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Abstract

We investigate the problem of simultaneously determinimglocation of facilities and the design
of vehicle routes to serve customer demands under vehidl&aility capacity restrictions. We present
a set-partitioning-based formulation of the problem andgthe relationship between this formulation
and the graph-based formulations that have been used ilbpsstudies of this problem. We describe a
branch-and-price algorithm based on the set-partitiofongulation and discuss computational experi-
ence with both exact and heuristic variants of this algarith

1 Introduction

The design of a distribution system begins with the questaiiwhere to locate the facilities and how to allo-
cate customers to the selected facilities. These questemmbe answered using location-allocation models,
which are based on the assumption that customers are seigitliially on out-and-back routes. How-
ever, when customers have demands that are less-thafetrdcknd thus can receive service from routes
making multiple stops, the assumption of individual routg not accurately capture the transportation
cost. Therefore, the integration of location-allocatior aouting decisions may yield more accurate and
cost-effective solutions.

In this paper, we investigate the so-calledation and routing problem (LRP). Given a set of candidate
facility locations and a set of customer locations, the ciibje of the LRP is to determine the number and
location of facilities and construct a set of vehicle routesn facilities to customers in such a way as to
minimize total system cost. The system cost may include thatfixed and operating costs of both facilities
and vehicles. In this study, we consider an LRP with capaditystraints on both the facilities and the
vehicles.

Vehicle routing models in general have been the subject dfia vange of academic papers, but the number
of these devoted to combined location and routing modelsushnsmaller. Laporte (1988) surveyed the
work on deterministic LRPs and described different forriates of the problem, solution methods used,
and the computational results published up to 1988. Min €1998) classified both deterministic and
stochastic models in the LRP literature with respect to l@mlcharacteristics and solution methods.
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Solution approaches for the LRP can be divided broadly ietaristics and exact methods, with much of the
literature devoted to heuristic approaches. Most hearagorithms divide the problem into subproblems
and handle these subproblems sequentially or iteratizefgmples of heuristics developed for the LRP can
be found in Perl and Daskin (1985), Hansen et al (1994) anteRBaet al (2007).

Many fewer papers have been devoted to the study of exadttalgs for the LRP and most of these have
been based on the so-called two-index vehicle flow formutatiaporte and Nobert (1981) solved a single
depot model with a constraint relaxation method and a bramchbound algorithm. They reported solving
problems with 50 customer locations. Laporte et al (1988)esba multi-depot model using a constraint
relaxation method and Gomory cutting planes to satisfygiatity. They were able to solve problems
with at most 40 customer sites. Laporte et al (1986) appliedaach-and-cut algorithm to a multi-depot
LRP model with vehicle capacity constraints. They used@utbélimination constraints and chain barring
constraints that guarantee that each route starts and etiessame facility. They reported computational
results for problems with 20 customer locations and 8 depeisally, Belenguer et al (2006) provided a
two-index formulation of the LRP with capacitated facéii and capacitated vehicles and presented a set
of valid inequalities for the problem. They developed twarwh-and-cut algorithms based on different
formulations of the problem. They reported that they coutVes instances with up to 32 customers to
optimality in less than 70 CPU seconds and could provide dowedr bounds for the rest of the instances,
which had up to 134 customers.

Berger (1997) developed a set-partitioning-based modeh fepecial case of the LRP with route length
constraints and uncapacitated vehicles and facilitiestgéeet al (2007) extended that work to develop
an exact branch-and-price algorithm in which they solveslfglicing problem as an elementary shortest
path problem with one resource constraint. They reportedpcational results for problems with 100

customers and various distance constraints. Akca et aBjafveloped an exact solution algorithm using
branch-and-price methodology for the integrated locataring and scheduling problem (LRSP), which

is a generalization of the LRP. In the LRSP, the assumptiah @éach vehicle covers exactly one route is
removed and the decision of assigning routes to vehiclggduio the scheduling constraints is considered
in conjunction with the location and routing decisions. Yhensidered instances with capacitated facilities
and time- and capacity-limited vehicles. They providedisohs for instances with up to 40 customers.

In this study, we utilize a variant of the model presented lxgaAet al (2008) to solve the LRP under ca-
pacity restrictions and modify their exact algorithm foe thRSP to solve the LRP. We develop a number of
variants and heuristic extensions of the basic algorithdhreport on our computational experience solving
both randomly generated instances and instances fronte¢hetiire. The remainder of the paper is organized
as follows. Section 2 presents a formal description of tloblem, provides two formulations, and inves-
tigates the relationship between the formulations. Se@idescribes details of the heuristic and the exact
algorithms for the set-partitioning formulation. Sectibprovides some computational results evaluating
the performance of the algorithms. Section 5 concludes dpemp

2 Problem Definition and Formulations

The objective of the LRP is to select a subset of facilitied annstruct an associated set of vehicle routes
serving customers at minimum total cost, where the costded the fixed and operating costs of both
facilities and vehicles. The constraints of the problemasdollows: (i) each customer must be serviced
by exactly one vehicle, (ii) each vehicle must be assignedxarxtly one facility at which it must start

and end its route, (iii) the total demand of the customergyasd to a route must not exceed the vehicle
capacity, and (iv) the total demand of the customers asgigme facility must not exceed the capacity

of the facility. In the literature, most of the exact methaldseloped for the described LRP or its special
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cases are based on the two-index vehicle flow formulatiomeforoblem. To the best of our knowledge,
an exact solution algorithm based on a set-partitioningntdation has not been applied to the case of the
LRP with capacity constraints. The theoretical relatigpdietween the two-index formulation and the set-
partitioning formulation can be understood by considedrgjosely related three-index formulation that we
present below. We show that applying Dantzig-Wolfe decogitfpm to the three-index formulation yields
the set-partitioning formulation. This is turn shows thag¢ bounds yielded by the LP relaxation of the
set-partitioning model must be at least as tight as thoskeothiree-index formulation.

2.1 \ehicle Flow Formulation

We letl denote the set of custometkdenote the set of candidate facilities, and= 1 UJ. To bypass the
decision of assigning vehicles to facilities, we assumédhah facility has its own set of vehicles and that
a vehicle located at facility can only visit customer locations and the faciljtyluring its trip. LetH; be
the set of vehicles located at facilify Vj € J andH be the set of all vehiclesi = (J;c; Hj. We define the
following parameters and decision variables:

Parameters:
Di = demand of customerViel,
CI = capacity of facility], Vj € J,
cV = capacity of a vehicle
Fi = fixed cost of opening facility, Vj € J,
O = operating cost of traveling af¢,k) Vi,k € V.

Decision Variables:

-
=

if vehicle h travels directly from locatiomto locationk, Vi e V,k e V,he H
otherwise

if vehicle h visits customer, Vie l,he H
otherwise

if facility j is selected to be opek,j € J
otherwise
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A vehicle flow formulation of the LRP is as follows:

(VF-LRP) Minimize Fit; + OikXikh Q)
S.t. Z Z Xikn = 1 Viel, (2)
heH keVv
Xikn— ) Xih = O VieV,heH, (3
Z/inh—yih =0 Viel,heH, (4)
Ke
)/ih—zS Xdn < 0 VSCl,ieSheH, (5)
keSleVv\S
Diyin—C¥ < 0 vheH, (6)
IS
> ZDiYih—Cthj <0 vjed, (7
hEHj e
Xikn € {0,1} Vi,keV,heH, (8)
vih € {0,1} Viel,heH, 9)
tj € {0,1} Vjeld (20)

In (VF-LRP), the objective function (1) seeks to minimize tfotal cost, which includes the fixed cost of
the selected facilities and the operating cost of the vehicVehicle fixed costs can easily be incorporated
into the model by increasing the cost of traveling from thelifg to each customer location by a fixed
amount. Constraints (2) specify that exactly one vehiclestrservice customeér Constraints (3) require
that each vehicle should enter and leave a location the saméer of times. Constraints (4) determine
the assignment of customers to vehicles. Constraints iff)relte subtours, i.e. routes that do not include
a facility. Constraints (6) are vehicle capacity constiainConstraints (7) ensure that the capacity of a
facility is not exceeded by demand flows to customer locatidior notational convenience, we assume that
variables associated with travel between different fiedior travel between a customer and a facility using
a truck not associated with that facility are fixed to zerong&mints (8), (9), and (10) are the set of binary
restrictions on the variables.

2.2 Set-Partitioning Formulation

Here we utilize a modified version of the set-partitioningnialation for the LRSP presented by Akca et al
(2008). We define the s&tto be a set indexing all vehicle routes feasible with respeethicle capacity
and originating from and returning to the same facility. \&eH; C P index routes associated with vehicles
assigned to facilityj for j € J. In addition to the parameters and sets defined for (VF-LR#@)use the
following parameters and decision variables:

Parameters:
Op = operating cost of routp € P,
- 1 if customeri € | is assigned to routp € P, and
&p = 0 otherwise



Decision Variables:

— 1 ifroutep e Pis selected, and
P 0 otherwise
N 1 iffacility j € Jis selected to be open, and
= 0 otherwise
The formulation is as follows:
(SPP)Minimize Fitj+ ) Opzp (11)
subject to Zpa;pzp =1 Viel, (12)
pEe
;p Diaipzp—Clt; < 0 vjed, (13)
peP; i€
zp € {0,1} VpeP, (14)
tj € {0,1} Vjeld (15)

The objective function (11) seeks to minimize the total cadtich includes the fixed cost of the selected
facilities and the operating cost of the vehicles. Constsa{(12) guarantee that each customer location
is served by exactly one route. Constraints (13) ensuretlieatotal demand of the selected routes for a
facility does not exceed the facility capacity. Constrai(4) and (15) are standard binary restrictions on
the variables.

2.3 Comparing the Formulations

Observe that the three-index formulation (VF-LRP) exBilaithigh degree of symmetry under the assump-
tion that the vehicle fleet assigned to each facility is hoemegpus. This is due to the fact that the assignment
of routes to a specific vehicle is essentially arbitrary, thee cost of a given solution to (VF-LRP) is invariant
under permutation of the indices assigned to specific vehidhis symmetry can be dealt with either (i) by
using a two-index formulation, which requires the additadran exponential number of valid inequalities
to the formulation or (ii) by applying Dantzig-Wolfe decoosition (DWD). Laporte et al (1986) and Be-
lenguer et al (2006) have each developed branch-and-cottithlgs using the former approach. Here, we
explore the latter approach.

As is standard in DWD, we decompose the constraints of (VIPLRto two subsystems. Theaster
problemis defined by constraints (2) and (7), while gubproblemis defined by constraints (3), (4), (5), (6),
(8), (9), and (10). All constraints of the subproblem aresietl by the set and it is therefore immediate that
the subproblem decomposes by facility. The objective ohaddhe resulting single-facility subproblems
is to generate least-cost routes for all vehicles assigoebet facility, though without the constraint that
customers appear on exactly one route. For each candidadlig/fa € J, the set of integer solutions of the
decomposed subproblem can be represented by the set afsvecto

{(x,y,t) € ZIVIXNVIxHIDx (VxR > {01} | (xy,t) satisfies(3);, (4);, (5);,
(6);,(8),(9)5,(10)},

which is described only by those constraints associateld fadility j and specifies values only for those
variables associated with vehicles assigned to facjlitflence, the index for the constraints represents
the set of constraints associated with faciljty Let E be a set indexing the members of all of the above
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sets, withE; the indices for vectors associated with faciljtpnly, so thatE = U;<;E;. For a facility j and

an indexq € Ej, the corresponding membex9,y9,t9) of the above set is then a vector with the following
interpretation: for each paii,k) € [V| x [V| andh € Hj, the parameter;¥ = 1 if vehicle h travels on arc
(i,k) in solutiong and is O otherwise; for eadhe | andh € Hj, yi = 1 if customeii is visited by vehicléhin
solutionqg and is 0 otherwise; and & 1 if facility j is open in solutiory. Note that the variableindicating
whether the facility is open does not appear in any of thalimenstraints of the subproblem and can hence
be set to either 0 or 1 without affecting feasibility.

Because the subproblem decomposes as described abovmnsota the original problem can be seen as
vectors obtained by “recomposing” convex combinationshef members oE; for eachj € J. In other
words, any solutiorix, y,t) to the LP relaxation of the original problem can be written as

Xikh = ;Xiqkheq Vi,kEV,hG H, (16)
qe
vin = S vil6y Viel,heH, 17)
qe
t = theq Vjed, (18)
qek;
}E 6y =1 Vjed, (19)
gek;j
8y > 0 Vg eE. (20)

Using (16) - (20), we can then formulate the LP relaxatiorhefmaster problem as:

(MDW) Minimize EEc“qeq
ge

&
bigDiBg—CF § 64t < 0 Vje, (22)
q;j; : q;j
B =1 VjeJd, (23)
8y > 0 VgeE, (24)

where

heH kel heH

Fqt?+ i; k; h; Owxll,, VqeE,

whereFy = Fj whenq € E; for j € J. Here,biq can be interpreted as the number of times custanmer
visited in solutiong, andC is the cost of solutiom (including facility fixed cost) for alb € E.

O
I

The similar forms of (SPP) and (MDW) should now be evidenttbuigorously show their equivalence, we
need to dissect the relationship betweerEsetndP; for a given facility j € J. A member of seE; consists

of a collection of routes assigned to vehicles located alitiag. A member of seP;, on the other hand, is

a single route that can be assigned to any vehicle at fagiliherefore, a member &; can be constructed

by associating at mogt;| members of se?; and some number of empty routes (zero vectors representing
vehicles that are not used) to the vehicles assigned tatyagil



Now, by utilizing the integrality requirements from thegirial problem and carefully eliminating the indices
of symmetric solutions frork, we get a much smaller set that we will show is in one-to-oreespondence
with collections of members d¥; of cardinality at mostH;|. We proceed as follows:

1. First, as the vehicles associated with a given facijitgre identical, a set of routes frof) can
be assigned to vehicles in any arbitrary order and each arealso visit the customers in either
clockwise or counterclockwise order. Hence, we obtairedghit members d; that are all equivalent
from the standpoint of both feasibility and cost. To elimiéauperfluous equivalent members=f
we divide the members of s& into equivalence classes, where two member§jadre considered
equivalent if the set of customers assigned to the faciliig #he partition of that set of customers
defined by the routes are identical. It is clear that any twenlver's ofE; that are equivalent by this
definition will have exactly the same impact on both cost aasibility. We then form equivalence
classes from which all but one member may safely be elimihfiten E;.

2. Letf represent a solution to (MDW) for which the correspondintyitson in the original space ob-
tained by applying equations (16)-(18) is feasible for thiginal problem (VF-LRP). From (16) and
(8), along with the fact thatfkgq is binary forq € E, we get that &h =1 whenever@q > 0 in the solu-
tion to (MDW). In other words, all membergof E; with éq > 0 must correspond to routes visiting
exactly the same customers in exactly the same order. Hecmust in fact havcéq = 1 for exactly
oneq € E; for eachj € Jand sof, € {0,1} forallq € E.

3. Itthen follows easily that indegcan be removed frorg; if there exist vehicle$, h, € H;j such that
Xikn, = Xikn, ¥i,k €V, where %, > 0 for somei,k € | (i.e., this is not an empty route). In this case,
vehiclesh; andh; define exactly the same set of routes, which meanslihat 1 for somei € I.

Because of constraint (21), such a solution must h%\ﬁe 0.

4. Finally, from (18) and (22), we can conclude thaéd'f: 1 and we have % > 0 for somei.k € V
andh € H, then # must be 1. Hence, we can eliminate any solutions for wHich ® that does not
correspond to a zero solution (i.e., closed facility). Altluis allows us to rewrite (22) in the form

bigDifg—CF $ 65<0 VjeJd (25)

If we restrict se€; according to the rules described above and call the rescﬂr%l;etE_j for eachj € J, then
we can finally conclude the following.

Proposition 2.1 There is a one-to-one correspondence between subsets of P; with cardinality less than [H;|
and members of E;.

The proof follows easily from the definition of se® andE_j and the restriction rules. By replacing $gt
with E;j for all j € J in (MDW), as well as replacing (22) with (25) and adding thestoaint, < {0,1}
for all g € E, we obtain a new (equivalent) formulation (MDW’). Then, wedily have the equivalence of
(SPP) and (MDW) as follows

Proposition 2.2 Thereisa one-to-one correspondence between solutions to (SPP) and solutions to (MDW')
such that corresponding solutions also have the same objective function value. Thus, (SPP), (MDW ), and
(MDW) are all equivalent.



3 Solution Algorithm

3.1 Branch-and-Price

Having shown that (SPP) is equivalent to a DWD of (VF-LRP), mesv discuss an exact solution algo-
rithm based on a branch-and-price implementation uttizive formulation (SPP). First, we strengthen the
original formulation by adding the following additionallichconstraints:

peP;
t; > NF, (27)
,; j
Zp = Vj Vjed, (28)
peZ]
Yiel Di“
v > [ (29)
&= T
Vj >t Vjed, (30)
vj € Z* Vijed, (31)

wherev; represents the number of vehicles used at facjlityj € J andNF is a lower bound on the number
of facilities that must be opened in any integer solutiomcwated as follows:

N® = argminy_; |J|}< ch > Di> st.cl >ch>..>cCf.
le

Constraints (26) force a facility to be open if any custonseassigned to it. Constraint (27) sets a lower
bound on the total number of facilities required in any ieteteasible solution. Constraints (26) (from
Berger et al (2007) and Akca et al (2008)) and constraint (£2@jn Akca et al (2008)) are shown computa-
tionally to improve the LP relaxation of the model. Consitai(28) are only added to facilitate branching
on the integrality of the number of vehicles at each facilitythe branch-and-price algorithm. Constraint
(29) sets a lower bound for the total number of vehicles insthlation. Finally, constraints (30) force the
number of vehicles used at a facility to be at least 1 if thdifpés open. We refer to formulation (11)—(15)
and (26)—(31) as (SP-LRP) in the rest of the paper.

The formulation (SP-LRP) contains a variable for each fdssiehicle route originating from each facil-
ity. Hence, the number of routes will be too large to enuneeeaien for small instances. To solve the LP
relaxation of models that contain exponentially many catlaptolumn generation algorithms can be used.
By solving a sequence of linear programs and dynamicallyeigimg columns eligible to enter the basis,
such an algorithm implicitly considers all columns but gaes only those that may improve the objec-
tive function. In order to generate integer solutions, anblnaand-bound approach is used in combination
with the column generation and the overall approach is mefieto as branch-and-price. Desrochers et al
(1992), Vance et al (1994), Berger et al (2007), and Akca €@08) provide examples of branch-and-price
algorithms from the literature.

Here, we modify the branch-and-price algorithm used in A&tal (2008) to solve the LRSP. Therefore,
some parts of the algorithm are described only briefly. Ftaitde we refer the reader to Akca et al (2008).
To initialize the algorithm, we constructrastricted master problem (RMP), that is, an LP relaxation of
(SP-LRP) that contains all facility variable for j € J) and vehicle variablesv( for j € J), but only a
subset of the vehicle route variables {or p € P). The branch-and-price algorithm consists of two main
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components: an algorithm for solving thecing problem or column generation subproblem, which is used
to construct new columns in each iteration, &nanching rules, which specify how to partition the feasible
region into subsets to which the algorithm is then appliedirgvely until exhaustion.

At each iteration of the solution process for the LP rela@tdf (SP-LRP), the objective of the column
generation subproblem is to find a feasible vehicle rougmating from each facilityj € J with minimum
reduced cost with respect to the current dual solution oRiNE°. The reduced cost of a given royge P is

ép:op—i%apm+i;apDiuj+i;apaji—vj, (32)

wherer, 4, o andv are the dual variables associated with constraints (13), (26), and (28), respectively,
from the RMP. Hence, the column generation subproblem filitia j € J can be formulated as follows:

Minimize %(Z(Oik—nk—l-Dkuj—i-Ujk)Xik—l—Oinij)—Vj (33)
ieM kel
S.t. yj = 1, (34)
Xk= Y X = Vi Viel, (35)
W=y F w0 vSClies (36)
keSleV\S
Diyi—CY < 0, (37)
; iYi
xik € {0,1} Vi,ke M, (38)
yi € {0,1} VieM, (39)

whereM =1U{j}, xik = 1iflink (i,k) is used in solutions, ang = 1 if custometi is assigned to the route.

The column generation subproblem above can be seen asamdasif the well-knowielementary shortest
path problem with resource congtraints (ESPPRC), which is well-studied and arises as a subprolvienany
different routing applications. To cast the above submabhs an ESPPRC, we consider a network with
[I| + 2 nodes, one node for each customer, one for the fagity a source node and a copy of the facility
as a sink node. We assign each customer node a demand edsal@mand in the original problem and let
the cost of each ar@,l) in the network equal the coefficient ®&f in (33). A shortest path from source to
sink visiting a customer at most once (caldmentary) and satisfying the constraint that the total demand
of customers included in the path does not exceed the vetaglacity then corresponds to a vehicle route.
The total cost of the path plus the fixed cest; is the reduced cost of the associated column.

To solve the ESPPRC, we use Feillet et al (2004)’s labehggttigorithm with a single resource (the vehicle
capacity). In the algorithm, each path from source to si@l i not dominated by another with respect to
vehicle capacity, cost, and the set of nodes that can stilidited is explored. More details on the variants
of this approach that were used in the computational exgatsnare given in Section 3.2 below.

When the pricing problem cannot identify any more columnthwiegative reduced cost, then the current
solution to the LP relaxation of the master problem is opkiniathis optimal LP solution is not integral,
then we are forced to branch. Devising good branching rglesmiimportant step in developing a branch-
and-price algorithm. Since the LP relaxations of the newesagenerated after branching are also solved
using column generation, the branching constraints mugtdmporated into the pricing problem and the
columns to be generated must satisfy branching constfaintse node. Therefore, the specific branching
rules employed may affect the structure of the pricing pobl causing it to become more difficult to
solve. Here, we implement the same four branching rules we fes our work on the LRSP: branching on
fractional variable$ andyv, forcing/forbidding the assignment of a specific custorner $pecific facility, and
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forcing/forbidding flow on a single arc (originally used ireSrochers and Soumis (1989)). All branching
rules can easily be incorporated into the pricing problerthauit changing the structure. Details on the
effect of these rules on the pricing problem and the implaat@&m of them can be found in Akca et al
(2008).

3.2 Solving the Column Generation Subproblem

The ESPPRC is an NP-hard optimization problem, but smathintes may generally be solved effectively
in practice using dynamic programming-based labelingrélyos. In general, the number of labels that
must be generated and evaluated in the label setting digoriicreases as either the number of customers
or the vehicle capacity increases. To enhance efficiencyherefore augment the basic scheme with some
heuristic versions of the algorithm, since it is not necgsgafind the column with the most negative reduced
cost in every iteration. We refer to the exact pricing althon (that is guaranteed to produce a column with
the smallest reduced cost) as ESPPRC. The following arestiewrersions of the exact algorithm and are
not guaranteed to produce a column with negative reducadwt@n one exists.

ESPPRC-LL(n). The ESPPRC algorithm keeps all non-dominated labels atrmadf. Depending on the
size of the instance, the number of labels kept can becomelage. In this heuristic version proposed
by Dumitrescu (2002), we set a limiton the number of unprocessed labels stored at each nodeclit ea
iteration, labels are sorted based on reduced cost and athengnprocessed labels, thewvith smallest
reduced cost are kept and the rest are permanently deletedefére, the ESPPRC-LL(n) algorithm tends
to terminate much more quickly than the ESPPRC for smallesa@fn.

ESPPRC-CS(n). The ESPPRC algorithm is efficient for instances with smathbars of customers. In
addition, the total number of customers in a route is rdstlidy the vehicle capacity. To be able to take
advantage of this, we choose a subset of custo@ergith sizen based on the cost of arcs in the network
(coefficients of link variables in (33)). Since the objeetiof the pricing problem is to find a route with
smallest reduced cost, we determineteistomers in the subset by constructing a minimum spannéeg t
over the customer locations. We stop the spanning treeitdgowhen we hava customers in the tree. The
first customer in the subset (and the tree) is chosen basdw@ost of the links from source to customers.
Then to find valid vehicle routes, we run ESPPRC that inclutdg customers irCs.

2-Cyc-SPPRC-PE(n).The shortest path problem with resource constraints (SBPRRCrelaxation of the
ESPPRC in which the path may visit some customers more theg drhe SPPRC is solvable in pseudo-
polynomial time, but use of this further relaxation of théuron generation subproblem results in reduced
bounds. Eliminating solutions containing cycles of lenttlo strengthens this relaxation of the pricing
problem and improves the bound (for details of the algorjtee® Irnich and Desaulniers (2005)). We refer
to this pricing algorithm as 2-Cyc-SPPRC. In addition, we abso generate paths that are elementary with
respect to a given subset of customers. We call the resdtgagithm 2-Cyc-SPPRC-PE(n), whanés the
size of the customer set to be considered. At each iterafidgheopricing problem, for each facility, the
algorithm consists of the following steps:

1. Solve the 2-Cyc-SPPRC.

2. Consider the column with minimum cost and choose at mmo@tstomers that are visited more than
once. LetCg; be the set of these customers. If the set is empty, stop (thdgalready elementary).

3. Solve 2-Cyc-SPPRC-PE(m) with $&t; from step 2.
4. Pick at mostn customers that are visited more than once.detbe the set of these customers. Let

Cez = Cg1UCg2 andmg = |Cggl. If the set is empty, l1e6€e3 = Cg1 and stop.

10



5. Solve 2-Cyc-SPPRC-Pig§) with setCgs.

In our experiments, we generally had the same set of custdaglin every step of the column generation.
Thus, we decided to determine $&t3 for each facility at the first iteration of column generatiaineach
node, and we use the same set for the rest of the iteratiohe abtle.

For computational testing, we implemented four variantshef branch-and-price algorithm based on the
above pricing schemes.

e Heuristic Branch-and-Price (HBP): The purpose of this algorithm is to provide a good uiggmind.
At each node of the tree, we use ESPPRC-CS(n) and ESPPRC}Mi{imsmall values oh andm
(nis chosen to be 12 to 15 depending on the average demand amdhicke capacity, whilan is
chosen to be 5 or 10). In addition, we also used combinatibBSBPRC-CS(n) and ESPPRC-LL(m)
for larger values of. In the algorithm, we use an iteration limit for the numbeipdting problems
solved at any node of the tree. If the number of iterationgeds the limit, we branch.

e Elementary Exact Branch-and-Price (EEBP): The purpose of this algorithm is to prove the optimal
ity of the solution or provide an integrality gap. At each aaaf the tree, we use ESPPRC-CS(n),
ESPPRC-LL(m) and ESPPRC.

e 2 Sep Elementary Exact Branch-and-Price (EEBP-2S): In this variant, HBP is run first to generate
initial columns and an upper bound. Then, EEBP is initiatetth whe columns and the upper bound
obtained from HBP.

e Non-elementary Exact Branch-and-Price (NEBP): This is similar to elementary exact branch-and-
price algorithm except that the pricing problem solved 8\&-SPPRC-PE(n).

4 Computational Results

In this section, we discuss the performance of our branchpsice algorithm for the LRP on two sets of
instances. The first set contains the LRP instances usedrietBaet al (2007) that are available from
Barreto (2003). We used these instances to test the penfioenaf our HBP and NEBP algorithms. The
second set of instances were random instances we generadstithe performance of our EEBP and EEBP-
2S algorithms. We evaluate the effect of facility capacipstraints and other parameters using this set of
instances. For all of our experiments, we used a Linux-basmi#station with a 1.8 GHz processor and
2GB RAM.

4.1 Instances From the Literature

To the best of our knowledge, there are no benchmark insteen@alable specifically for the LRP. Barreto
et al (2007) used the instances in the literature availainlether types of problems to construct a set of
LRP instances. They report lower bounds found by applyingaadh-and-cut algorithm to the two-index
formulation of the problem (Barreto, 2004) and upper boudodad by applying a sequential heuristic based
on clustering techniques (Barreto et al, 2007). They lid@dhstances, three of which have more than 150
customers, too large for our approach to work efficiently. Pf@oved these three instances plus one more
with 117 customers and fractional demand, since we assugeindemands. The labels of the instances
denote the source of the instance and the number of custamefacilities in the instances (for more details
about the references, see Barreto (2003)).
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We first ran HBP with a time limit of 3 CPU hours, focusing on gwoing quality upper bounds. Table 1
presents the instances we tested and compares the reghlth&upper bounds reported in Barreto et al
(2007). Since neither our HBP nor Barreto et al (2007) carigeoa valid lower bound for the problem, we
used the best lower bounds as found in Barreto (2004) (semaachn in Table 1) to measure the quality of
our upper bound. The “Gap” in Table 1 is the percent gap betileeupper bound and the LB listed in the
second column. HBP is capable of finding better upper bounsisa{ly optimal) for the instances of small
and medium size. In these cases, the computation time ivatgshort. However, for larger instances, the
upper bounds reported by Barreto et al (2007) are generattetb In addition, their heuristic algorithm is
very efficient—they report that in most of the instancesraves the result in less than one second.

Table 1: Performance of Heuristic Branch-and-Price

Instance LB?! Barreto et al (2007) Heuristic Branch-and-Price
UB? Gap UB Gap | CPU(s)
Gaskell67-21x5 424.9 | 435.9 2.59 424.9 0 1.2
Gaskell67-22x5 585.% | 591.5 1.09 585.1 0 41.5
Gaskell67-29x5 512.¥ | 512.1 0 512.1 0 67.7

Gaskell67-32x5 556.5 | 571.7 2.73 562.3 | 1.04 | 10801.8
Gaskell67-32x5-2 | 504.3 | 511.4 1.41 505.8 | 0.3 85.6
Gaskell67-36x5 460.4 | 470.7 2.24 460.4 0 1077.6

C69-50x5 549.4 | 582.7 6.06 565.6 | 2.95 239.4
C69-75x10 744.7 | 886.3 19.01 852.1 | 14.42| 10802.3
C69-100x10 788.6 | 889.4 12.78 929.5 | 17.86| 10836.6
Perl83-12x2 204 204 0 204.0 0 0.2
Perl83-55x15 1074.8 | 1136.2 571 1121.8| 4.37 | 10800.0
Perl83-85x7 1568.1 | 1656.9 5.66 1668.2| 6.38 | 10813.8
Min92-27x5 3062 3062 0 3062.0f O 4.2
Min92-134x8 - 6238 - 6421.6| - 10850.9
Dsk95-88x8 356.4 | 384.9 8 390.6 | 9.58 | 10808.9

! Reported by Barreto (2004), found using branch-and-cut
2 Reported by Barreto et al (2007), found using a heuristic
* Branch-and-cut used in Barreto (2004) proves the optignalit

Next, we used the EEBP-2S algorithm to test the ability tadpo@ lower bounds and prove optimality.
With this algorithm, we could not solve all of the instanceishim the total time limit of 5 CPU hours (3
CPU hours for HBP and 2 CPU hours for EEBP). The lower boundaddiy our algorithm, along with
the best integer solution found, optimality gap, and cormapon time are reported in Table 2. Note that
because Gaskell67-21x5 and Perl83-12x2 are very easyie, so¢ used the EEBP algorithm instead of the
EEBP-2S algorithm in these cases.

Finally, for instances that we could not provide lower basibgt using the EEBP or the EEBP-2S algorithm,
we used the NEBP algorithm with a time limit of 5 CPU hours oaleated node limit of 50 nodes. The
results are reported in Table 3. For the instances C69-T)MiN92-134x8 and Dsk95-88x8, we could not
solve even the root node within the time limit.

In general, the lower bounds found by using branch-andRartréto, 2004) are better than our lower bounds.
However, in some cases, their computation times are mughrléinan our time limits. The HBP algorithm
can provide good upper bounds, but for the medium and largepsoblems, we need to improve our lower
bounding, perhaps by adding dynamic cut generation to gari#thm in order to close the optimality gap.
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Table 2: Performance of 2 Step Elementary Exact BranchPaiod

Instance LB OPT/BestlP| Gap | CPU(s)| Total CPU(s)
Gaskell67-21x5 | 424.9 424.9 0 3.0 3.0
Gaskell67-22x5 | 585.1 585.1 0 2999.9 3041.4
Gaskell67-32x5 | 544.1 562.3 3.24%| 8453.1 19254.9
Perlg3-12x2 204.0 204.0 0 0.2 0.2
Min92-27x5 3062.0 3062.0 0 833.6 837.8

1 EEBP algorithm is used

Table 3: Performance of Non-elementary Exact Branch-aiwkP

Instance LB OPT/BestIP| Gap CPU(s)
Gaskell67-29x5 441.2 512.1 13.85%| 14411.5
Gaskell67-32x5-2 | 494.4 505.8 2.26% | 5654.8
Gaskell67-36x5 455.5 460.4 1.05% | 100.1

C69-50x5 526.2 565.6 6.96% | 2634.1
C69-75x10 693.5 852.1 18.62%| 8785.8
Perl83-55x15 852.3 1121.8 24.02%| 3195
Perl83-85x7 1272.4 1668.2 23.73%| 1379.6

4.2 Random Instances

On random instances, Laporte et al (1986) provided computdtresults for an exact method (branch-and-
cut algorithm) for the capacitated LRP. Belenguer et al @@0so developed a branch-and-cut algorithm
for the capacitated LRP, but neither the details of the mtsta nor the computational results are publicly
available. Therefore, we evaluated our algorithm by gdimgraandom instances as in Laporte et al (1986),
where they generated instances with 10, 15 and 20 customeér4 @ 8 facilities. In addition to these, we
generated instances with 30 and 40 customers and 5 feciidgitest the performance of the algorithm on
larger instances. The coordinates of the customers anaciigiés and the demand of each customer were
generated using a Uniform distribution on [0,100]. We thalt@lated the Euclidean distance between each
pair of customers and between customers and facilities @mbled the calculated distance to two decimal
places. Demand for each customer was rounded to the neategi. Vehicle capacit@¥ was calculated
as

CV=<1—a>ma>qe|{Di}+aZDi, (40)

le

wherea was a parameter and the values were chosen i0s€ 25, 0.5, 0.75, 1

4.2.1 Small and Medium Random Instances

Laporte et al (1986) solved location and routing problemit wapacitated vehicles, but they did not have
a facility capacity. Instead, they had a lower and upper bddon the total number of facilities that could
be open in a solution. In this experiment, in order to proddeetter comparison of our algorithm with that
of Laporte et al (1986), we removed constraint (13) from tReLRP. We seNF, the minimum number of
open facilities in (27), to 1, and we added constrgint;t; < MF, whereMF be the maximum number of
facilities that can be open in any solution. Facility andigkhfixed costs were set to be zero. As in Laporte
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et al (1986), three groups of instances with different numlod customers and facilities were available.
For each group, five different vehicle capacities were dated by changingr. Some details about the
instances are listed in Table 4.

Table 4: Details for the instances

# of Customerg # of Facilities| NF | MF | # of instanceg a
10 4 1] 3 3 10, 0.25, 0.5, 0.75, L
15 6 1| 4 3 {0, 0.25, 0.5, 0.75, 1
20 8 1 5 3 {0, 0.25,0.5,0.75,1

Tables 5, 6 and 7 present the results achieved with our bramdtprice algorithm. Instances listed in these
tables are labeled with the number of customers, facilared with letters{a,b,c,d,é based on ther value
used. For example, the instanddx4-a-1 has 10 customers, 4 facilities amé= 0. The integer from 1 to 3
after the letters represents the id of the instances witldrsame group. The tables present the name of each
instance, the LP solution value at the root node, the optsokition value, the number of evaluated nodes,
and the CPU time in seconds. In these instances, we first eaBEBP algorithm for 5 minutes and if the
algorithm did not terminate within 5 minutes, we switchedhte EEBP-2S algorithm. Table 5 presents the
results for instances with 10 customers, Table 6 presestarioes with 15 customers, and Table 7 presents
instances with 20 customers. We marked the instances with sign if the EEBP-2S algorithm was used.
For problems with at least 20 customers, we needed to useEB®£S algorithm. The branch-and-price
algorithm was very successful in finding the optimal solutguickly. In general, our computation times
were much smaller than those reported by Laporte et al (1886)t is difficult to make a fair comparison,
given advances in computing technology. In most of the it#ta, the LP solution found by our algorithm
at the root node was the optimal.

The instances become more difficult when the vehicle capagiteasesd increases) because the number
of labels generated in the pricing problem depends diramtlghe vehicle capacity. Laporte et al (1986)
observed the reverse effect with regard to their brancheamdlgorithm. The number of cuts generated
increases and the problem gets more difficult when the v@bmgpacity is small. This is most likely due to

the fact that the problem structure becomes more like th#tiefraveling salesman problem (TSP) as the
capacity is increased and the TSP is much easier to solvednglrand cut than as a capacitated routing
problem.

To strictly differentiate the instances from those with agé depot, we experimented with changing the
value of parameteNF, the minimum number of open facilities, to 2 and ran the r1&mé r20x8 b and ¢
instances. There were no significant changes in the congmetimes or the number of evaluated nodes.
We then added facility capacities to the same set of problermdgan our algorithm again. Table 8 presents
the computational results, as well as the facility capacityes used for the facilities. The capacity value
was chosen in order to require at least two open facilitiehe domputational results do not show any
significant difference from those of the uncapacitatedaimsts. For larger instances, we expect that the
LP solution times will tend to increase if the master probleas facility capacity constraints. Adding a
facility capacity to a two-index vehicle flow formulationgqeires an additional set of constraints (Belenguer
et al, 2006), the size of which can be large. In a branch-am@igorithm, it may require additional time to
generate this set of constraints.

Laporte et al (1986) report that adding facility fixed cogstdhe problem makes the problem easier. We
added facility fixed costs to r15x6 and r20x8 b and c instan@é® performance of the branch-and-price
algorithm was not affected in instances with 15 customemvéver, for some of the 20 customer instances,
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Table 5: Performance of Elementary Exact Branch-and-RFoic&0 customer instances

Instance LP OPT. | # of Nodes| CPU(s)
riOx4-a-1 | 472.11| 472.11 1 0.00
riOx4-a-2 | 421.44| 421.44 1 0.00
riOx4-a-3 | 548.28| 548.28 1 0.02
riox4-b-1 | 313.01| 313.18 3 0.04
riox4-b-2 | 297.57| 305.27 19 0.08
ri0x4-b-3 | 352.66| 354.92 3 0.03
riox4-c-1 | 257.25| 257.25 1 0.06
ri0x4-c-2 | 259.76| 259.76 1 0.04
riox4-c-3 | 296.82| 296.82 1 0.05
riox4-d-1 | 243.42| 257.25 21 0.52
riox4-d-2 | 250.04| 250.04 1 0.04
riox4-d-3 | 296.82| 296.82 1 0.04
riOx4-e-1 | 226.46| 226.46 1 0.32
riOx4-e-2 | 225.82| 225.82 1 0.17
riOx4-e-3 | 272.85| 272.85 1 0.31

the computational times exceeded 2 CPU hours (for the sesde Akca (2008)).

4.2.2 Large Random Instances

In this section, we present the results of applying our dlgar to larger capacitated random instances. We
generated 6 instances with 30 customers and 6 instanceglitbstomers. Each instance had 5 facilities
with capacity constraints. The facilities had a fixed cost@. The characteristics of each instance are listed
in Table 9. The first column includes the name of each instdabeled based on the number of customers
and facilities and the vehicle capacity. For instances augr‘a” the vehicle capacity value (listed in the
fourth column) was chosen to be 7 times the average demanfbragrbup “b”, the vehicle capacity value
was 5.5 times the average demand. Facility capacity (listedde second column) was chosen based on
total demand such that at least two facilities (the minimwmber of facilities is listed in the third column)
should be open in an integer solution.

We used the EEBP-2S algorithm in which the HBP and EEBP dlgus were both used with a time limit
of 3 CPU hours. Table 10 presents the results of both steps.alfforithm was very successful in finding
optimal or near-optimal solutions for these larger instsncSome details, such as the number of open
facilities, the number of vehicles used at each open fgcilie average number of customers in each route
(vehicle), and the number of customers in the longest rautepresented in Table 9.

5 Conclusion

We have presented a set-partitioning-based formulatiothi® capacitated location and routing problem,
which to our knowledge is the first of its kind for this classppbblem. We have demonstrated that it can
be obtained by applying Dantzig-Wolfe decomposition to gheph-based formulation employed in most
previously reported research. We have described a brarmdtipréce algorithm and reported on our experi-
ence using it to solve both problems from the literature amdiomly generated instances. Our experiments
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Table 6: Performance of Elementary Exact Branch-and-RFoic&5 customer instances

Instance LP OPT. | # of Nodes| CPU(s)
ri5x6-a-1 435.2 435.2 1 0.01
ri5x6-a-2 663.32 | 663.32 1 0.01
r15x6-a-3 411.45 | 411.45 1 0.01
r15x6-b-1 313.46 | 313.46 1 0.31
ri5x6-b-2 414.65 | 414.65 1 0.21
r15x6-b-3 285.01 | 285.01 1 0.12
ri5x6-c-1 313.46 | 313.46 1 3.1
r15x6-c-2 392.75 | 392.75 1 1.98
ri5x6-c-3 279.82 | 279.82 1 5.37
ri5x6-d-1 313.36 | 313.46 3 4.92
ri5x6-d-2 378.76 | 378.76 1 9.41
r15x6-d-3 279.82 | 279.82 1 14.13
ri5x6-e-1 305.86 | 312.18 5 9.82
ri5x6-e-2 | 374.86 | 374.86 1 16.62"
r15x6-e-3 274.22 | 274.22 1 300.01

* The EEBP-2S algorithm was used, total time is reported.

indicate that the algorithm is very effective at producingalify solutions and can handle larger instances
than previously suggested approaches, which have beemaniyirbased on two-index formulations. The
approach, however, does not seem as effective at produaaigyglower bounds. This is likely due to the
absence of dynamic cut generation. The next step in thisurelsevill be to incorporate the generation of
known classes of valid inequalities into our algorithm. s'khould produce an algorithm exhibiting the
advantages of both the branch-and-price and branch-arappuoaches.
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Table 9: Characteristics of the Instances and the OptinmatiSos

Instance OPT/BestIP Solution Info

Name Fac. | NF [ LV | #of | #0of | Avg. #0f | # of Cust.
Cap. Fac.| Vec. | Cust/route| longest route

cr30x5a-1 | 1000 2 | 350| 2 3,2 6 8
cr30x5a-2 | 1000 2 | 350| 2 3,2 6 7
cr30x5a-3 | 1000 2 | 350| 2 3,3 5 7
cr30x5b-1 | 1000| 2 | 275| 2 3,2 6 8
cr30x5b-2 | 1000| 2 | 275 2 | 4,3 4.29 7
cr30x5b-3 | 1000| 2 | 275| 2 3.4 4.29 6
crd0x5a-1 | 1750 2 | 340| 2 3,3 6.67 8
cr40xb5a-2 | 1750 2 | 390 | 2 3.4 5.71 8
crd0x5a-3 | 1750 2 | 370| 2 3,3 6.67 7
cr40x5b-1 | 1750 2 | 275| 2 3,5 5 7
cr40x5b-2 | 1750 2 | 275| 2 3,5 5 7
cr40x5b-3 | 1750 2 | 325| 2 53 5 7

Table 10: Performance of the EEBP-2S for Instances up to 4@o8iers with Capacitated Facilities and
Facility Fixed Cost

Instance HBP EEBP Total
IP CPU(s) LP IP Gap | #0of N. | CPU(s) | CPU(s)
cr30x5a-1 819.53 435 810.29 | 8195 | O 33 993.3 1036.8
cr30x5a-2 823.49 | 7202.3| 790.49 | 823.49| 2.55| 500 | 10806.5 | 18008.8
cr30x5a-3 702.29 44.2 687.72 | 702.19| O 51 917.9 962.1
cr30x5b-1 880.02 | 164.3 | 865.47 | 880.01| O 251 6420.6 6585
cr30x5b-2 825.32 8.3 81595 | 8253 | O 7 33.2 41.5
cr30x5b-3 884.62 13.4 881.33 | 884.55| 0 19 41.7 55.1
cr40x5a-1 928.11 | 631.8 | 911.39 | 928.11| 1.49 11 10882.8 | 11514.6
cr40x5a-2 888.37 | 378.4 | 871.66 | 888.37| 0.93 13 11052.9 | 11431.3
cr40x5a-3 947.24 173 939.54 | 947.24| 0.18 28 10862 11035
cr40x5b-1 | 1052.07 | 257.3 | 1043.62| 1052 0 627 8084.6 8342
cr40x5b-2 981.52 60.1 976.88 | 981.27| O 47 862.5 922.7
cr40x5b-3 964.32 62.6 959.05 | 964.23| O 45 963 1025.6
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