertex is visited
at most twice, by definition the last two copies are connected with an arc carrying
object −1; 6): since the original vertex cannot be visited only once, the supply
object (i.e., the null object) cannot be carried from the last copy. Only a dropped
object, if any, can be available at that copy.

Proposition 11. If ai = 0 or bi = 0 (but not both), i ∈ V1 \{1}, then the following
triplets are discardable: 1) (i, j ∈ V, k ∈ O \ {−1, ai}); 2) (j ∈ V, i + n, k ∈
O\{−1, bi}); 3) (i+n, j ∈ V, k ∈ O\{−1}); 4) (j ∈ V, i+2n, k ∈ O\{−1}).

Proof. 1): the null object cannot be carried from the first copy because this would
imply two consecutive deadheadings since ai or bi is 0 (see Proposition 4); 2):
similar to 1) but consider the demand instead of the supply; 3) and 4): since ai = 0
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or bi = 0, there are no additional deadheading among the incident arcs. Therefore,
by Theorem 1, the original vertex is visited at most twice, and then by definition,
the last two copies are connected by an arc carrying object −1.

Proposition 12. If ai = bi and ai 6= 0, i ∈ V1 \ {1}, then the following triplets are
discardable: 1) (i, j ∈ V, k ∈ O \ {0, ai}); 2) (j ∈ V, i + n, k ∈ O \ {0, bi}); 3)
(i + n, j ∈ V, k ∈ O \ {0, ai}); 4) (j ∈ V, i + 2n, k ∈ O \ {−1, 0, bi}).

Proof. 1): by Theorem 1, if there is a drop at a vertex, then the dropped object is
reloaded during the last exit (i.e., at the third copy). Therefore the only available
objects at the first copy are the null object and the supply object; 2): similar to 1)
but consider the demand instead of the supply since it is an incoming arc; 3) similar
to 1), the only available object at i+n are 0 or ai since a dropped object, if any, can
only be reloaded at i + 2n; 4): by Theorem 1 and by definition of the triplication,
a drop can only occur at the first copy. Then any arc entering the last copy must
carry −1, 0 or the demand object.

Proposition 13. If ai 6= bi and ai 6= 0, i ∈ V1 \ {1}, then the following triplets
are discardable: 1) (i, j ∈ V, k ∈ O \ {−1, 0, ai}); 2) (i + n, j ∈ V, k ∈ O \
{−1, 0, ai}); 3) (j ∈ V, i + n, k ∈ O \ {−1, 0, bi}); 4) (j ∈ V, i + 2n, k ∈
O \ {−1, 0, bi}).

Proof. 1) and 2): by Theorem 1 a dropped object is reloaded during the last exit,
i.e., at the last copy. Therefore only −1, 0 or ai can be carried from i; 3): similar
to 1) but consider the demand instead of the supply object; 4): similar to 3) for the
third copy.

3 Mathematical model

This section presents a mixed integer linear program for the preemptive SP. The al-
lowable triplet configurations described in Section 2 are handled through the vari-
ables and the constraints. To each triplet (i, j, k) ∈ N , is associated a binary
variable xk

ij equal to 1 if and only if an object of type k is carried from i to j, and
to each vertex i ∈ V is associated a real variable ui indicating the position of i
in the route (u0 = 0 and 1 ≤ ui ≤ 3n − 1, i = 2, . . . , 3n). The ui variables
are similar to those introduced by Miller, Tucker and Zemlin (MTZ) in their TSP
formulation ([26]). The possible optimal configurations for a vertex depend on its
supply and its demand. The constraints relative to each case are presented sepa-
rately. The idea is to restrict the search for a solution to the subspace of solutions
that satisfy optimal structural properties. Every variable representing a discardable
triplet must be interpreted as zero.
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3.1 Depot vertex with a1 = 0 or b1 = 0

By Theorem 1, objects cannot be dropped at the depot, and for any original vertex
the demand (supply) object is carried only once to (from) that vertex. Since a1 = 0
or b1 = 0 and because of Proposition 4, the depot is visited only once (constraints 1
and 4). Therefore after triplication the three copies are connected by two arcs
carrying object −1 as shown in Figure 8 (constraints 2 and 3). The corresponding
constraints are

∑

j∈V

xb1
j1 = 1 (1)

x−1
1,1+n = 1 (2)

x−1
1+n,1+2n = 1 (3)

∑

j∈V

xa1

i+2n,j = 1. (4)

� � �
1 1+n 1+2n

b1 −1 −1 a1

Figure 8: Configuration for the depot with a1 = 0 or b1 = 0

3.2 Depot vertex with a1 6= 0 and b1 6= 0

Since neither a1 nor b1 is the null object, a pair of deadheadings (incoming and
outgoing) can possibly be used among the arcs incident to the three copies of the
depot. By Proposition 4, there exist only two ways of visiting the original depot
twice. This leads to the three possible configurations depicted in Figure 9. Con-
straints 5 and 6 ensure that the demand and the supply are satisfied. Since the
original depot is visited at most twice, its second and third copies are connected by
an arc carrying object−1 (constraint 7). Constraint 8 takes care of the conservation
of the null object, which must be reloaded at the third copy if it has been dropped
at the first copy (this is similar to the drop of a real object). The corresponding
constraints are
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∑

j∈V

(

xb1
j1 + xb1

j,1+n

)

= 1 (5)

∑

j∈V

(

xa1

1j + xa1

1+2n,j

)

= 1 (6)

x−1
1+n,1+2n = 1 (7)

∑

j∈V

(

x0
j1 − x0

1+2n,j

)

= 0. (8)

� � �
1 1+n 1+2n

b1 −1 −1 a1 � � �
1 1+n 1+2n

b1

0 0

−1 a1

� � �
1 1+n 1+2n

0

a1 b1

−1 0

Figure 9: Configurations for the depot with a1 6= 0 and b1 6= 0

3.3 Non-depot vertex with ai = bi = 0

Since ai = bi, the original vertex is a transshipment vertex and the vehicle can pos-
sibly skip it during its tour (the demand is already satisfied by the supply). Since
both ai and bi are the null object, no additional deadheading can be incident to the
three copies of the vertex, except the two arcs that carry the supply and the de-
mand themselves, which can be carried from the first copy and to the second copy,
respectively. Furthermore, by Theorem 1, if there is a drop at vertex i, it occurs
during the first entry and the reloading takes place during the last exit, yielding
constraints 9 and 11. Since the original vertex is visited at most twice, the second
and the third copies must be connected by an arc carrying object −1, which only
occurs when the second copy has received its demand (constraints 10). Figure 10
represents the two possible configurations. Note that the vehicle cannot visit the
original vertex only once because it is a transshipment vertex (see Proposition 2).
We consider the following set of constraints: ∀ i ∈

{

j ∈ V1 \ {1}
∣

∣ aj = bj = 0
}

,
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∑

k∈O

∑

j∈V

xk
ji −

∑

j∈V

xai

ij = 0 (9)

∑

j∈V

xbi

j,i+n − x−1
i+n,i+2n = 0 (10)

∑

j∈V

(

xk
ji − xk

i+2n,j

)

= 0 (k = 1, . . . ,m). (11)

� � �
i i+n i+2n � � �i i+n i+2n

k

ai bi

−1 k

Figure 10: Configurations for a non-depot vertex with ai = bi = 0

3.4 Non-depot vertex with ai 6= bi, ai = 0 or bi = 0

The supply of vertex i differs from its demand, so the vehicle must necessarily
carry bi (ai) to (from) the original vertex, which is visited at most twice because
there is no additional deadheading among the incident arcs (since ai or bi is the null
object). The demand can be carried to either the first copy (when the original vertex
is visited only once) or to the second copy (when there is a drop) (constraints 12),
and the supply can exit the first copy or the third copy (constraints 13). If the
vehicle carries the demand to the first copy, then the original vertex is visited only
once and the first two copies must be connected by an arc carrying object −1
(constraints 14). Furthermore, since the original vertex cannot be visited more
than twice, then the last two copies are also connected by an arc carrying object
−1 (constraints 15). By Theorem 1, if there is a drop it must occur during the
first entry and the reloading occurs during the last exit (constraints 16). The two
possible configurations are shown in Figure 11. We consider the following set of
constraints: ∀ i ∈

{

j ∈ V1 \ {1}
∣

∣ aj = 0 or bj = 0
}

,
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∑

j∈V

(

xbi

ji + xbi

j,i+n

)

= 1 (12)

∑

j∈V

(

xai

ij + xai

i+2n,j

)

= 1 (13)

∑

j∈V

xbi

ji − x−1
i,i+n = 0 (14)

x−1
i+n,i+2n = 1 (15)

∑

j∈V

(

xk
ji − xk

i+2n,j

)

= 0 (k = 1, . . . ,m). (16)

� � �
i i+n i+2n

bi −1 −1 ai � � �
i i+n i+2n

k

ai bi

−1 k

Figure 11: Configurations for a non-depot vertex with ai = 0 or bi = 0

3.5 Non-depot vertex with ai = bi and ai 6= 0

Here we handle a more complicated case because the vehicle may visit the original
vertex three times due to the fact that the supply and demand object differ from
the null object. This situation induces additional deadheading. Also note that since
ai = bi (i.e., i is a transshipment vertex), the original vertex is not necessarily
visited in the solution. When the vehicle visits the original vertex, then there exist
three alternatives if it visits the original vertex twice, and only two if it visits the
original vertex three times (see Figure 12). Again these alternatives come from
the fact that there exists an optimal solution that does not contain two consecutive
arcs carrying the same object type (Proposition 4). Constraints 17 ensure that any
drop occurs at the first copy of the vertex, and the reloading occurs at third copy
(Theorem 1). Constraints 18, 19 and 20 ensure that the supply and the demand are
satisfied and take care of the conservation of additional deadheading. We consider
the following constraints: ∀ i ∈

{

j ∈ V1 \ {1}
∣

∣ aj = bj , aj 6= 0
}

,
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∑

j∈V

(

xk
ji − xk

i+2n,j

)

= 0 (k = 0, . . . ,m) (17)

∑

j∈V

(

x0
ij − x0

j,i+n

)

= 0 (18)

∑

j∈V

(

xai

ij − xbi

j,i+n

)

= 0 (19)

∑

j∈V

(

xai

i+n,j − xbi

j,i+2n

)

= 0. (20)

� � �
i i+n i+2n � � �i i+n i+2n

bi

0 0

−1 ai

� � �
i i+n i+2n

k

ai bi

−1 k 	 
 �
i i+n i+2n

0

ai bi

−1 0

� 
 �
i

i+n

i+2n

k

ai bi

0 0

k � � �
i

i+n

i+2n

k

0 0

ai bi

k

Figure 12: Configurations for a non-depot vertex with ai = bi and ai 6= 0

3.6 Non-depot vertex with ai 6= bi and ai 6= 0, bi 6= 0

This case is the most common: it corresponds to the situation where the demand is
different from the supply, and both are non-zero. There exists an additional possi-
ble configuration with respect to the case described in Section 3.5 because ai 6= bi.
Indeed, when the original vertex is visited three times, there may exist a route in
which the vehicle carries the demand to the second copy and immediately loads
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the supply. This could not happen in the case of Section 3.5 because both the de-
mand and the supply were identical. As a consequence the demand (supply) object
can be carried to (from) any of the three copies. This yields the seven possible
optimal configurations represented in Figure 13. We consider the following set of
constraints: ∀ i ∈

{

j ∈ V1 \ {1}
∣

∣ aj 6= bj, aj 6= 0, bj 6= 0
}

,

∑

j∈V

(

xbi

ji + xbi

j,i+n + xbi

j,i+2n

)

= 1 (21)

∑

j∈V

(

xai

ij + xai

i+n,j + xai

i+2n,j

)

= 1 (22)

∑

j∈V

(

xbi

ji − xai

i+2n,j

)

= 0 (23)

∑

j∈V

xbi

ji − x−1
i+n,i+2n ≤ 0 (24)

∑

j∈V

(

xbi

ji − x0
ij

)

− x−1
i,i+n ≤ 0 (25)

∑

j∈V

(

xai

ij − xbi

j,i+n

)

≤ 0 (26)

∑

j∈V

xbi

j,i+n −
∑

j∈V

(

xai

ij + xai

i+n,j

)

≤ 0 (27)

∑

j∈V

xai

i+n,j −
∑

j∈V

(

x0
j,i+2n + xbi

j,i+2n

)

≤ 0 (28)

∑

j∈V

(

xk
ji − xk

i+2n,j

)

≤ 0 (k = 0, . . . ,m). (29)

Constraints 21 and 22 ensure that the demand is satisfied and the supply is
carried to another vertex. By Theorem 1, if there is a drop, it occurs at vertex
i ∈ V1 and the dropped object is reloaded at vertex i + 2n. Therefore, if the
vehicle carries bi to vertex i, then there is no drop at i and the only available object
at vertex i + 2n is the supply object (constraints 23). If there is no drop, then
the original vertex must be visited at most twice (Theorem 1) and, by definition,
vertices i + n and i + 2n are connected by an arc carrying −1 (constraints 24). If
the demand bi is carried to vertex i, then there are two ways of exiting i: carrying
the null object or carrying object −1 to vertex i + n (constraints 25). When ai

is carried from vertex i, then bi must be carried to vertex i + n, otherwise there
would be two consecutive arcs carrying the same object type which is non-optimal
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� � �
i i+n i+2n

bi −1 −1 ai � � �
i i+n i+2n

bi

0 0

−1 ai

� � �
i i+n i+2n

k

ai bi

−1 k 	 
 �
i i+n i+2n

0

ai bi

−1 0

� 
 �
i

i+n

i+2n

k

ai bi

0 0

k � � �
i

i+n

i+2n

k

0 0

ai bi

k

� � �
i

i+n

i+2n

k

0 bi

ai 0

k

Figure 13: Configurations for a non-depot vertex with ai 6= bi and ai 6= 0, bi 6= 0

by Proposition 4 (constraints 26). Constraints 27 are similar to 26 but apply to
vertex i + n. If the vehicle carries bi to vertex i + n, then in order to avoid two
consecutive deadheadings, object ai must exit from i or i + n. If the vehicle exits
from i + n with object ai, then this implies that the original vertex is visited three
times. Therefore an object has been dropped at the first copy and must be reloaded
at the last copy. Again to avoid two consecutive arcs carrying the same object
type (see Proposition 4), the vehicle must carry either 0 or bi to vertex i + 2n
(constraints 28). Finally constraints 29 ensure that any object dropped at vertex i
is reloaded at vertex i + 2n (Theorem 1).

3.7 Degree constraints

The three copies of the depot and every non-transshipment vertex have an in-degree
and an out-degree equal to one. Therefore we consider the following degree con-
straints: ∀ i ∈ V \

{

j ∈ V \ {1, 1 + n, 1 + 2n}
∣

∣ aj 6= bj

}

,
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∑

k∈O

∑

j∈V

xk
ji = 1 (30)

∑

k∈O

∑

j∈V

xk
ij = 1. (31)

For transshipment vertices (which are not necessarily part of an optimal so-
lution) we consider the general conservation constraints which ensure that the in-
degree is equal to the out-degree (this is also true for non-transshipment vertices
but it is implied by constraints 30 and 31): ∀ i ∈

{

j ∈ V
∣

∣ aj = bj

}

,

∑

k∈O

∑

j∈V

(

xk
ji − xk

ij

)

= 0. (32)

If one copy of a transshipment vertex is visited, then the other copies must be
visited as well (again this is also true for non-transshipment vertices but it is im-
plied by constraints 30 and 31). This can be expressed by the following constraints:
∀ i ∈

{

j ∈ V1

∣

∣ aj = bj

}

,

∑

k∈O

∑

j∈V

(

xk
ji − xk

j,i+n

)

= 0 (33)

∑

k∈O

∑

j∈V

(

xk
j,i+n − xk

j,i+2n

)

= 0. (34)

3.8 Subtour elimination constraints

Standard subtour elimination constraints (SEC) for the directed TSP state that in
any optimal solution the vehicle must leave (and equivalently enter) every proper
subset of vertices at least once. As we have seen, in the preeemptive SP the non-
depot vertices whose supply and demand are the same may or may not be part of
an optimal solution. Therefore standard SEC must be slightly modified. Actually,
subtour elimination constraints 35 are the same as in the directed TSP, but the
subset of vertices to which they apply must satisfy additional requirements.

Definition 4. A subset U ⊂ V is called SEC-compatible if it is valid to impose an
SEC on U . Denote by U the family of SEC-compatible subsets.

Proposition 14. U ∈ U if and only if it satisfies one of the two conditions: 1) at
least one copy of the depot is in U , and at least one copy of the depot is not in U
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or there exists at least one non-transshipment vertex not in U ; 2) at least one copy
of the depot is not in U , and at least one copy of the depot is in U or there exists at
least one non-transshipment vertex in U .

Proof. ⇒ Let U ⊂ V . The vertices that are visited in all solutions are the three
copies of the depot and the non-transshipment vertices. By Definition 4, it is fea-
sible to impose an SEC on U , which means that any feasible circuit must exit
U at least once. This implies that the vehicle must visit at least one vertex in
U and at least another vertex not in U . There are two cases. In the first one
∃ i ∈ {1, 1 + n, 1 + 2n} in U and ∃ j ∈ {1, 1 + n, 1 + 2n} not in U (i 6= j). In
the second one ∃ i ∈ {1, 1 + n, 1 + 2n} in U and ∃ j ∈ V \ {1, 1 + n, 1 + 2n}
such that aj 6= bj . This gives us the first condition of the proposition. The second
condition follows by considering the complement of U .
⇐ Suppose ∃ i ∈ {1, 1 + n, 1 + 2n} in U and ∃ j ∈ {1, 1 + n, 1 + 2n} not in U .
Since any feasible solution visits the three copies of the depot, this implies that the
vehicle must exit U at least once, which corresponds to an SEC on U . Similarly,
suppose ∃ i ∈ {1, 1 + n, 1 + 2n} in U and ∃ j ∈ V \ {1, 1 + n, 1 + 2n} such that
aj 6= bj . Since the three copies of the depot are visited by any solution and every
non-transshipment vertex must also be visited (in order to satisfy its demand and its
supply), the vehicle must exit U at least once, which corresponds to an SEC on U .
The second condition of the proposition follows by considering the complement of
U .

Subtour elimination constraints for the preemptive SP can be written as fol-
lows: ∀U ∈ U ,

∑

k∈O

∑

i∈U

∑

j 6∈U

xk
ij ≥ 1. (35)

3.9 u-precedence constraints

The ui variable indicates the position of vertex i in the tour. Since i ≺ i + n and
i + n ≺ i + 2n, every feasible solution must satisfy the following constraints:
∀ i ∈ V1,

ui+n − ui ≥ 1 (36)
ui+2n − ui+n ≥ 1. (37)

3.10 MTZ constraints

Miller et al. [26] introduced the so-called MTZ constraints for the TSP (on n ver-
tices):

ui − uj + (n− 1)xij ≤ n− 2 (i, j = 2, . . . , n).
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Desrochers and Laporte [15] have later shown that these constraints can be
lifted as follows:

ui − uj + (n− 1)xij + (n− 3)xji ≤ n− 2 (i, j = 2, . . . , n).

In our context we must consider 3n vertices and the object types. The lifted
MTZ constraints become: ∀ i, j ∈ V \ {1},

ui − uj + (3n− 1)
∑

k∈O

xk
ij + (3n− 3)

∑

k∈O

xk
ji ≤ 3n− 2. (38)

These constraints mean that if the vehicle travels from i to j, then uj should be
greater or equal than ui + 1. They are efficient only if they are combined with the
u-precedence constraints: they link the ui to the xk

ij , but not necessarily sequence
the ui variables in a feasible way at an integer solution. On the other hand, the
u-precedence constraints impose precedence relationships but are not sufficient to
guarantee a feasible vehicle route. However, the presence of these two sets of
constraints in the model ensures that any integer solution satisfies all precedence
relationships.

3.11 Comb inequalities

Comb inequalities were first identified by Chvátal [13] and then generalized by
Grötschel and Padberg [19]. A comb is defined by a subset H ⊂ V , called the
handle, and an odd number t ≥ 3 of teeth Ti ⊂ V (i = 1, . . . , t) such that (see
Figure 14):

H ∩ Ti 6= ∅ , (i = 1, . . . , t)
Ti \H 6= ∅ , (i = 1, . . . , t)
Ti ∩ Tj 6= ∅ , (1 ≤ i < j ≤ t).

For the TSP the comb inequality is expressed as:

x(δ(H)) +

t
∑

i=1

x(δ(Ti)) ≥ 3t + 1,

where δ(S) is the set of edges having only one endpoint in S, and x(S) represents
the sum of the values of the edges having their two endpoints in S.

In the preemptive SP the graph is directed and in a solution each arc is asso-
ciated with an object type. Simply replacing each arc (i, j) by an edge e = (i, j)
with value xe =

∑m
k=0(x

k
ij +xk

ji) is not sufficient to define a valid comb inequality.
It is necessary to also take into account the fact that some vertices are not required
in the solution (i.e., transshipment vertices). The subsets H and Ti must satisfy an
additional requirement which is introduced in the next definition.
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Figure 14: Minimal comb configuration

Definition 5. A subset H ⊂ V and an odd number t ≥ 3 of subsets Ti ⊂ V
(i = 1, . . . , t) such that 1) H ∩Ti 6= ∅, (i = 1, . . . , t), 2) Ti \H 6= ∅, (i = 1, . . . , t)
and 3) Ti ∩ Tj 6= ∅, (1 ≤ i < j ≤ t), is said to be comb-compatible if it is valid to
impose a comb inequality from the handle H and the teeth Ti.

Proposition 15. A comb (H,Ti) is comb-compatible if the following two condi-
tions are satisfied for each Ti: 1) at least one copy of the depot is in Ti \H or there
exists at least one non-transshipment vertex in Ti \H; 2) at least one copy of the
depot is in Ti ∩H or there exists at least one non-transshipment vertex in Ti ∩H .

Proof. The proof is similar to that of Proposition 14. If a vertex has the same
demand and supply (i.e., a transshipment vertex) and is not a copy of the depot,
the vehicle can possibly skip it in an optimal solution. Such a vertex is somehow
unconstrained since its supply can satisfy its own demand. On the other hand each
copy of the depot and the vertices i with ai 6= bi must necessarily be visited by any
feasible solution. Since the minimal comb configuration (see Figure 14) consists
of exactly one vertex in each Ti \ H and Ti ∩ H , having one copy of the depot
or a vertex i with ai 6= bi in each of these subsets forces the vehicle to cross each
border an appropriate number of times to satisfy the standard comb inequality.

3.12 π-inequalities

Dropping an object at a vertex induces precedence relationships in the vehicle
route. Therefore, cuts developed for other problems such as the SOP and the asym-
metric TSP with precedence constraints (PCATSP) (see Ascheuer et al. [8], Balas
et al. [10]) can be used to strengthen our formulation.

Definition 6. For all j ∈ V \ {1}, let π(j) be the subset of vertices, excluding
the depot, that must be visited before j in any feasible solution, i.e., π(j) = {i ∈
V \ {1}

∣

∣ i ≺ j}. The elements of π(j) are called the predecessors of j.
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Definition 7. Given S ⊂ V , π(S) is the set of its predecessors, i.e., π(S) = {i ∈
π(j)

∣

∣ j ∈ S}.

The π-inequalities were introduced by Balas et al. [10] and can be expressed as
follows for the PCATSP defined on a graph G = (V,A) with vertex 1 as a depot:
∀S ⊂ V \ {1},

x
(

S \ π(S) : S̄ \ π(S)
)

≥ 1.

These constraints mean that in any feasible solution there must be a path from
any vertex j ∈ S to vertex 1 that does not pass through π(j). For the preemptive
SP, due to the presence of transshipment vertices, an additional requirement must
be satisfied by the subsets S to which the constraints apply.

Definition 8. A subset S ⊂ V \ {1} is called π-compatible if it is valid to impose
a π-inequality on S. Denote by Π the family of π-compatible subsets.

Proposition 16. A subset S ⊂ V \ {1} ∈ Π if there exists at least one non-
transshipment vertex in S \ π(S).

Proof. Let S ⊂ V\{1}. Suppose that S ∈ Π and aj = bj , ∀j ∈ S\π(S). Since S\
π(S) contains only transshipment vertices, the inequality x

(

S \ π(S) : S̄ \ π(S)
)

≥
1 is clearly not valid because we cannot force the vehicle to exit S \ π(S) since
the demand of each vertex in S \ π(S) is already satisfied by its own supply. This
contradicts our assumption that S ∈ Π.

The π-inequalities for the preemptive SP become: ∀S ∈ Π,

x
(

S \ π(S) : S̄ \ π(S)
)

≥ 1. (39)

3.13 σ-inequalities

The σ-inequalities are similar to the π-inequalities, the role of the predecessors is
simply interchanged with the successors.

Definition 9. For all i ∈ V \ {1}, let σ(i) be the subset of vertices, excluding
the depot, that must be visited after i in any feasible solution, i.e., σ(i) = {j ∈
V \ {1}

∣

∣ j � i}. The elements of σ(i) are called the successors of i.

Definition 10. Given S ⊂ V , σ(S) is the set of its successors, i.e., σ(S) = {j ∈
σ(i)

∣

∣ i ∈ S}.

The σ-inequalities were introduced by Balas et al. [10] and can be expressed as
follows for the PCATSP defined on a graph G = (V,A) with vertex 1 as a depot:
∀S ⊂ V \ {1},

x
(

S̄ \ σ(S) : S \ σ(S)
)

≥ 1.
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These constraints mean that in any feasible solution there must be a path from
vertex 1 to any vertex i ∈ S that does not pass through σ(i). For the preemptive
SP, due to the presence of transshipment vertices, an additional requirement must
be satisfied by the subsets S to which the constraints apply.

Definition 11. A subset S ⊂ V \ {1} is called σ-compatible if it is valid to impose
a σ-inequality on S. Denote by Σ the family of σ-compatible subsets.

Proposition 17. A subset S ⊂ V \ {1} ∈ Σ if there exists at least one non-
transshipment vertex in S̄ \ σ(S).

Proof. The proof is similar by symmetry to that of Proposition 16.

The σ-inequalities for the preemptive SP become: ∀S ∈ Σ,

x
(

S̄ \ σ(S) : S \ σ(S)
)

≥ 1. (40)

Note that in our problem the π- and σ-inequalities do not consider transship-
ment vertices because these are not necessarily part of an optimal solution. How-
ever, there also exist precedence relationships for transshipment vertices; if the ve-
hicle visits such vertices these precedence relationships must be satisfied as well.
That is the reason why we have introduced the MTZ constraints 38 (combined with
the u-precedence constraints 36 and 37). Although they are much weaker than the
π- and σ-inequalities because they may be inefficient at fractional solution, they
apply to all vertices, even those that are not visited in the solution.

3.14 Generalized order constraints

The generalized order constraints (GOC) were introduced by Ruland [28] for the
Pickup and Delivery Problem. Similar constraints were proposed by Balas et al.
[10] under the name of precedence cycle breaking inequalities. These constraints
are defined as follows. Let S1, . . . , St ⊂ V \ {1} be t ≥ 2 disjoint subsets such
that Si ∩ π(Si+1) 6= ∅, ∀ i = 1, . . . , t, where St+1 = S1. The GOC is given by the
inequality

t
∑

i=1

x(Si) ≤
t

∑

i=1

|Si| − t− 1.

The GOC can be viewed as a tightened version of the SEC. Cordeau [14] has
shown that they can be lifted by adding extra arcs to their left-hand side. Figure 15
illustrates a simple GOC configuration with t = 3 and |Si| = 2 (i = 1, 2, 3).

23

A Branch-and-Cut Algorithm for the Preemptive Swapping Problem

CIRRELT-2008-23



�

�

�

�

�

�
u

v+n

v

w+n

w

u+n

S1 S2 S3

Figure 15: Example of GOC configuration

3.15 Formulation

Our model for the preemptive SP is as follows:

minimize
∑

(i,j,k)∈N

cijx
k
ij

subject to constraints (1)–(4) if a1 or b1 = 0

constraints (5)–(8) if a1 6= b1 and a1 6= 0

constraints (9)–(11) for all i ∈ V1 \ {1}
∣

∣ ai = bi = 0

constraints (12)–(16) for all i ∈ V1 \ {1}
∣

∣ ai or bi = 0

constraints (17)–(20) for all i ∈ V1 \ {1}
∣

∣ ai = bi and ai 6= 0

constraints (21)–(29) for all i ∈ V1 \ {1}
∣

∣ ai 6= bi, ai 6= 0 and bi 6= 0

constraints (30)–(31) for all i ∈ V
∣

∣ ai 6= bi

constraints (32)–(34) for all i ∈ V

constraint (35) for all U ∈ U

constraints (36)–(37) for all i ∈ V1

constraint (38) for all i, j ∈ V \ {1}

u1 = 0

1 ≤ ui ≤ 3n− 1 for all i ∈ V \ {1}

xk
ij ∈ {0, 1} for all (i, j, k) ∈ N .
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4 Branch-and-cut algorithm

We have developed a branch-and-cut algorithm for the preemptive SP. Initially
the subtour elimination constraints 35, the MTZ constraints 38 and the integrality
constraints are relaxed. We denote the current linear program by LP.

Whenever the relaxation is solved, an attempt is made to detect some violated
inequalities of a certain type. If some are detected, they are added to the current
relaxation which is solved again. The process continues until no more violated
inequalities can be identified. At this point, if the optimal LP solution satisfies
the integrality constraints and all precedence relationships are satisfied, then the
current solution becomes the new incumbent. Otherwise, branching is performed
(see the following pseudo-code of NodeTreatment).

Procedure 1 NodeTreatment
Input: LP

1: solve LP
2: if violated subtour found then
3: separate
4: goto 1
5: else if violated combs found then
6: separate
7: goto 1
8: else if violated π-inequalities found then
9: separate

10: goto 1
11: else if violated σ-inequalities found then
12: separate
13: goto 1
14: else if x∗ is integer then
15: if violated precedence found then
16: separate by adding lifted MTZ for each 1-arc
17: goto 1
18: else
19: incumbent← x∗

20: end if
21: else
22: branch
23: end if
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4.1 Separation of inequalities

We now explain the various separation procedures and the branching rules used in
our algorithm.

4.1.1 Exact separation of subtour elimination constraints

To separate the SEC we use the Hao-Orlin algorithm ([20]) to compute a global
minimum cut in the support graph of the current solution. If the value of the mini-
mum cut is strictly less than 1, then we check for SEC-compatibility (see Proposi-
tion 14). When the cutset is SEC-compatible, the corresponding constraint is added
to the LP which is solved again.

4.1.2 Heuristic separation of comb inequalities

Comb inequalities are normally applied to the symmetric TSP. However, adjust-
ments must be made for the preemptive SP because the underlying graph G is
directed. A solution is determined by a list of arcs, each associated with an ob-
ject type. There is no known polynomial algorithm to separate general combs and
this problem is most likely NP-hard. Therefore some heuristic method must be
considered. In our implementation we use two different heuristics that both take
as input a list of edges with their corresponding value (obtained when the LP is
solved). We first transform each arc (i, j) into an edge e = (i, j) with value
xe =

∑

k∈O(xk
ij + xk

ji) and apply a comb violation heuristic: if the search is suc-
cessful, then we check for comb-compatibility (see Proposition 15). When comb-
compatibility is satisfied we add the corresponding comb inequality to the LP. The
first heuristic comes from the publicly available package CVRPSEP developed by
Lysgaard (see [24]) for the Capacitated Vehicle Routing Problem ([23, 25]), and
the second one is our implementation of the heuristic described by Naddef and
Thienel [27]. For the latter the idea is to detect a candidate for the handle first and
then try to find an appropriate set of teeth by means of a growing sets technique.
The two heuristics are executed subsequently and only distinct cuts are kept.

4.1.3 Exact separation of π-inequalities

To detect a violated π-inequality, we apply the exact procedure described in [10].
For every vertex i ∈ V1 \ {1} with ai 6= bi, we construct a new graph G′

i+n from
the current support graph, having the same vertex set and the same arc set, except
that we remove π(i + n) (i.e., vertex i), and its incident arcs. Next, we try to send
one unit of flow in G′

i+n from i + n to the depot (see Figure 16). We actually
compute a minimum s-t cut in G′

i+n, where s = i + n and t = 1. If the value
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of the minimum cut is strictly less than 1, then a violated π-inequality has been
detected and the identified cutset is used to build the constraint. We proceed in a
similar way for each vertex i + n ∈ V2 \ {1 + n} with ai+n 6= bi+n, constructing
G′

i+2n (this time we delete i, i + n and their incident arcs) and determining the
value of a maximum flow from i + 2n to the depot. All violated inequalities are
stored and are added to the LP at the end of the procedure.

�

�

�
1

i

i + n

≥ 1 ?

Figure 16: Illustration of the π-inequality separation procedure

4.1.4 Exact separation of σ-inequalities

The detection procedure for σ-inequality violations is similar to the one applied to
π-inequalities. For each vertex i ∈ V1 \{1} with ai 6= bi, we first construct a graph
G′

i from the current support graph with the same vertex set and the same arc set
except that we remove i + n, i + 2n and their incident arcs. Then we determine
a minimum s-t cut in G′

i, where s = 1 and t = i. If the value of the minimum
cut is strictly less than 1, we have found a violated σ-inequality. The same process
is executed for each vertex i + n ∈ V2 \ {1 + n} with ai+n 6= bi+n, creating the
graph G′

i+n (by copying the support graph and deleting i+n and its incident arcs),
computing a minimum s-t cut, where s = 1 and t = i + n. Again if the value of
the minimum cut is strictly less than 1, a violated σ-inequality has been identified
and is stored. Figure 17 illustrates the main idea of the procedure.

For the calculation of the successive minimum s-t cuts we use the routine CC-
cut mincut st from Concorde (see [4]). It is a very fast implementation of the
push-relabel flow algorithm described by Goldberg and Tarjan [18].

4.1.5 Precedence for transshipment vertices

Because we decided not to include the MTZ constraints in the LP and the π- and σ-
inequalities do not consider transshipment vertices, there may exist violated prece-
dence relationships among these vertices. Therefore at the end of the separation
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Figure 17: Illustration of the σ-inequality separation procedure

phase, if the solution is on integer circuit we check whether the precedence condi-
tions are satisfied. For this, we follow the route starting at the depot and as soon
as a violated precedence relationship is detected, for instance a vertex i + n ∈ V2

being visited before i ∈ V1, the process stops and a lifted MTZ constraint is added
for each arc having value 1 in the current solution (see the pseudo-code of Node-
Treatment).

4.1.6 Generalized order constraints

Separating GOC constraints with an exact method can be very time consuming
even for the simplest GOC with t = 2 and |S1| = |S2| = 2. For this case Ruland
[28] (see also Ruland and Rodin [29]) has proposed an exact separation procedure
for the PDP that requires solving O(n2) maximum flow problems. In our context
there are 3n vertices and two different precedence relationships to consider (i ≺
i + n and i + n ≺ i + 2n). For the size of the instances we aim to solve (20 ≤
n ≤ 100), this involves an unacceptable number of maximum flow calculations
(each separation routine may be called hundreds of times during the branch-and-
cut algorithm). We have therefore opted not to incorporate the separation of this
class of inequalities in our algorithm.

4.2 Branching

Three different branching rules were implemented. When the current solution is
still fractional after the separation process, two child nodes are generated and added
to the pool of branch-and-cut tree nodes. The best-bound first strategy is used to
explore the pool.
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4.2.1 Branching on a variable

Given the current fractional solution x∗, we select the variable closest to 0.5 and
generate two child nodes by setting the value of that variable to either 0 or 1. In
case of ties we choose the variable for which the associated arc is the longest. This
is the most common rule applied in similar contexts. It is easy to implement and
usually yields good results even if the branch-and-cut tree is not balanced. Indeed,
setting a variable to 0 has much less consequence than setting it to 1 because the
number of variables having value 1 in a feasible solution is much smaller than the
number of variables having value 0. This standard branching is noted rule A.

We have implemented a second method for branching on variables, called rule
B. This branching rule is slightly more flexible than rule A as it considers a wider
range of variables. It consists of the following three steps:

1. store all fractional variables in a set C and determine the value that is the
closest to 0.5 (noted µ),

2. remove from C all variables whose value is below (1−ε)µ or above (1+ε)µ
(in our implementation we chose ε = 0.2),

3. select among the remaining candidates the variable with the longest corre-
sponding arc.

4.2.2 Branching on a constraint

We have also implemented a procedure for branching on a constraint. We have
applied it to the SEC, but the same idea could work on other constraints such as
comb inequalities. Every feasible route traverses any subset of vertices an even
number of times. By traversing we mean crossing the border in the two possible
directions. When we consider directed arcs, the vehicle exits and enters any proper
subset that contains at least one non-transshipment vertex at most once or at least
twice. If we can identify a subset U ⊂ V for which the value of the cutset δ+(U)
is close to 1.5 (where δ+(U) represents the set of arcs with the tail in U and the
head not in U ), we can generate two children by enforcing x(δ+(U)) ≤ 1 for the
left child and x(δ+(U)) ≥ 2 for the right child. In general this approach creates
a branch-and-cut tree that is more balanced than when branching is performed
on variables. Determining subsets on which to branch is done heuristically. We
have implemented a routine that attempts to detect a subset for which the absolute
difference from 1.5 is less than 0.1 (i.e., 1.4 ≤ x(δ+(U)) ≤ 1.6). We call this
branching method rule C. When the routine fails to find such a subset in the current
fractional solution, then rule A is used.
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5 Computational results

The branch-and-cut algorithm just described was coded in C++ and integrated in
a branch-and-bound framework called OOBB, which stands for Object-Oriented
Tools for Parallel Branch-and-Bound, currently under development at the CIR-
RELT in Montreal. Our code uses the sequential mode. As for the LP solver we
used ILOG CPLEX 10.1. Tests were performed on an AMD Opteron Dual Core
285 2.6GHz running Linux.

To generate the instances, vertices were randomly distributed in the 500×500
square according to a discrete distribution. We have associated to the vertices a
random supply and a random demand within {0, . . . ,m} such that each object
type was requested and supplied at least once. We tested with m = 3, . . . , 8 object
types and n = 20, . . . , 100 vertices with an increment of 10 (for conciseness and
without losing too much information an increment of 20 is considered in our tables
of results). For each pair (n,m) three different instances were generated leading
to a total of 162 random instances.

Table 2 shows the average computation time in seconds for different values
of n and m. As we can see the running time was not affected by increasing or
decreasing the number of object types considered in the instance, the number of
vertices seems to be the most influent parameter.

n \m 3 4 5 6 7 8 Seconds

20 4 3 1 10 2 2 4
40 56 350 21 15 105 19 94
60 93 435 200 498 4903 447 1096
80 873 436 2932 237 1287 1925 1282

100 4609 795 2159 1699 1557 2561 2230
Seconds 1127 404 1063 492 1571 991

Table 2: Average computation times

Table 3 shows how the execution time was distributed during the process. The
separation phase is clearly the most time-consuming step. The column heading
“Other” includes the time needed to create the model, the branching procedure
and miscellaneous routines inside the code. Reported values represent the average
values over the 162 instances we have considered.

Table 4 shows the average number of drops used in the optimal solution, which
corresponds to the number of times the vehicle has unloaded an object (different
from the null object) at a vertex and reloaded it later during its tour. This number
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Solving LPs Separating Cuts Other

38.95% 59.88% 1.17%

Table 3: Distribution of execution time

does not seem to be influenced by the number of object types in the instance and
represented approximately 5% of the total number of vertices.

n \ m 3 4 5 6 7 8 Average

20 1 0 1 2 2 1 1.2
40 2 3 2 2 3 3 2.5
60 3 3 3 3 4 3 3.2
80 3 5 4 3 4 6 4.2
100 5 3 4 5 5 4 4.3

Average 2.8 2.8 2.8 3.0 3.6 3.4

Table 4: Number of drops in an optimal solution

Tables 5 and 6 show the results of our algorithm using branching rule B. The
column headings are as follows. SEC is the number of subtour elimination con-
straints added to the relaxation; Combs is the number of comb inequalities added
to the relaxation; π is the number of π-inequalities added to the relaxation; σ is
the number of σ-inequalities added to the relaxation; MTZ is the number of times
infeasible integer solutions were found and separated by adding some lifted MTZ
constraints; Gap is the relative deviation between the solution value z obtained at
the root node and the optimal solution value z∗, i.e., (z∗ − z)/z∗; Nodes is the
total number of nodes in the branch-and-cut tree; Seconds is the running time in
seconds.

The π- and σ-inequalities were very useful during the resolution. Not incorpo-
rating them in the separation phase generally increases the number of branch-and-
cut nodes by a factor 3 or more, and the execution time also increases. Branching
rule B, which examines a pool of candidate variables, was the most efficient of
the three tested rules. Branching on constraints (rule C) occasionally reduced the
number of branch-and-cut nodes but at the expense of extra computation time. All
results presented in this section were obtained with branching rule B.

On this set of instances we did not find any violated precedence between trans-
shipment vertices, which is why the MTZ column has only zero entries. This can
be explained by two facts. The first is that the algorithm checks for violated prece-
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dence among transshipment vertices only when the current solution is integer and
integer solutions rarely make use of transshipment vertices. Another reason is that
the number of transshipment vertices is in general relatively small compared to the
total number of vertices. However, every solution must satisfy these relationships
in order to be feasible, so they have to be checked. On some other sets of instances
we sometimes found violated precedences among transshipment vertices, but only
rarely.

(n,m) SEC Combs π σ MTZ Gap Nodes Seconds

(20,3) 7 1 24 3 0 0.00227 3 4
(20,4) 8 1 4 0 0 0 2 3
(20,5) 5 0 1 0 0 0 1 1
(20,6) 7 5 5 2 0 0.0001 6 10
(20,7) 5 0 2 0 0 0 1 2
(20,8) 6 0 1 0 0 0 1 2
(40,3) 37 7 13 0 0 0.00003 4 56
(40,4) 40 49 98 17 0 0.00037 22 350
(40,5) 11 0 2 1 0 0 1 21
(40,6) 4 0 2 0 0 0 1 15
(40,7) 9 6 6 4 0 0.0001 6 105
(40,8) 11 1 0 0 0 0 1 19
(60,3) 36 23 33 0 0 0 1 93
(60,4) 103 46 51 1 0 0 1 435
(60,5) 47 2 23 1 0 0 2 200
(60,6) 38 11 17 7 0 0.00003 8 498
(60,7) 32 81 129 34 0 0.0001 53 4903
(60,8) 14 19 17 7 0 0 5 447

Table 5: Detailed computational results on random instances (20 ≤ n ≤ 60)

The optimality gap at the root of the search tree is remarkably small. This
yields a limited search tree exploration (less than eight nodes on average) to reach
the optimal solution or to prove that the current feasible solution was optimal.

6 Note on the mixed case

The model and the branch-and-cut algorithm presented in Sections 3 and 4 for
the preemptive SP can easily be modified to handle the mixed case where the set of
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(n,m) SEC Combs π σ MTZ Gap Nodes Seconds

(80,3) 137 49 156 2 0 0.00007 2 873
(80,4) 89 3 13 0 0 0 1 436
(80,5) 138 36 64 7 0 0.00033 11 2932
(80,6) 22 1 49 0 0 0 2 237
(80,7) 33 36 71 8 0 0.00003 8 1287
(80,8) 90 41 62 7 0 0 4 1925

(100,3) 355 40 105 1 0 0 3 4609
(100,4) 51 5 39 2 0 0.00003 2 795
(100,5) 46 13 18 5 0 0 11 2159
(100,6) 66 37 19 3 0 0 4 1699
(100,7) 46 4 12 6 0 0 3 1557
(100,8) 74 11 19 10 0 0 5 2561

Table 6: Detailed computational results on random instances (80 ≤ n ≤ 100)

object types O is partitioned into a set Od of droppable objects and a set On of non-
droppable objects. To handle this situation, we only need to consider additional
discardable triplets. In addition to the discardable triplets presented in Section 2.3
the following cases must now be considered.

Proposition 18. If k ∈ On and bi 6= k, i ∈ V , then the triplets (j ∈ V, i, k) are
discardable.

Proof. By definition any object type k ∈ On is non-droppable so the vehicle cannot
carry k to vertex i if the latter does not demand an object of that type.

Proposition 19. If ai ∈ On and bj 6= ai, i, j ∈ V , then the triplets (i, j ∈ V, ai)
are discardable.

Proof. This is the symmetric case of Proposition 18. By definition, if ai ∈ On the
vehicle is not allowed to carry this object type to a vertex that does not demand an
object of that type.

By setting to zero the variables associated with these triplets we ensure that the
vehicle will never drop a non-droppable object. The model and the branch-and-cut
algorithm presented in Sections 3 and 4 remain unchanged. With this approach we
optimally solved instances with up to 100 vertices in running times similar to those
reported in Table 5.
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7 Conclusions

We have presented the first ever exact algorithm for the preemptive Swapping Prob-
lem on a general graph. This version of the SP turns out to be much harder to solve
than the non-preemptive case studied in [12]. We have designed a mathemati-
cal model based on the structural properties of optimal solutions and elaborated a
branch-and-cut algorithm to solve it. To handle the precedence relationships in-
duced by the drop of an object at a vertex, we have used a splitting technique
that allowed us to incorporate the π- and σ-inequalities, the lifted MTZ and the u-
precedence constraints. Computational results show that the value of the relaxation
at the root of the search tree is very close to the optimal solution value. This enables
us to solve reasonably large instances within acceptable computation times.
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