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An important strategic phase in the planning process of a railway operator is the development of a line plan,
i.e., a set of routes (paths) in a network of tracks, operated at a given hourly frequency. We consider a

model formulation of the line-planning problem where total operating costs are to be minimized. This model
is solved with a branch-and-cut approach, for which we develop a variety of valid inequalities and reduction
methods. A computational study of five real-life instances based on examples from Netherlands Railways (N5)

1s included.
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Introduction

The planning problem faced by every railway oper-
ator consists of several consecutive stages, ranging
from strategic decisions concerning, e.g., infrastruc-
ture development, to real-time traffic control. An
overview of these stages is given in Figure 1(a). Strate-
gic problems are driven by estimates for the long-term
demand. The first problem concerns the determina-
tion of the infrastructure, such as railway tracks and
stations. Both the infrastructure and demand data are
input for the line-planning problem (LPP) considered
in this paper. It involves the selection of paths in the
raillway network on which train connections are main-
tained. Thus, LPP focuses on determining a subset of
all possible lines that together make up the line plan.
Successive decision stages are the more detailed plan-
ning problems such as the construction of timetables
(Schrijver and Steenbeek 1994, Odijk 1997, Nachtigall
1999, Lindner 2000), traffic planning (route assign-
ment, platform assignment) (Zwaneveld 1997), rolling
stock planning (Schrijver 1993), personnel planning
(Caprara et al. 1997), and shunting planning (Gallo
and Di Miele 2001).

Besides the operated paths, a line plan also spec-
ifies the hourly frequencies of the lines. Tradition-
ally, the objective when constructing a line plan has
been to find a set of lines that maximizes the number
of direct travelers, i.e., the number of travelers that
do not have to change trains during their journey;
cf. Bussieck et al. (1996), Bussieck (1998). This is an
obvious objective from a service perspective. How-
ever, this objective tends to generate geographically
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long train lines. Because the passenger flows usually
differ substantially between regions, long train lines
often result in an inefficient use of rolling stock. As an
alternative objective, similar to Claessens et al. (1998)
and Bussieck (1998), this paper will focus on the prob-
lem of minimizing the operational costs of a line plan.
We will refer to this problem as the Cost-Minimizing
Line-Planning Problem, or CLPP.

There are several approaches for formulating CLPP.
In Claessens et al. (1998), an integer nonlinear pro-
gramming model is presented as a natural model for
CLPP. They transform this model into a linear pro-
gramming problem on binary variables (BLP), which
they then try to solve using branch and bound.
In Bussieck (1998) an alternative formulation using
general integer variables (ILP) is presented. In recent
work of Bussieck et al. (2002), the original nonlinear
model is reconsidered. They study a relaxation of the
nonlinear formulation to obtain good primal solutions
of the original problem.

Besides presenting the ILP formulation, Bussieck
(1998) also compares the BLP and ILP formulations
using a cutting-plane algorithm. They conclude that
the more compact ILP formulation is preferable for
generating good feasible solutions, compared to the
large BLP formulation. However, the lower bounds
provided by BLP are superior to the lower bounds
of ILF, therefore the BLP formulation is preferable for
proving optimality of a feasible solution. By extend-
ing the reduction methods and classes of cutting
planes presented in both papers, we show that the
BLP formulation can be used to solve large instances
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of the problem using branch and cut, or at least to
obtain excellent upper bounds and lower bounds in
reasonable time.

In the next section the model formulation is pre-
sented. Section 2 describes the solution methodol-
ogy. Section 3 describes the implementational issues,
and in §4 we describe a computational study based
on instances of the Dutch railway operator NS
(Nederlandse Spoorwegen).

1. Model Formulation

Fundamental in the modeling of the line-planning
problem is the concept of a line. In railway terminol-
ogy, a line specifies a route between an origin and
a destination station and the subsequent stops, com-
bined with the operated hourly frequency. A line plan
is the set of operated lines. The line plan does not
incorporate the exact timetable for the operated lines,
though we assume that the timetable is cyclic with
a cycle time of one hour, ie., that the line plan is
repeated every hour. This reflects the situation in the
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Netherlands, as well as in many other European coun-
tries. The model described here focuses on finding
a line plan that minimizes the induced operational
costs. The problem of finding a cost-minimizing line
plan can be described as follows:

Given the railway infrastructure with the accompany-
ing stations and the number of travelers between stations,
determine a cost-minimizing line plan.

Personnel and rolling stock are the main cost factors
that determine the operational costs of a line plan.
Both the number of trains needed to operate the lines
at given frequencies, as well as the number of con-
ductors and drivers needed to operate them, depend
on the circulation of the rolling stock. Following the
practice at NS, we assume a circulation schedule in
which all rolling stock is dedicated to specific lines.
Thus, the switching of rolling stock between lines is
kept to a minimum. The trains used to operate a sin-
gle line are assumed to be identical, i.e., pulling the
same number of carriages. Now, using the hourly fre-
quency and the number of carriages per train, we can
determine the operational costs that can be attributed
to operating a specific line.

ExaMmPLE 1.1. The required number of composi-
tions (trains) for the trivial rolling-stock circulation i1s
calculated using the total time needed to operate the
line in both directions and the time needed at both
end stations to prepare the train for the reverse jour-
ney. Consider a line with a travel time of 60 min-
utes from its origin to its destination station. Fifteen
minutes are needed at either end station to prepare
the train for the reverse journey. This amounts to a
total cycle time of 150 minutes. If our line is operated
once per hour, this would require [150/60] =3 com-
positions (Figure 2(a)). However, operating our line
at a frequency of two (Figure 2(b)), departing every
30 minutes, will call for [150/30] =5 compositions.

The railway network is modeled as a graph G =
(V,E) of stations (vertices) and tracks (edges). The
route through the network of line ! is represented
as a path in the graph. The lines and stations
in the railway network are of one of three types.

60°

15° S

@ 15’

135’ 12() 105’ 9

0’ 79
) 601

0’ 15’ 30 45

(a) Once per hour

Figure 2 Compositions vs. Frequency

60’

135’ 12(¢ 1

05’ a0’ 75’
0’ 45’ 60’

0’ 15 3

(b) Twice per hour
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The intercity (IC) trains for longer distances and
larger stations, the interregional (IR) trains for inter-
mediate distances, and the aggloregional (AR) trains
for the short distances and smaller stations. The types
of a line and a station determine whether or not a
line halts at a station; i.e., the IC trains stop only at
the IC stations, the IR trains stop at IR and IC sta-
tions, and the AR trains stop at every station. The
stations at which a line halts are thus given by the
path through the network, together with the line and
station types of the stations along this path. The total
flow of travelers using the different train types can
be decomposed into passenger flows for each type
(Claessens et al. 1998). Travelers determine their route
through the network, based on the associated travel
time. They are thus motivated to switch to higher
train types at the earliest opportunity. As described
in Oltrogge (1994), this enables us to decompose the
overall problem into separate line-planning problems.
Using this approach, we consider only line-planning
problems with all lines of exactly one type ¢. Line-
planning models with multiple line and station types
are discussed in Goossens et al. (2002). Additionally,
we assume that for every type of line, there is exactly
one type of carriage used to operate this line. Because
all stations at which lines of type t do not halt can
pe removed from the network, the stops of a line !
are thus given by the stations at the endpoints of all
tracks used by I.

The demand data for the line-planning problem are
given by the origin/destination (OD) matrix, specifying
the number of travelers per hour between all pairs of
stations. The route passengers take to go from their
origin to their destination clearly influences the plan-
ning of the capacity of lines. As dictated by the ticket
regulations, this route is in general the shortest path
and can thus be fixed a priori. The assumption that
there is exactly one fixed route is not important. The
essence is that the route is known for every traveler.
Moreover, we assume that the flow of passengers is
symmetric. Thus, the number of passengers traversing
some edge e can be calculated given the OD matrix.
As a service to the passengers, we assume that each
line is always operated in both directions. Therefore,
as in Claessens et al. (1998), we can regard lines as
being undirected.

The operated line plan in turn influences the behav-
ior of travelers and thus the demand data. For exam-
ple, a line plan offering more frequent connections
might well encourage travelers currently using their
cars to switch to using the train. As also mentioned
by Claessens et al. (1998) and Bussieck (1998), the
approach applied in practice is to use the result-
ing line plan to reallocate the passengers using, e.g.,
the system split method (Oltrogge 1994). The result-
ing OD matrix could be used to obtain a new line
plan, etc.
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The lines in the line plan are selected from a given
set of feasible lines L through the network. Not every
path between every pair of stations is a feasible route.
Many infrastructural and operational restrictions have
to be taken into account, such as the shunting possi-
bilities for turning at the end stations and the maxi-
mum distance covered by a line (Harte 1995).

The level of service that the proposed line plan
offers to the passenger is ensured by two conditions.
The capacities of the lines should suffice to transport
all passengers, and the line plan is enforced to guar-
antee a high number of connections between every
pair of consecutive stations in the network. We con-
sider this issue in more detail in the next subsection.

1.1. Formulation

Our formulation of CLPP is very similar to the for-
mulation used by Claessens et al. (1998). Given are
the undirected graph G = (V, E) with vertex set V,
edges E, and a set of potential lines L. Every line [ € L
corresponds to a set of edges forming a simple path
between the end vertices of . The consecutive stops
of line [ are given by the stations corresponding to the
vertices along its path. Recall that we consider only
line-planning problems with exactly one type of line.
For every line, we have to decide whether to deploy
it and, if so, at what hourly frequency and with how
many carriages. The set of possible frequencies for the
lines is denoted by F C Z_, the possible number of
carriages by C C Z,. As mentioned before, the result-
ing line plan must meet two types of service restric-
tions. For every edge e in the network we are given
the required number f, of passing trains per hour
and the total number of carriages ¢, needed to meet
the demand of all passengers who want to traverse e
per hour.

For formulating the line-planning problem as an
integer linear programming problem, we introduce a
binary variable for every (I, f, c) € N, with the set of
triples as N:=L x F x C. Every i € N will be used
for referring to a particular (I;, f;, ¢c;) combination. For
convenience, let us also introduce the set N(e) S N
for every edge e as N(e) ={i € N: e € [;}. The line-
planning problem CLPP can now be formulated as
follows:

min ) k;x, (1)
1eN
subject to x € S, (2)

where the set SMF is defined as

z fix;>f VeeE, (3)
ieN(e) = °
Z ffcixi = C, Ve € E, (4)

reN{e)
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> x<1 Vlel, (5)
fEN“[mf
x;€{0,1} VieN. (6)

Before describing the objective function coeffi-
cients k;, let us first consider the different restrictions.
The constraints (3) enforce the minimum number of
passing trains per hour on every edge e € E. Restric-
tions (4) impose the lower bound ¢, on the number of
carriages crossing edge e in one hour. Typically, ¢, is
the smallest number of carriages necessary for trans-
porting all passengers over edge e. Note that, as men-
tioned earlier, we consider all units of rolling stock
to be identical. The third group of constraints ensures
that every line is operated in at most one configura-
tion. Contrary to Claessens et al. (1998) and Bussieck
(1998), we have no upper-bound restriction on the
number of passing trains per hour for every track.
Including these restrictions to account for possible
infrastructural bottlenecks would be part of a more
operational study.

The objective function coefficient k; represents the
costs of operating the line associated to variable x;.
These costs are split into fixed and variable costs.
Variable costs in this sense are hourly costs per kilo-
meter associated to operating the line. They involve,
for example, energy and maintenance costs. The fixed
costs are costs that are incurred for the availability
of the individual trains and carriages and involve,
e.g., depreciation costs. The objective function coeffi-
cients k; are defined as

ki, f,0=lepr- f1- (ke +c-kge) +dp - f - (kg +¢ - kap).

This formulation thus incorporates four classes of
resource costs (Claessens et al. 1998, Bussieck 1998):
* ki the fixed hourly costs per train,

o k' the fixed hourly costs per carriage,

* k. . the hourly costs per train per kilometer,

var

e ko the hourly costs per carriage per kilometer.
The distance in kilometers covered by a line ] is given
by d,. The parameter cp, is equal to the total cycle time
of I divided by 60 minutes (e.g., cp, = 150/60 for the
line in Example 1.1).

Claessens et al. (1998) prove that finding a cost-
optimal allocation of trains using only capacity
restrictions is NP-hard. Because this problem is a spe-
cial case of CLPP, we know that CLPP is also NP-hard.
Betore proceeding with describing our branch-and-
cut method, let us first introduce some general nota-
tion and visualization of CLPP instances throughout
the remainder of this paper. Consider Figure 3. The
instance consists of three stations, V = {v,, v,, v5}, and
two tracks, E = {e;, e;}. The overall set of candidate
lines L for this network consists of three lines L :=

{l;,1,,1;}. We refer to an individual variable x, as

Transportation Science 38(3), pp. 379-393, ©2004 INFORMS

[, | | | |,

Figure 3 Example of a CLPP Instance

being of line I; with a frequency of f; per hour, pulling
¢; carriages, and, therefore, with an hourly capacity of
f; - ¢; carriages.

2. Branch-and-Cut Method for CLPP

The branch-and-cut techniques will be divided into
three different sections: preprocessing (§2.1), cutting
planes (§2.2), and tree search (§2.3). The preprocess-
ing section focuses on reducing the initial size of the
problem. This is done by removing superfluous vari-
ables and constraints, and by tightening the model
restrictions. Next, we discuss a variety of classes of
cutting planes, both generally applicable and cutting
planes specifically derived for CLPP. Finally, the tree
search section will cover branching rules and primal

heuristics.

2.1. Preprocessing
The preprocessing techniques that will be described

in this section will attempt to strengthen the initial
formulation of the problem. Strengthening, in this
context, covers both coefficient reduction techniques
and methods for reducing the number of variables
and constraints used to model a given CLPP instance.
Both Claessens et al. (1998) and Bussieck (1998)
describe several preprocessing techniques specifically
for CLPP. We briefly recall these techniques and
review them in a more general context.

2.1.1. Coefficient Reduction. The main con-
straints of the model—i.e., the capacity constraints (4)
and the frequency constraints (3)—will be strength-
ened using the methods described below. The coeffi-
cient strengthening or reduction techniques used here
are extensions of techniques and ideas described in
Dietrich and Escudero (1994).

The coetficient-strengthening techniques will be de-
scribed on a simplified line-planning problem (SLPP)

with only two types of constraints:
mincx  subject to x €S, (7)

where the feasible set S is defined as all x for which

Ax > Db, (8)
Cx <1, (9)
x € {0, 1}", (10)
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S iy

where N is the set of variables with n = |N|. The
matrix A is an m x n matrix with nonnegative integer
entries a;, and b is an m-dimensional vector of posi-
tive integers. Every variable i € N is associated with a
unique [ € L, denoted ;. For every [ € L, there is a con-
straint ) ;; _,x; <1 in the second constraint matrix C.
Note that CLPP is contained in this class, where the
constraints (8) contain the service constraints on the
tracks.

We derive several methods for strengthening prob-
lems of this form. Using notation similar to Dietrich
and Escudero (1994), the coefficient a;; of row k and
column j can in general be strengthened to

ékj < maX{O, ak}' - Akj} —_ maX{O, bk — ij}, (11)

where Ay = a,; — b + Q;; = 0. Here, () represents
a lower bound on the left-hand-side value of
constraint k in any feasible solution x € 5 with x; =1.
Io maintain the nonnegativity property for a;, we
have added the lower bound on 4,;. Note that an ini-
tial strengthening can be obtained by setting 4;; = b,
for all g;; > b, because we have assumed a;; >0 and
all variables are binary. This reasoning also implies
iy = 0.

Next we give two techniques for determining valid
values for Q.. Both techniques use an additional row
from the constraint matrix A to strengthen its coeffi-
cients. Note that it Q; is valid for S, then @k}' < (ij
is also valid. Alternatively, for any valid, though non-
integer, (J;; we know that [Q] is also valid. Both
techniques give lower bounds for the value of the fol-
lowing minimization problem.

THEOREM 2.1. Consider an instance of SLPP as defined
by (7)—(10). Strengthening the coefficient a;; of the con-
straint matrix A according to (11) with

subject to i1,
Cx <1, xe{0,1}"

if ay; < by, and Q;(h) = 0 otherwise, is valid for S for any
constraint h.

ProoOr. We prove that for all x € S, it holds that (b, —
Qi(h)x;+ 2 12 g x; = by. This is obviously true for all
x € 5 for which x; = 0 because now the new coefficient
of x; is unimportant. For all x € S for which x; =1,
we have to show that 37, ay;x; > by — (b — Qi (h)) =
Qyi(h). Clearly, any x € S with x; =1 satisfies a,; +
Zf]i#}’ apiX; = bh and x]' + Zf#jllf=1f X; < 1, making x a fea-
sible solution to the minimization problem in (12). O

The time needed to solve the integer-covering prob-

lem in (12) is too high for it to be used for coeffi-
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cient strengthening. We discuss two relaxations of this

problem that give good bounds for Q,;(h).
ExaMpLE 2.1. Consider the set of integer points

S:={xe{0,1V: 3x, + 4x) +7x; +4x, +6x5 > 7
X, + XgF Xy + x4+ 2%5 > 2
X, + X, +x3 <1
Xy + x5 < 1},

Let us strengthen the coefficient of x; in the first
constraint. Although it is equal to the right-hand side,
any feasible solution x € S with x; =1 will still have
at least one of the variables x, or x; set to 1 for the
second constraint to be satisfied. Meeting the second
constraint would therefore imply an additional left-
hand side of Q3 =min{4, 6} =4 units in the first con-
straint, and therefore

3x;+4x, + (7 —4)x, +4x, +6x5>7

is valid for S. Note that, for instance, the fractional
solution {0, 0, 3,0, £} to the LP relaxation of S is cut

off by the strengthened constraint.
The following corollary generalizes the idea of the

previous example.

CoRrROLLARY 2.1. Consider an instance of SLPP as
defined by (7)—(10). Let us take two not necessarily dis-
tinct rows from the constraint matrix A, say rows h and k.
Strengthening the coefficient of a;; according to (11) with

/ Ay I:fah' < bhf
(h={" J 13
(1) 0  otherwise, (13)

where v := arg AN 41 a0 Bki 1s valid for S.

Proor. We prove the validity of (;.(h) by show-
ing that it is the solution to a relaxation of the opti-
mization problem in (12). Given that a, < b, then
2_ip, 1, @i%; > 0 is a relaxation of the restriction in (12).
Now observe that, for binary x, this new constraint is
satistied only if at least one x; with [; 5 [; and a;; > 0
has value 1, and thus

Qe =mMin ) ax,
i

> A% >0,
il

subject to xe{0, 1}". [

Note that rows h and k need not be different.
The above method for finding valid Q) works well
on constraints with moderately sized b, — a,,. If this
number is larger, we may consider another relaxation
of (12), where we drop the integrality constraints
imposed on the variables in the covering problem.
As described later, the resulting continuous-covering
problem can be solved to optimality using a greedy
algorithm.
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ExamrLE 2.2. Consider the feasible set S as given
in Example 2.1. We again strengthen the coefficient
of x5 in the first constraint. In any feasible solution x
with x; =1, Equation (12) tells us that strengthening
a3, with

Qi3 = min{4x, + 6x5]

subject to x;+2x:>1, xy4+x<1, x,,x5€{0,1}

is valid for S. If we drop the integrality restrictions on
x, and x;, we can solve the remaining problem using
a greedy algorithm. The optimal solution is x: = 0.5,
x4 = 0, which shows us that Q3 > 3. From this we
know that

3x1 +4x, + (7 — 3)x3 +4x, + 6x5 > 7

is valid for S.
The following corollary generalizes this idea.

COROLLARY 2.2. Consider SLPP taking two rows from
the constraint matrix A, say rows h and k. Strengthening

the coefficient ay; of column j in row k according to (11) is
valid for 5, with

subject to i1l 1,

if a,; < by, and Qi (h) =0 otherwise.

Proor. Clearly, (14) is a relaxation of the opti-
mization problem in Theorem 2.1, and thus Qii(h) <
Qyi(h). O

The continuous-covering problem with nonoverlap-
ping constraints (9) is closely related to the multiple-
choice knapsack problem (see Martello and Toth
1990). It can be solved using a greedy algorithm very
similar to the one for continuous knapsack problems.

The strengthening methods given above all build
on the assumption that all coefficients are nonnega-
tive. Note that this property is guaranteed by a,; =
max{0, b, — Q} in (11).

2.1.2. Variable Reduction. We reduce the number
of variables by deriving dominance relations between
groups of variables. This is a preprocessing technique

Transportation Science 38(3), pp. 379-393, ©2004 INFORMS

that uses an exchange argument between variables
in feasible solutions. The essence of this technique is
also described in Claessens et al. (1998). The variable
reduction of Bussieck (1998) uses similar techniques.
Neither party, however, links their variable reduction
methods to coefficient-strengthening procedures. By
introducing this link, we improve upon their results
and give a more transparent description of these tech-
niques. Note, as stated in Bussieck (1998), that their
variable reduction is done without strictly preserv-
ing the feasibility of the elimination and the lower
bounding.

If in any feasible solution x with x; =1 this solution
can be altered to x; =0 and x; =1 for some i, while
maintaining feasibility and without worsening the
objective value, then x; is said to be dominated and
can be removed from the model. If there is a fixed x;

with this property, then x; is said to dominate x;.

LEmMMA 2.1. Given an instance of SLPP as defined by
(7)-(10), consider two variables i, j € N, with I, =1, and
i # j. Variable x; dominates variable x; and can therefore
be removed from the problem if
<c. and (15)

=)

Uy 2(1,{]- VkE{l,..., m} (16)

Proor. Straightforward. [

Note that the variable dominance relations de-
scribed above are transitive; i.e., if i dominates j and j
dominates k, then i dominates k. Variable dominance
is tested between all variables of a line /e L. The
dominance technique described above is also used
in Claessens et al. (1998), but without linking it to
coefficient-reduction techniques. Without coefficient
strengthening, the model will not contain many dom-
inated variables.

2.1.3. Constraint Reduction. Next, we derive
dominance rules for constraints. Again we assume the
problem to be given in the form of SLPP. We give con-
ditions under which constraints are redundant for the
description of the set of feasible solutions.

THEOREM 2.2. Suppose we are given an instance of
SLPP and a pair of constraints, say h and k. Now,
constraint k is redundant for the description of SLPP if
b, < Qio(h), with

Qko(h) =min Z ApiX;
ieN

where P':={x|) ;eyaux; = b, Cx<1,x €0, 1]"}.

subject to x e P',  (17)

Proor. Clearly, the feasible region P’ is a superset
of the solution set S of the original problem, since

it is defined by only one constraint of the constraint
matrix A, and for P’ we have x € [0,1]". From this

definition, we know that for every solution x € P’
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> ien X = Qpo(h). Because S C P/, this also holds for
feasible solutions x € 5. [

This theorem can also be used to strengthen the
right-hand side b, to [Q,,(h)] because all coefficients

a,; are integer.
ExaMPLE 2.3. Consider the feasible set S defined as

S:={xe{0,1}: 3x; + 4x, +7x3+4x, +7x5>7
X1+ Xo 4+ 2X5+ X4 + X5 > 2
X1 + Xy +2x3 <1
x, + x5 <1}.

Defining the minimization problem (17) on the first
two constraints, then Q,,(2) = 7 from the solution
(1,0,0,1,0). Thus, the second constraint induces a
left-hand-side value for the first constraint of seven
in the LP relaxation. Therefore, the first constraint is
redundant.

Note that the constraint-reduction or strengthen-
ing techniques are not independent of one another.
Similar to the coefficient strengthening and variable
reduction techniques described earlier, they should be
applied sequentially, updating the optimization prob-
lem in (17) accordingly every time.

Constraint dominance frequently occurs in CLPP
instances, both between the capacity and frequency
constraints of some track, as well as between the ser-
vice constraints on connecting tracks. Especially for
a dead-end track, it often occurs that all lines cov-
ering such a frack also cover a neighboring track,
causing overlapping nonzero elements in the service
constraints of both tracks. If the required frequency
and capacity for the dead-end track are higher than
for the neighboring track, then the service constraints
of the neighboring track are clearly redundant.

2.2. Cutting Planes

Besides preprocessing, we describe several classes of
cutting planes. The separation algorithms for these
classes will be discussed in §3.2.

2.2.1. Probing Cuts. Let us describe this class of
cutting planes on problems of the form (7)-(10). We
derive valid inequalities from information that is
obtained from variable probing.

ExaMPLE 2.4. Let us assume x* is the optimal solu-
tion to the LP relaxation of an instance of SLPP. Here,
xi =1, x5 =0.8, and xf =0 for all i ¢ {1, 2}. One con-
straint in the associated problem is

5x;+10x, + >
ieN\(1, 2}

A1 X; = 13.

Fixing x; to 1 in this constraint yields

10x, + Z a,X; = 8= 8xy + z apx; > 8.
ieN\{1, 2} ieN\{1, 2}
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The left inequality is also valid in case x; =0 because
clearly it is weaker than the original inequality. Now
by using, for example, the coefficient-strengthening
techniques, we can reduce the coefficient of x,, yield-
ing the right tightened constraint. It is violated 20%
by x*.

The idea described in the example given here is gen-
eralized in the following lemma. The way in which
these cuts are constructed preserves the problem-
specific structure of the initial inequality. Therefore,
they can be used to generate new cuts of known
classes of valid inequalities. Note that the probing
inequalities themselves will never be violated.

LemMma 2.2, Consider an instance of SLPP and some
variable j € N. Now, the inequality

D agxi+ Y agx; = b —ay (18)

I'I[:':ljfﬂkf:"'akj IUI#I}

is valid for S for any constraint k of the constraint
matrix A.

Proor. For any feasible solution, we know that
Zi[h:[;- X < 1, and thus

bk < Zakfxf

teN

= ) AuXi+ ) Ay
illi=1; L

— Z akfxi+ Z akfxi—‘— Z AiXi
f”;‘:lj:ﬂkffﬂkj fllf=l’,-,ﬂkf?-*ﬂkj f|l,-¢lj

= At Z Ay X;+ Z Qi X U

f“i:ljrakf:’ukj Illl#lj

Because inequality (18) is valid for the original
problem, it is also possible to recursively apply this
technique for a set of variables. Note that the result-
ing inequality is order independent as long as at most
one variable per line is used for probing.

2.2.2. Two-Cover Cuts. This class of cutting planes
is based on the covering constraints in the CLPP on
a given track e. If variable i by itself does not satisty
both service constraints, then every feasible solution
will contain at least one more line across e. This obser-
vation is made in the following example.

ExaMPLE 2.5. Consider the following polytope S of
a CLPP instance

S:={xe{0,1P: x; + x, + x5 + 2x, + 2x5 > 3}.

Because at least two of these variables will have a
nonzero value in any feasible solution,

X+ Xy + Xg+ X4+ X > 2

is valid for S.
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LEMMA 2.3. For any instance of CLPP, the inequality

Yoxi+ Y 2x;>2 (19)

is a valid inequality for every e € E. The set C and its
complement C are defined as

C:::{ieN(e)[j}<f€VfiCi<ge}

and C := N(e)\C.

Proor. Clearly, by definition of C, any feasible inte-
ger solution x with all nonzero variables in the left
summation must consist of at least two distinct i, j &
Cwithx;=x;=1. [

The next corollary describes an extension of
Lemma 2.3 in which the variables are not divided into
two but into several parts. In particular, the resulting
multicovering (MC) cuts consider n + 1 subsets.

COROLLARY 2.3. Consider an arbitrary instance of
CLPP and a track e. Given a positive integer n for which
2<n+1<c,, then the inequality

-7

iz sx;+ ) (n+1)x;,>n+1 (20)

s=17e(? fe(?

s valid for CLPP, with C* and C given as C° =
c,(s—1) < fieccn < c8), and C=N(e)\ U, C°.

(1€ N(e)|

Proor. First, let us denote f;c; by a; and ¢, by b.
Note that all numbers are integers. Thus, s; =min{s &
N | b(s — 1) <an < bs} is equal to s; = min{s € N |
(b —€)(s — 1) < a;n < (b — €)s} for suitably small
€ > 0. To prove that (20) is valid, we show that it
1s a Gomory cut obtained from (4) with multipli-
cation factor n/(b — €). This is clear for the left-
hand-side coefficients. It remains to be shown that
|bn/(b—¢€)] =n+1 for all applicable values of b and
n. Clearly, [nb/(b—¢€)] >n+1. It is also easy to show
that [nb/(b—e€)] < [nb/(b—1)<n+1: [nb/(b—-1)] —
(n+1)=[nb/(b-1)—n+1D] < [n/(b-1)] -1 <
1-1=0. O

ExaMPLE 2.6. Consider the following polytope S of
a CLPP instance.

S:={xe€{0,1): 3x; + 5x, + 7x3 + 10x, + 14x; > 14}.
If we consider n =2, then C' ={1, 2}, C*={(3, 4}, and
C = {5}, and thus from Corollary 2.3 we know that the
inequality

x1+x2+2X3 —I—2x4+3x5 23

is valid for S.
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2.2.3. Flow-Cover Cuts. The flow-cover cuts are
described in Bussieck (1998). These cuts use the line
structure of CLPP, in which lines typically cover more
than one track.

LEmMMA 2.4. Let C C E, ey € E\C for which c
Y vec Coo Then, the inequality

(“eu de) N 2 EmTL 2 fc*xl > ¢, (21)

eeC o) |iNC=2 ecC ieN(e

is valid.

PrROOF. First, suppose }_ icne)nc=oXi = 1. Because
adding the capacity constraints for all tracks in C
2ives D .ec Dieniey JiCiXi = 2 .ec G, Validity is obvious.
Next, assume ;e )i.nc=2 Xi = 0- All lines that pass e
thus also use at least one track in C. This implies that

Cop = Z ficix <Z Z ficix;. L

reN(ep) EECI'EN(E’)

Corollary 2.4 identifies redundant choices for e,
and C, which is useful for the separation algorithm

(§3.2).

COROLLARY 2.4. Consider a flow-cover inequality
defined by the pair (ey, C) with ey € E and C C E\e,.
If the capacity constraint for e, has been strengthened
using the technigues described in §2.1, then flow-cover
inequalities with C, such that no lines across e, cross any
edge in C, ie., {l|e,€l, INC# &} =@, cannot cut off
any feasible solution to the LP relaxation.

Proor. Strengthening the capacity constraint for
implies that for all wvariables i using e,
ﬁc < ¢, holds. Thus, 2 ieN(eg) Xi = 1. Now, because
{leL: eoel} {leL:eyel,INC =)}, this implies
that 3 iene).nc=o X = 1. We can thus prove this corol-
lary along the same lines as used in the proof of

Lemma 2.4. []

2.3. Tree Search
In this section we consider several problem-specific
branching rules and primal heuristics.

2.3.1. Branching. As reported in Linderoth and
Savelsbergh (1999), implementing problem-specific
branching rules can significantly reduce the size of
the branching tree and thus speed up the solution
process. In general, the applied branching rule when
considering binary problems is to branch on a single
variable, thus creating two new subproblems. In this
section we discuss several alternative rules.

Branching rules are used to split a problem into
several-—usually two—new subproblems. Similar to
cutting planes in a class of cuts, every class of
branching rules contains many possible branching
instances. For example, for the class of variable
branching, a branching instance is a variable. The
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quality of a branching instance In our minimization
problem is measured by the lowest bound of the
new subproblems. The branching instance for which
this lowest bound is maximal is considered best. See
also §3.3.

Variable Branching. Using the solution to the LP
relaxation x at a subproblem, the choice of a branch-
ing variable is made by taking the variable j for which

it

¥; is closest to 3. Ties are broken by considering the
variable for which the objective coefficient is largest.
Generalized Upper Bounds and Special Ordered Sef
Branching. An alternative class of branching rules for
problems containing generalized upper bound (GUB)

constraints of the form

> x <1 (22)

1€

for C € N with x € {0, 1}V is to branch on such a GUB
constraint (Linderoth and Savelsbergh 1999). In any
feasible solution, (22) ensures that at most one of the
variables in C can be set to one. We can use (22) to
split the problem as follows:

inﬂl

ieC

versus x, =0 for all i € C. (23)

The problem is to determine the set C C C. In special
ordered set (SOS) branching, an ordering of the vari-
ables in C is used to determine C. The variables in
the GUB constraints () for every line | can be ordered
according to their capacity. Now, a subproblem for
which the LP solution x is fractional is split into two
new problems as in (23), using C:={i|[, =1} and

C:= {Z e C ‘f;‘ci < 5} where 6 := Zﬁ'cf"ff‘ (24)
jeC

The parameter 6 is the so-called branching value of
the SOS.

Line Branching. Similar to generalized upper-bound
branching rules, the line-branching rule also splits
a subproblem into two new subproblems using the
GUB constraints (5) on the lines. In line branching, we
take C = C. Thus, the branching dichotomy for some
line | will be

Y x;=0 versus ) x,=1. (25)

i|l.=l i|l=

The effect of line branching on the new subprob-
lems is two-sided. On one hand, the added restric-
tion itself has a direct effect on the solution to the
LP relaxation. On the other hand, the LP problem in
the left (D'~) subproblem becomes smaller because we
can remove any variable of line / from the model. The
upward branch allows us to obtain a higher value for
(y; tor strengthening the coefficients of the constraint
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matrix. When }_,, _, x; =1, then for all variables j that
do not belong to line |/,

= MINa,;
Ry =l

is clearly valid.
Capacity Branching. A subproblem is split into two

new problems by taking a set of integer variables C
and entorcing

d'x;<g versus ) x>g+1 (26)
ieC ieC

for some integer 0 < g < |C|. The set C is constructed
to contain variables with an identical capacity. Given a
track e, a capacity b, and a number of variables g, the
current problem is split using (26) with C:={i € N(e) |
fic; = b}. Because x is restricted to integer values, the
two branches cover the complete solution space.

2.3.2. Primal Heuristic. Our primal heuristic 1s
based on the LP relaxation of the problem in a sub-
problem. From this LP solution x, a new CLPP is con-
structed, using only the lines L' :={l e L |}, -, x; > 0}.
This significantly smaller problem is given to CPLEX,
while bounding the available CPU time to a default
value of 60 seconds. Clearly, integer solutions to these
problems are also feasible integer solutions to the
original problem. This primal heuristic is by default
applied at the root node and every tenth node with a
depth in the enumeration tree of at least five.

3. Implementation Issues

We now discuss the implementation of the prepro-
cessing, cutting-planes, and branching techniques of
the previous sections.

3.1. Preprocessing Implementation

All preprocessing techniques of §2.1 are applied at
every subproblem of the enumeration tree. The imple-
mentation of the coefficient reduction techniques of
§2.1.1 is not described here, but in §3.2.

3.1.1. Variable Reduction. The dominance rules
for variable reduction are tested between all pairs of
variables belonging to the same line. For identifying
dominance relations, it suffices to compare the coef-
ficients of both variables only in all (strengthened)
service constraints present in the model, not the
added cutting planes. By definition, this is sufficient
for the validity of the reduction in any optimal integer
solution.

Instead of using the strengthened constraints as
given by the coefficient-reduction techniques to iden-
tify variable dominance, we use the following,
stronger approach. Consider strengthening the coef-
ficients for every line separately. Given some line
I, strengthening all service constraints only for this
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line will result in valid inequalities that are at least
as tight as the previous restrictions. Thus, we can
derive dominance relations based on these new con-
straints. Because removing these variables is also
valid for the original system, we can repeat this indi-
vidual approach for all lines, thereby circumventing
the order dependence of the strengthening procedure.

3.1.2. Constraint Reduction. At the root problem,
the constraint-reduction technique is applied to all
pairs of service constraints 7 and k for tracks that have
one vertex in common. Recall from Theorem 2.2 that
constraint k is redundant for the description of SLPP
if b, < Q,o(h) for some constraint k. If b, < Q,,(#), then
constraint k will not be removed, but b, will be set to
[ Qio(h)]. In all other subproblems of the enumeration
tree, we only apply this technique on constraints h
and k belonging to the same track.

3.2. Cutting Planes Implementation

Next we describe the separation algorithms to find
violated inequalities of the proposed classes of cutting
planes. In every iteration, the separation algorithms
of all classes of cutting planes are called, and violated
inequalities are added to the LP relaxation. The LP is
then reoptimized. These two steps are repeated until
no more cuts are found. Note that for all classes of
cutting planes we impose a minimum violation of 1%
for the valid inequality to be added to the system.

3.2.1. Coefficient-Strengthening Cuts. The results
of the coefficient-strengthening techniques of §2.1.1
depend on the order of strengthening. The later a
coefficient is strengthened, the smaller the effect of
the strengthening will be. We describe a heuristic for
determining a permutation of the variables. In the
root problem, this order is used to alter the coeffi-
cients in the constraints. In subsequent subproblems
a new cut built up from strengthened coefficients is
added to the problem description, replacing the initial
constraint.

Recall that strengthening the coefficient a,; of vari-
able j for constraint k involves finding a valid value
for Qi (h), for some constraint h. For these h-k pairs,
we only consider the frequency and capacity restric-
tions on a track e. The reduced coefficient g,; is then

Transportation Science 38(3), pp. 379-393, ©2004 INFORMS

determined by

Eikj < min{ak]‘, (bk — ij)+}, where

Qyj 1= max{Q};j(k), Q;cj(h)f Q;;j(h)}' (27)

For every track e, we first strengthen the coeffi-
cient in the frequency constraint, then in the capacity
constraint.

The strengthening is done in two phases. First, the
coefficients of variables with nonzero values in the
current solution of the LP relaxation x are strength-
ened. The ordering of the variables is done in blocks
of the same line. These line blocks are sorted accord-
ing to >, %; strengthening first those lines for
which this number is high. The order of the tracks is
given by the sequence of the tracks that are passed
by the line from its origin to its destination station. In
the second phase, we reuse this ordering of the lines,
but now strengthen all coefficients of the remaining
variables.

The resulting cutting planes are added to the LP
of the current subproblem. Because all coefficients are
either not changed, or strictly smaller than the coeffi-
cients in the original constraint, we can safely remove
the original constraints from the current LP. From that
point on, these new constraints are considered to be
the service constraints of the various tracks.

3.2.2. Two-Cover Cuts. The separation algorithm
for the class of two-cover cuts is straightforward,
since there is only one two-cover inequality for every
track. However, substituting for fixed variables in the
service constraints gives rise to new two-cover (2C)
inequalities. We also use the probing techniques from
§2.2.1 for finding new violated 2C inequalities.

ExaMmPLE 3.1. Consider the instance with two tracks
shown in Figure 4. The displayed fractional solution x
has two variables at nonzero values, %; =1 and %, = 3.
The 2C inequality for track e, is x; +2-x,+ - > 2.
Clearly, x satisfies this 2C cut. Now consider prob-
ing on x;. This shows that substituting for x; in the

j
capacity constraint results in a valid inequality with

Figure 4 Two-Cover Cuts
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C,, = =10—-5=05. The correspondmg 2Ccut2-x,4-
2 1s violated 50% by x.

For every track e, we probe on a set of variables,
also as described in §2.2.1. This set is built in two
steps. First, all variables j for which x; =1 and e € [,
are added. Second, we add one additional variable
that results in the maximally violated new 2C cut by
considering all 7 for which e€ !/, and 0 < x; < 1.

3.2.3. Multicover Cuts. The probing set {i|e €,
x; =1} is used for finding violated multicover cuts for
every track e. Furthermore, we limit the search for the
number of cover intervals to3 <n+1 <min{6, ¢, — 1}.
For every track, we only add the multicover con-
straint for n for which the violation is maximal.

3.2.4. Flow-Cover Cuts. Solving the separation
problem for flow-cover cuts is done heuristically. As
mentioned before, simply enumerating all possible
choices for ¢y and C is not an option. Corollary 2.4
shows us that the edge ¢, and the edges in the set
C should not be too far apart in the graph G. From
the proof of Lemma 2.4, it is clear that, given the
solution x* to the LP relaxation, violated flow-cover
cuts can only be found for tracks e, and C for which
0 < 2 ieN(eg)nc=o X; < 1. The separation algorithm con-
siders only all possnble e, and C that are subsets of
6(v) for all stations v € V, where 8(v) is the set of
edges for which v is one of the two endpoints. For
every combination of v and ¢,, we only add the cut
that is violated most by x*.

3.3. Branching Rules Implementation

As mentioned in §2.3.1, we compare different branch-
Ing instances by using estimates for the resulting
increase of the lower bound in the new subproblems.
Determining these lower bounds can be done exactly
by explicitly solving the new LP relaxations (strong
branching), or heuristically by determining estimates
for the new objective values. In our implementation
we heuristically find one candidate instance for every
class of rules and then use strong branching to decide
among these candidates.

3.3.1. Special Ordered Set Branching. From all
the lines in a given CLPP instance, we select the
line [ with the largest number of fractional variables
as the line to branch on. Similar to Linderoth and
Savelsbergh (1999), we only consider SOS branch-
ing on lines with at least three variables at a frac-
tional value. If there is more than one line that attains
the largest number of fractional variables, we break
ties by choosing the line with the highest-weighted
objective value Zzll 1 k;x;. The set C is set to be the
largest of C as in (24) and C\C. Note the p0531b111ty
of a branching cycle, i.e., that the current solution X
remains feasible in one of the new subproblems. This
would imply that for this new problem the previously
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chosen branching rule would again be best. This 1s
prevented by ensuring that @# C#{ie C|x; > 0}.

3.3.2. Line Branching. We pick the candidate line
by calculating estimates for the new LP lower bounds
of the new problems in case this line would be chosen
to be branched on. These degradation estimates for
branching on line [ are based on the objective function
coefficients for a fractional solution x:

1-— f
= Y kE Dt s
Z:]I —lx il.=l

il =

where D™ and D% are the estimates for the left and
right branch, respectively. From the lines for which
> i =1 X; 1s fractional, we select the line with the high-
est value for min{D~, D*}. This rule represents the
multiple-variable variant of the standard objective-
function-based degradation estimate.

3.3.3. Capacity Branching. Given an LP solution
X in a subproblem, we choose the track ¢ with the
largest number of fractional variables |{i|jee€l, 0 <
x; < 1}| to be used for capacity branching. We only
consider capacity branching for tracks with at least
five fractional variables. Note that the parameter g is
completely specified, given a track e¢ and a branch-
ing capacity b because it must satisfy § < > ;ccX; <
g+ 1 to prevent a branching cycle. The estimates for
the increase in the objective function value for the
left and right branch are now calculated for every

capacity b as

g+1 Ztecx ka

D™= Liec* “ngx D=
EIEC'X 1eC

Z:ecx ieC

for both branches, respectively. The branching capac-
ity b is selected to be such that the value min{D~, D*}

1s highest.

4. Computational Results

The effectiveness of the techniques described in
the previous sections is examined using five test
instances. Characteristics for these instances can be
found in Table 1. The graphs of SP97AR and SP971C
are shown in Figure 5. The last four instances are also
described by Bussieck (1998). However, the instances
and models are not identical. Therefore, comparing
results is not useful. The last two characters in the

Table 1 Instance Description

Instance SP97AR SPOT7IC SPO8AR SPA8IR SPORIC
#stations 141 40 118 44 41
#tracks 177 52 134 44 46
#lines 1212 831 913 420 627
Set F {1, 2,3, 4} (1,2} {1,2,3, 4} {1, 2} {1,2}

Set 0 {1,...,5} {3,...,15} {2,...,10} {3,...,12} {3,...,15)}
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Figure 5  The Graphs for the Instances SP97AR (5(a)) and SP97IC (5(b)).

names of the instances give the train type that is con-
sidered. All techniques have been implemented in the
branch-and-cut framework ABACUS (Thienel 1995,
ABACUS 1998). The linear programming relaxations
arising in the subproblems of the branch-and-cut tree
are solved by CPLEX 6.6.1. All computations were
done on an Intel Pentium III 866 Mhz PC with 128
MB internal memory running Windows 98SE.

The network reduction methods as described in
Claessens et al. (1998) were already applied to the
mentioned instances. The results of the preprocessing
techniques for reducing the number of variables and
constraints are given in Table 2. The initial number
of constraints reflects the two service constraints for
every track.

The effectiveness of the different classes of cutting
planes is measured in two steps. First, we consider the
effect on the root problem as shown in Table 3. The
percentages between brackets show what fraction of
the gap between the best-known upper bound and the
initial lower bound is closed. The best-known upper
bounds are obtained from the branch-and-cut process.
Table 3 shows that, at least for the root node, the
coefficient-strengthening cuts are superior. The effects
of other classes of cuts are similar. The combined
results for all classes of cuts together still show a large

Table 2 Preprocessing Results for Variable and Constraint Reduction
Instance SP97AR  SP97IC  SP98AR  SPY98IR  SP98IC
#var. initially 24,240 21,606 32,868 8,400 16,320
#var. after (3.1.1) 14,101 12,497 15,065 3,691 10,894
#con. initially 394 104 268 88 92
#con. after (3.1.2) 181 60 191 65 63

Size reduction (%) 70 67 67 68 54
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increase in the percentage of gap closed compared to
the individual results.

Before presenting the branch-and-cut results, let us
review the three proposed branching rules of §3.3,
together with the standard variable branching. To
analyze the effect of a specific branching rule, we
keep track of the increase in the objective function
value due to the application of the branching rule,
i.e., before adding new cutting planes. All rules have
been tested on SP98IC, with a maximum computation
time of one hour and applying all classes of cutting
planes. Table 4 shows both the average increase and
the standard deviation. The overall effect of a branch-
ing rule in the tree search is measured by the increase
of the overall lower bound at the end of the hour.
A low standard deviation compared to the average
increase is necessary for obtaining a balanced enumer-
ation tree. See also Linderoth and Savelsbergh (1999)
for more details. Table 4 illustrates this. The capacity-
branching rule of §3.3.3 has by far the highest average
increase. However, since the standard deviation of the
increase for this rule is also high, the tree will be far
from balanced. As predicted, the line-branching rule
of §3.3.2 combines both a high mean increase with a
relatively low standard deviation, and thus causes the
enumeration tree to indeed be more balanced. That
the overall effect of the variable branching rule is
slightly better can be explained by the higher num-
ber of processed subproblems, due to the simplicity
of this branching rule.

The branch-and-cut algorithm was tested on the
five instances using both different classes of cutting
planes and different branching rules. The results for
all 55 problems are shown in Table 5. The cutting
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Table 3
Class of Cutting Planes
Best UB No cuts All cuts

SPY7AR 6,728 0,456 0,526 (26)
SPO7IC 4.302 4169 4,221 (39)
SP98AR 5,307 5,151 5,244 (60)
SPY98IR 2.182 2115 2,159 (66)
SPO8IC 4,495 4 364 4,443 (60)

planes are tested using all classes, only the coefficient-
strengthening cuts, and the coefficient-strengthening
cuts combined with either the flow-cover cuts, the
two-cover cuts, or the multicover cuts. All combina-
tions of cuts are tested using only variable branching
(“Var.”) and using variable branching combined with
line branching (“V +L”). When applying all classes of
cuts, we additionally tested all four branching rules
(“All”") at the same time. The last column shows the
performances of the ILP solver of CPLEX 6.6.1 for
every instance, without applying any of the tech-
niques described in this paper.

We enforced a maximum computation time of two
hours. Computation times are only reported when an
instance is solved within this time bound. For every
problem, the table shows the best feasible (integer)
solution that was found (“UB”), the remaining over-
all lower bound (“LB”), the implied gap (“Gap”), the
total number of created nodes in the tree (“#Nodes”),
and the number of nodes that has already been pro-
cessed (“#Done”). The best upper and lower bounds
for every instance are typed in bold. The only instance
that can be solved to optimality is SP98IR. An optimal
solution for their version of this instance was already
found by Bussieck (1998).

From Table 5 it is clear that the best lower bounds
within two hours are obtained using all classes of cuts
simultaneously, even though the number of subprob-
lems that can be processed in this time is lower com-
pared to using only a subset of the classes. Again we
see that the effect of using line branching on the bal-
ance of the enumeration tree does not outweigh the
larger number of subproblems that can be processed
when using only variable branching. This is illus-
trated best by SP98IR. Solving this problem to opti-
mality using variable branching requires more than
20% more nodes, yet the solution time is lowest.

The ditferences in the reported gaps after two hours
are not only a result of the differences in the overall

Table 4 The Increase in the Lower Bound Due to the Branching Rule
Mean (%) Std. dev (%) Init. LB After th Increase (%)
Variable 3.8 (7) 4.8 (9) 4,443 4,465 22 (42)
SOS (3.3.1) 2.0 (4) 4.0 (8) 4,443 4,458 15 (29)
Line (3.3.2) 3.6 (7) 3.4 (6) 4,443 4,464 21 (40}
Cap (3.3.3) 16 (32) 27 (52) 4,443 4,451 8 (15)
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(3.2.1) (%) (3.2.4) (%) (3.2.2) (%) (3.2.3) (%)
6,499 (16) 6,486 (11) 6,475 (7) 6,472 (6)

4,204 (26) 4,183 (11) 4,173 (3) 4,191 (17)
5,219 (44) 5,190 (25) 5,193 (27) 5,193 (27)
2,145 (45) 2,140 (37) 2,128 (19) 2,141 (39)
4,413 (37) 4,413 (37) 4,375 (8) 4,385 (16)

lower bounds (“LB”). Also, the best-known solutions
differ significantly in some of the instances. This can
best be explained by the fact that these solutions are
mostly found using the primal heuristic of §2.3.2.
Because the LP solution is input for the heuristic,
results can vary when different classes of cutting
planes are used.

Finally, the results in Table 5 show that our branch-
and-cut algorithm outperforms the off-the-shelf ILP
solver of CPLEX. For all five instances and for all the
tested combinations of cutting planes, both the upper
and lower bounds are significantly better than those
obtained with CPLEX. For example, instance SP931R,
which can be solved to optimality in around three
minutes, cannot be solved by CPLEX within the time

limit of two hours.

5. Summary and Conclusions

In this paper we have outlined a branch-and-cut
approach for solving the problem of allocating lines
to passenger flows. Two integer programming models
were given for this problem in Claessens et al. (1998)
and Bussieck (1998). Where these previous papers use

branch and bound and cut and branch, respectively,
to solve the models, we have switched to branch

and cut. The algorithm is described by introducing
several classes of preprocessing rules (§2.1), cutting
planes (§2.2), and branching rules (§2.3). These tech-
niques have been tested on five real-life instances
of NS. From these tests we can conclude that the
described techniques perform very well on practical
instances and significantly better than the ILP solver
of CPLEX 6.6.1. While the preprocessing techniques
considerably reduce the size of the initial problem,
the mentioned classes of cutting planes effectively
strengthen the LP lower bounds. Combined with the
primal heuristic, we are now not only able to obtain
excellent lower bounds, but also to find good pri-
mal solutions in reasonable time. Of the five test
instances, we can prove to have the optimal solution
of one instance. Of the remaining four instances, two
were solved to within 1%, and two to within 3% of
optimality.

Future research on the line-planning topic will
involve the consideration of several train types
simultaneously, without splitting the passenger flows
a priori.
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