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Abstract

We investigate the problem of simultaneously determining the location of facilities and the design
of vehicle routes to serve customer demands under vehicle and facility capacity restrictions. We present
a set-partitioning-based formulation of the problem and study the relationship between this formulation
and the graph-based formulations that have been used in previous studies of this problem. We describe a
branch-and-price algorithm based on the set-partitioningformulation and discuss computational experi-
ence with both exact and heuristic variants of this algorithm.

1 Introduction

The design of a distribution system begins with the questions of where to locate the facilities and how to allo-
cate customers to the selected facilities. These questionscan be answered using location-allocation models,
which are based on the assumption that customers are served individually on out-and-back routes. How-
ever, when customers have demands that are less-than-truckload and thus can receive service from routes
making multiple stops, the assumption of individual routeswill not accurately capture the transportation
cost. Therefore, the integration of location-allocation and routing decisions may yield more accurate and
cost-effective solutions.

In this paper, we investigate the so-calledlocation and routing problem (LRP). Given a set of candidate
facility locations and a set of customer locations, the objective of the LRP is to determine the number and
location of facilities and construct a set of vehicle routesfrom facilities to customers in such a way as to
minimize total system cost. The system cost may include boththe fixed and operating costs of both facilities
and vehicles. In this study, we consider an LRP with capacityconstraints on both the facilities and the
vehicles.

Vehicle routing models in general have been the subject of a wide range of academic papers, but the number
of these devoted to combined location and routing models is much smaller. Laporte (1988) surveyed the
work on deterministic LRPs and described different formulations of the problem, solution methods used,
and the computational results published up to 1988. Min et al(1998) classified both deterministic and
stochastic models in the LRP literature with respect to problem characteristics and solution methods.
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Solution approaches for the LRP can be divided broadly into heuristics and exact methods, with much of the
literature devoted to heuristic approaches. Most heuristic algorithms divide the problem into subproblems
and handle these subproblems sequentially or iteratively.Examples of heuristics developed for the LRP can
be found in Perl and Daskin (1985), Hansen et al (1994) and Barreto et al (2007).

Many fewer papers have been devoted to the study of exact algorithms for the LRP and most of these have
been based on the so-called two-index vehicle flow formulation. Laporte and Nobert (1981) solved a single
depot model with a constraint relaxation method and a branch-and-bound algorithm. They reported solving
problems with 50 customer locations. Laporte et al (1983) solved a multi-depot model using a constraint
relaxation method and Gomory cutting planes to satisfy integrality. They were able to solve problems
with at most 40 customer sites. Laporte et al (1986) applied abranch-and-cut algorithm to a multi-depot
LRP model with vehicle capacity constraints. They used subtour elimination constraints and chain barring
constraints that guarantee that each route starts and ends at the same facility. They reported computational
results for problems with 20 customer locations and 8 depots. Finally, Belenguer et al (2006) provided a
two-index formulation of the LRP with capacitated facilities and capacitated vehicles and presented a set
of valid inequalities for the problem. They developed two branch-and-cut algorithms based on different
formulations of the problem. They reported that they could solve instances with up to 32 customers to
optimality in less than 70 CPU seconds and could provide goodlower bounds for the rest of the instances,
which had up to 134 customers.

Berger (1997) developed a set-partitioning-based model for a special case of the LRP with route length
constraints and uncapacitated vehicles and facilities. Berger et al (2007) extended that work to develop
an exact branch-and-price algorithm in which they solved the pricing problem as an elementary shortest
path problem with one resource constraint. They reported computational results for problems with 100
customers and various distance constraints. Akca et al (2008) developed an exact solution algorithm using
branch-and-price methodology for the integrated locationrouting and scheduling problem (LRSP), which
is a generalization of the LRP. In the LRSP, the assumption that each vehicle covers exactly one route is
removed and the decision of assigning routes to vehicles subject to the scheduling constraints is considered
in conjunction with the location and routing decisions. They considered instances with capacitated facilities
and time- and capacity-limited vehicles. They provided solutions for instances with up to 40 customers.

In this study, we utilize a variant of the model presented by Akca et al (2008) to solve the LRP under ca-
pacity restrictions and modify their exact algorithm for the LRSP to solve the LRP. We develop a number of
variants and heuristic extensions of the basic algorithm and report on our computational experience solving
both randomly generated instances and instances from the literature. The remainder of the paper is organized
as follows. Section 2 presents a formal description of the problem, provides two formulations, and inves-
tigates the relationship between the formulations. Section 3 describes details of the heuristic and the exact
algorithms for the set-partitioning formulation. Section4 provides some computational results evaluating
the performance of the algorithms. Section 5 concludes the paper.

2 Problem Definition and Formulations

The objective of the LRP is to select a subset of facilities and construct an associated set of vehicle routes
serving customers at minimum total cost, where the cost includes the fixed and operating costs of both
facilities and vehicles. The constraints of the problem areas follows: (i) each customer must be serviced
by exactly one vehicle, (ii) each vehicle must be assigned toexactly one facility at which it must start
and end its route, (iii) the total demand of the customers assigned to a route must not exceed the vehicle
capacity, and (iv) the total demand of the customers assigned to a facility must not exceed the capacity
of the facility. In the literature, most of the exact methodsdeveloped for the described LRP or its special
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cases are based on the two-index vehicle flow formulation of the problem. To the best of our knowledge,
an exact solution algorithm based on a set-partitioning formulation has not been applied to the case of the
LRP with capacity constraints. The theoretical relationship between the two-index formulation and the set-
partitioning formulation can be understood by consideringa closely related three-index formulation that we
present below. We show that applying Dantzig-Wolfe decomposition to the three-index formulation yields
the set-partitioning formulation. This is turn shows that the bounds yielded by the LP relaxation of the
set-partitioning model must be at least as tight as those of the three-index formulation.

2.1 Vehicle Flow Formulation

We let I denote the set of customers,J denote the set of candidate facilities, andV = I ∪ J. To bypass the
decision of assigning vehicles to facilities, we assume that each facility has its own set of vehicles and that
a vehicle located at facilityj can only visit customer locations and the facilityj during its trip. LetH j be
the set of vehicles located at facilityj, ∀ j ∈ J andH be the set of all vehicles,H =

⋃

j∈J H j. We define the
following parameters and decision variables:

Parameters:

Di = demand of customeri, ∀i ∈ I,

CF
j = capacity of facility j, ∀ j ∈ J,

CV = capacity of a vehicle,

Fj = fixed cost of opening facilityj, ∀ j ∈ J,

Oik = operating cost of traveling arc(i,k) ∀i,k ∈V .

Decision Variables:

xikh =

{

1 if vehicleh travels directly from locationi to locationk, ∀i ∈V,k ∈V,h ∈ H
0 otherwise,

yih =

{

1 if vehicleh visits customeri, ∀i ∈ I,h ∈ H
0 otherwise,

t j =

{

1 if facility j is selected to be open,∀ j ∈ J
0 otherwise.
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A vehicle flow formulation of the LRP is as follows:

(VF-LRP) Minimize ∑
j∈J

Fjt j + ∑
h∈H

∑
i∈V

∑
k∈V

Oikxikh (1)

s.t. ∑
h∈H

∑
k∈V

xikh = 1 ∀i ∈ I, (2)

∑
k∈V

xikh − ∑
k∈V

xkih = 0 ∀i ∈V,h ∈ H, (3)

∑
k∈V

xkih − yih = 0 ∀i ∈ I,h ∈ H, (4)

yih − ∑
k∈S

∑
l∈V\S

xklh ≤ 0 ∀S ⊆ I, i ∈ S,h ∈ H, (5)

∑
i∈I

Diyih −CV ≤ 0 ∀h ∈ H, (6)

∑
h∈H j

∑
i∈I

Diyih −CF
j t j ≤ 0 ∀ j ∈ J, (7)

xikh ∈ {0,1} ∀i,k ∈V,h ∈ H, (8)

yih ∈ {0,1} ∀i ∈ I,h ∈ H, (9)

t j ∈ {0,1} ∀ j ∈ J. (10)

In (VF-LRP), the objective function (1) seeks to minimize the total cost, which includes the fixed cost of
the selected facilities and the operating cost of the vehicles. Vehicle fixed costs can easily be incorporated
into the model by increasing the cost of traveling from the facility to each customer location by a fixed
amount. Constraints (2) specify that exactly one vehicle must service customeri. Constraints (3) require
that each vehicle should enter and leave a location the same number of times. Constraints (4) determine
the assignment of customers to vehicles. Constraints (5) eliminate subtours, i.e. routes that do not include
a facility. Constraints (6) are vehicle capacity constraints. Constraints (7) ensure that the capacity of a
facility is not exceeded by demand flows to customer locations. For notational convenience, we assume that
variables associated with travel between different facilities or travel between a customer and a facility using
a truck not associated with that facility are fixed to zero. Constraints (8), (9), and (10) are the set of binary
restrictions on the variables.

2.2 Set-Partitioning Formulation

Here we utilize a modified version of the set-partitioning formulation for the LRSP presented by Akca et al
(2008). We define the setP to be a set indexing all vehicle routes feasible with respectto vehicle capacity
and originating from and returning to the same facility. We let Pj ⊆ P index routes associated with vehicles
assigned to facilityj for j ∈ J. In addition to the parameters and sets defined for (VF-LRP),we use the
following parameters and decision variables:

Parameters:

Op = operating cost of routep ∈ P,

aip =

{

1 if customeri ∈ I is assigned to routep ∈ P, and
0 otherwise.
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Decision Variables:

zp =

{

1 if route p ∈ P is selected, and
0 otherwise,

t j =

{

1 if facility j ∈ J is selected to be open, and
0 otherwise,

The formulation is as follows:

(SPP)Minimize ∑
j∈J

Fjt j + ∑
p∈P

Opzp (11)

subject to ∑
p∈P

aipzp = 1 ∀i ∈ I, (12)

∑
p∈Pj

∑
i∈I

Diaipzp −CF
j t j ≤ 0 ∀ j ∈ J, (13)

zp ∈ {0,1} ∀p ∈ P, (14)

t j ∈ {0,1} ∀ j ∈ J. (15)

The objective function (11) seeks to minimize the total cost, which includes the fixed cost of the selected
facilities and the operating cost of the vehicles. Constraints (12) guarantee that each customer location
is served by exactly one route. Constraints (13) ensure thatthe total demand of the selected routes for a
facility does not exceed the facility capacity. Constraints (14) and (15) are standard binary restrictions on
the variables.

2.3 Comparing the Formulations

Observe that the three-index formulation (VF-LRP) exhibits a high degree of symmetry under the assump-
tion that the vehicle fleet assigned to each facility is homogeneous. This is due to the fact that the assignment
of routes to a specific vehicle is essentially arbitrary, i.e., the cost of a given solution to (VF-LRP) is invariant
under permutation of the indices assigned to specific vehicles. This symmetry can be dealt with either (i) by
using a two-index formulation, which requires the additionof an exponential number of valid inequalities
to the formulation or (ii) by applying Dantzig-Wolfe decomposition (DWD). Laporte et al (1986) and Be-
lenguer et al (2006) have each developed branch-and-cut algorithms using the former approach. Here, we
explore the latter approach.

As is standard in DWD, we decompose the constraints of (VF-LRP) into two subsystems. Themaster
problem is defined by constraints (2) and (7), while thesubproblem is defined by constraints (3), (4), (5), (6),
(8), (9), and (10). All constraints of the subproblem are indexed by the setJ and it is therefore immediate that
the subproblem decomposes by facility. The objective of each of the resulting single-facility subproblems
is to generate least-cost routes for all vehicles assigned to the facility, though without the constraint that
customers appear on exactly one route. For each candidate facility j ∈ J, the set of integer solutions of the
decomposed subproblem can be represented by the set of vectors

{(x,y, t) ∈ Z
(|V |×|V |×|H j |)×(|V |×|H j |)×{0,1} | (x,y, t) satisfies(3) j,(4) j,(5) j,

(6) j,(8) j,(9) j,(10) j},

which is described only by those constraints associated with facility j and specifies values only for those
variables associated with vehicles assigned to facilityj. Hence, the indexj for the constraints represents
the set of constraints associated with facilityj. Let E be a set indexing the members of all of the above
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sets, withE j the indices for vectors associated with facilityj only, so thatE = ∪ j∈JE j. For a facility j and
an indexq ∈ E j, the corresponding member(xq,yq, tq) of the above set is then a vector with the following
interpretation: for each pair(i,k) ∈ |V |× |V | andh ∈ H j, the parameter xqikh = 1 if vehicle h travels on arc
(i,k) in solutionq and is 0 otherwise; for eachi ∈ I andh ∈ H j, yq

ih = 1 if customeri is visited by vehicleh in
solutionq and is 0 otherwise; and tq = 1 if facility j is open in solutionq. Note that the variablet indicating
whether the facility is open does not appear in any of the linear constraints of the subproblem and can hence
be set to either 0 or 1 without affecting feasibility.

Because the subproblem decomposes as described above, solutions to the original problem can be seen as
vectors obtained by “recomposing” convex combinations of the members ofE j for each j ∈ J. In other
words, any solution(x,y, t) to the LP relaxation of the original problem can be written as:

xikh = ∑
q∈E

xq
ikhθq ∀i,k ∈V,h ∈ H, (16)

yih = ∑
q∈E

yq
ihθq ∀i ∈ I,h ∈ H, (17)

t j = ∑
q∈E j

tqθq ∀ j ∈ J, (18)

∑
q∈E j

θq = 1 ∀ j ∈ J, (19)

θq ≥ 0 ∀q ∈ E. (20)

Using (16) - (20), we can then formulate the LP relaxation of the master problem as:

(MDW) Minimize ∑
q∈E

C̃qθq

s.t. ∑
q∈E

biqθq = 1 ∀i ∈ I, (21)

∑
q∈E j

∑
i∈I

biqDiθq −CF
j ∑

q∈E j

θqtq ≤ 0 ∀ j ∈ J, (22)

∑
q∈E j

θq = 1 ∀ j ∈ J, (23)

θq ≥ 0 ∀q ∈ E, (24)

where

biq = ∑
h∈H

∑
k∈I

xq
ikh = ∑

h∈H

yq
ih, ∀i ∈ I,q ∈ E,

C̃q = Fqtq + ∑
i∈V

∑
k∈V

∑
h∈H

Oikx
q
ikh, ∀q ∈ E,

whereFq = Fj whenq ∈ E j for j ∈ J. Here,biq can be interpreted as the number of times customeri is
visited in solutionq, andC̃q is the cost of solutionq (including facility fixed cost) for allq ∈ E.

The similar forms of (SPP) and (MDW) should now be evident, but to rigorously show their equivalence, we
need to dissect the relationship between setE j andPj for a given facility j ∈ J. A member of setE j consists
of a collection of routes assigned to vehicles located at facility j. A member of setPj, on the other hand, is
a single route that can be assigned to any vehicle at facilityj. Therefore, a member ofE j can be constructed
by associating at most|H j| members of setPj and some number of empty routes (zero vectors representing
vehicles that are not used) to the vehicles assigned to facility j.
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Now, by utilizing the integrality requirements from the original problem and carefully eliminating the indices
of symmetric solutions fromE, we get a much smaller set that we will show is in one-to-one correspondence
with collections of members ofPj of cardinality at most|H j|. We proceed as follows:

1. First, as the vehicles associated with a given facilityj are identical, a set of routes fromPj can
be assigned to vehicles in any arbitrary order and each routecan also visit the customers in either
clockwise or counterclockwise order. Hence, we obtain different members ofE j that are all equivalent
from the standpoint of both feasibility and cost. To eliminate superfluous equivalent members ofE j,
we divide the members of setE j into equivalence classes, where two members ofE j are considered
equivalent if the set of customers assigned to the facility and the partition of that set of customers
defined by the routes are identical. It is clear that any two members ofE j that are equivalent by this
definition will have exactly the same impact on both cost and feasibility. We then form equivalence
classes from which all but one member may safely be eliminated from E j.

2. Let θ̂ represent a solution to (MDW) for which the corresponding solution in the original space ob-
tained by applying equations (16)-(18) is feasible for the original problem (VF-LRP). From (16) and
(8), along with the fact that xqikh is binary forq ∈ E, we get that xqikh = 1 wheneverθ̂q > 0 in the solu-
tion to (MDW). In other words, all membersq of E j with θ̂q > 0 must correspond to routes visiting
exactly the same customers in exactly the same order. Hence,we must in fact havêθq = 1 for exactly
oneq ∈ E j for eachj ∈ J and soθq ∈ {0,1} for all q ∈ E.

3. It then follows easily that indexq can be removed fromE j if there exist vehiclesh1,h2 ∈ H j such that
xq

ikh1
= xq

ikh2
∀i,k ∈V , where xqikh1

> 0 for somei,k ∈ I (i.e., this is not an empty route). In this case,
vehiclesh1 and h2 define exactly the same set of routes, which means thatbiq > 1 for somei ∈ I.
Because of constraint (21), such a solution must haveθ̂q = 0.

4. Finally, from (18) and (22), we can conclude that ifθ̂q = 1 and we have xqikh > 0 for somei,k ∈ V
andh ∈ H, then tq must be 1. Hence, we can eliminate any solutions for which tq = 0 that does not
correspond to a zero solution (i.e., closed facility). All of this allows us to rewrite (22) in the form

∑
q∈E j

∑
i∈I

biqDiθq −CF
j ∑

q∈E j

θq ≤ 0 ∀ j ∈ J. (25)

If we restrict setE j according to the rules described above and call the restricted setĒ j for each j ∈ J, then
we can finally conclude the following.

Proposition 2.1 There is a one-to-one correspondence between subsets of Pj with cardinality less than |H j|
and members of Ē j.

The proof follows easily from the definition of setsPj andĒ j and the restriction rules. By replacing setE j

with Ē j for all j ∈ J in (MDW), as well as replacing (22) with (25) and adding the constraintθq ∈ {0,1}
for all q ∈ E, we obtain a new (equivalent) formulation (MDW’). Then, we finally have the equivalence of
(SPP) and (MDW) as follows

Proposition 2.2 There is a one-to-one correspondence between solutions to (SPP) and solutions to (MDW’)
such that corresponding solutions also have the same objective function value. Thus, (SPP), (MDW’), and
(MDW) are all equivalent.
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3 Solution Algorithm

3.1 Branch-and-Price

Having shown that (SPP) is equivalent to a DWD of (VF-LRP), wenow discuss an exact solution algo-
rithm based on a branch-and-price implementation utilizing the formulation (SPP). First, we strengthen the
original formulation by adding the following additional valid constraints:

∑
p∈Pj

aipzp − t j ≤ 0 ∀i ∈ I,∀ j ∈ J, (26)

∑
j∈J

t j ≥ NF
, (27)

∑
p∈Pj

zp = v j ∀ j ∈ J, (28)

∑
j∈J

v j ≥

⌈

∑i∈I Di

CV

⌉

(29)

v j ≥ t j ∀ j ∈ J, (30)

v j ∈ Z
+ ∀ j ∈ J, (31)

wherev j represents the number of vehicles used at facilityj, ∀ j ∈ J andNF is a lower bound on the number
of facilities that must be opened in any integer solution, calculated as follows:

NF = argmin{l=1,...,|J|}

(

l

∑
t=1

CF
jt ≥ ∑

i∈I

Di

)

s.t.CF
j1 ≥CF

j2 ≥ ... ≥CF
jn .

Constraints (26) force a facility to be open if any customer is assigned to it. Constraint (27) sets a lower
bound on the total number of facilities required in any integer feasible solution. Constraints (26) (from
Berger et al (2007) and Akca et al (2008)) and constraint (27)(from Akca et al (2008)) are shown computa-
tionally to improve the LP relaxation of the model. Constraints (28) are only added to facilitate branching
on the integrality of the number of vehicles at each facilityin the branch-and-price algorithm. Constraint
(29) sets a lower bound for the total number of vehicles in thesolution. Finally, constraints (30) force the
number of vehicles used at a facility to be at least 1 if the facility is open. We refer to formulation (11)–(15)
and (26)–(31) as (SP-LRP) in the rest of the paper.

The formulation (SP-LRP) contains a variable for each possible vehicle route originating from each facil-
ity. Hence, the number of routes will be too large to enumerate even for small instances. To solve the LP
relaxation of models that contain exponentially many columns, column generation algorithms can be used.
By solving a sequence of linear programs and dynamically generating columns eligible to enter the basis,
such an algorithm implicitly considers all columns but generates only those that may improve the objec-
tive function. In order to generate integer solutions, a branch-and-bound approach is used in combination
with the column generation and the overall approach is referred to as branch-and-price. Desrochers et al
(1992), Vance et al (1994), Berger et al (2007), and Akca et al(2008) provide examples of branch-and-price
algorithms from the literature.

Here, we modify the branch-and-price algorithm used in Akcaet al (2008) to solve the LRSP. Therefore,
some parts of the algorithm are described only briefly. For details, we refer the reader to Akca et al (2008).
To initialize the algorithm, we construct arestricted master problem (RMP), that is, an LP relaxation of
(SP-LRP) that contains all facility variables (t j for j ∈ J) and vehicle variables (v j for j ∈ J), but only a
subset of the vehicle route variables (zp for p ∈ P). The branch-and-price algorithm consists of two main

8



components: an algorithm for solving thepricing problem or column generation subproblem, which is used
to construct new columns in each iteration, andbranching rules, which specify how to partition the feasible
region into subsets to which the algorithm is then applied recursively until exhaustion.

At each iteration of the solution process for the LP relaxation of (SP-LRP), the objective of the column
generation subproblem is to find a feasible vehicle route originating from each facilityj ∈ J with minimum
reduced cost with respect to the current dual solution of theRMP. The reduced cost of a given routep ∈ P is

Ĉp = Op − ∑
i∈N

aipπi + ∑
i∈N

aipDiµ j + ∑
i∈N

aipσ ji −ν j, (32)

whereπ, µ , σ andν are the dual variables associated with constraints (12), (13), (26), and (28), respectively,
from the RMP. Hence, the column generation subproblem for facility j ∈ J can be formulated as follows:

Minimize ∑
i∈M

(∑
k∈I

(Oik −πk + Dkµ j + σ jk)xik + Oi jxi j)−ν j (33)

s.t. y j = 1, (34)

∑
k∈M

xik = ∑
k∈M

xki = yi ∀i ∈ I, (35)

yi − ∑
k∈S

∑
l∈V\S

xkl ≤ 0 ∀S ⊆ I, i ∈ S, (36)

∑
i∈I

Diyi −CV ≤ 0, (37)

xik ∈ {0,1} ∀i,k ∈ M, (38)

yi ∈ {0,1} ∀i ∈ M, (39)

whereM = I∪{ j}, xik = 1 if link (i,k) is used in solutions, andyi = 1 if customeri is assigned to the route.

The column generation subproblem above can be seen as an instance of the well-knownelementary shortest
path problem with resource constraints (ESPPRC), which is well-studied and arises as a subproblem in many
different routing applications. To cast the above subproblem as an ESPPRC, we consider a network with
|I|+2 nodes, one node for each customer, one for the facilityj as a source node and a copy of the facilityj
as a sink node. We assign each customer node a demand equal to its demand in the original problem and let
the cost of each arc(i, l) in the network equal the coefficient ofxil in (33). A shortest path from source to
sink visiting a customer at most once (calledelementary) and satisfying the constraint that the total demand
of customers included in the path does not exceed the vehiclecapacity then corresponds to a vehicle route.
The total cost of the path plus the fixed cost−ν j is the reduced cost of the associated column.

To solve the ESPPRC, we use Feillet et al (2004)’s label setting algorithm with a single resource (the vehicle
capacity). In the algorithm, each path from source to sink that is not dominated by another with respect to
vehicle capacity, cost, and the set of nodes that can still bevisited is explored. More details on the variants
of this approach that were used in the computational experiments are given in Section 3.2 below.

When the pricing problem cannot identify any more columns with negative reduced cost, then the current
solution to the LP relaxation of the master problem is optimal. If this optimal LP solution is not integral,
then we are forced to branch. Devising good branching rules is an important step in developing a branch-
and-price algorithm. Since the LP relaxations of the new nodes generated after branching are also solved
using column generation, the branching constraints must beincorporated into the pricing problem and the
columns to be generated must satisfy branching constraintsfor the node. Therefore, the specific branching
rules employed may affect the structure of the pricing problem, causing it to become more difficult to
solve. Here, we implement the same four branching rules we used for our work on the LRSP: branching on
fractional variablest andv, forcing/forbidding the assignment of a specific customer to a specific facility, and
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forcing/forbidding flow on a single arc (originally used in Desrochers and Soumis (1989)). All branching
rules can easily be incorporated into the pricing problem without changing the structure. Details on the
effect of these rules on the pricing problem and the implementation of them can be found in Akca et al
(2008).

3.2 Solving the Column Generation Subproblem

The ESPPRC is an NP-hard optimization problem, but small instances may generally be solved effectively
in practice using dynamic programming-based labeling algorithms. In general, the number of labels that
must be generated and evaluated in the label setting algorithm increases as either the number of customers
or the vehicle capacity increases. To enhance efficiency, wetherefore augment the basic scheme with some
heuristic versions of the algorithm, since it is not necessary to find the column with the most negative reduced
cost in every iteration. We refer to the exact pricing algorithm (that is guaranteed to produce a column with
the smallest reduced cost) as ESPPRC. The following are heuristic versions of the exact algorithm and are
not guaranteed to produce a column with negative reduced cost when one exists.

ESPPRC-LL(n). The ESPPRC algorithm keeps all non-dominated labels at eachnode. Depending on the
size of the instance, the number of labels kept can become very large. In this heuristic version proposed
by Dumitrescu (2002), we set a limitn on the number of unprocessed labels stored at each node. At each
iteration, labels are sorted based on reduced cost and amongthe unprocessed labels, then with smallest
reduced cost are kept and the rest are permanently deleted. Therefore, the ESPPRC-LL(n) algorithm tends
to terminate much more quickly than the ESPPRC for small values ofn.

ESPPRC-CS(n). The ESPPRC algorithm is efficient for instances with small numbers of customers. In
addition, the total number of customers in a route is restricted by the vehicle capacity. To be able to take
advantage of this, we choose a subset of customersCS with sizen based on the cost of arcs in the network
(coefficients of link variables in (33)). Since the objective of the pricing problem is to find a route with
smallest reduced cost, we determine then customers in the subset by constructing a minimum spanning tree
over the customer locations. We stop the spanning tree algorithm when we haven customers in the tree. The
first customer in the subset (and the tree) is chosen based on the cost of the links from source to customers.
Then to find valid vehicle routes, we run ESPPRC that include only customers inCS.

2-Cyc-SPPRC-PE(n).The shortest path problem with resource constraints (SPPRC) is a relaxation of the
ESPPRC in which the path may visit some customers more than once. The SPPRC is solvable in pseudo-
polynomial time, but use of this further relaxation of the column generation subproblem results in reduced
bounds. Eliminating solutions containing cycles of lengthtwo strengthens this relaxation of the pricing
problem and improves the bound (for details of the algorithm, see Irnich and Desaulniers (2005)). We refer
to this pricing algorithm as 2-Cyc-SPPRC. In addition, we can also generate paths that are elementary with
respect to a given subset of customers. We call the resultingalgorithm 2-Cyc-SPPRC-PE(n), wheren is the
size of the customer set to be considered. At each iteration of the pricing problem, for each facility, the
algorithm consists of the following steps:

1. Solve the 2-Cyc-SPPRC.

2. Consider the column with minimum cost and choose at mostm customers that are visited more than
once. LetCE1 be the set of these customers. If the set is empty, stop (the path is already elementary).

3. Solve 2-Cyc-SPPRC-PE(m) with setCE1 from step 2.

4. Pick at mostm customers that are visited more than once. LetCE2 be the set of these customers. Let
CE3 = CE1∪CE2 andm3 = |CE3|. If the set is empty, letCE3 = CE1 and stop.
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5. Solve 2-Cyc-SPPRC-PE(m3) with setCE3.

In our experiments, we generally had the same set of customersCE3 in every step of the column generation.
Thus, we decided to determine setCE3 for each facility at the first iteration of column generationat each
node, and we use the same set for the rest of the iterations at the node.

For computational testing, we implemented four variants ofthe branch-and-price algorithm based on the
above pricing schemes.

• Heuristic Branch-and-Price (HBP): The purpose of this algorithm is to provide a good upper bound.
At each node of the tree, we use ESPPRC-CS(n) and ESPPRC-LL(m) with small values ofn andm
(n is chosen to be 12 to 15 depending on the average demand and thevehicle capacity, whilem is
chosen to be 5 or 10). In addition, we also used combinations of ESPPRC-CS(n) and ESPPRC-LL(m)
for larger values ofn. In the algorithm, we use an iteration limit for the number ofpricing problems
solved at any node of the tree. If the number of iterations exceeds the limit, we branch.

• Elementary Exact Branch-and-Price (EEBP): The purpose of this algorithm is to prove the optimal-
ity of the solution or provide an integrality gap. At each node of the tree, we use ESPPRC-CS(n),
ESPPRC-LL(m) and ESPPRC.

• 2 Step Elementary Exact Branch-and-Price (EEBP-2S): In this variant, HBP is run first to generate
initial columns and an upper bound. Then, EEBP is initiated with the columns and the upper bound
obtained from HBP.

• Non-elementary Exact Branch-and-Price (NEBP): This is similar to elementary exact branch-and-
price algorithm except that the pricing problem solved is 2-Cyc-SPPRC-PE(n).

4 Computational Results

In this section, we discuss the performance of our branch-and-price algorithm for the LRP on two sets of
instances. The first set contains the LRP instances used in Barreto et al (2007) that are available from
Barreto (2003). We used these instances to test the performance of our HBP and NEBP algorithms. The
second set of instances were random instances we generated to test the performance of our EEBP and EEBP-
2S algorithms. We evaluate the effect of facility capacity constraints and other parameters using this set of
instances. For all of our experiments, we used a Linux-basedworkstation with a 1.8 GHz processor and
2GB RAM.

4.1 Instances From the Literature

To the best of our knowledge, there are no benchmark instances available specifically for the LRP. Barreto
et al (2007) used the instances in the literature available for other types of problems to construct a set of
LRP instances. They report lower bounds found by applying a branch-and-cut algorithm to the two-index
formulation of the problem (Barreto, 2004) and upper boundsfound by applying a sequential heuristic based
on clustering techniques (Barreto et al, 2007). They listed19 instances, three of which have more than 150
customers, too large for our approach to work efficiently. Weremoved these three instances plus one more
with 117 customers and fractional demand, since we assume integer demands. The labels of the instances
denote the source of the instance and the number of customersand facilities in the instances (for more details
about the references, see Barreto (2003)).
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We first ran HBP with a time limit of 3 CPU hours, focusing on producing quality upper bounds. Table 1
presents the instances we tested and compares the results with the upper bounds reported in Barreto et al
(2007). Since neither our HBP nor Barreto et al (2007) can provide a valid lower bound for the problem, we
used the best lower bounds as found in Barreto (2004) (secondcolumn in Table 1) to measure the quality of
our upper bound. The “Gap” in Table 1 is the percent gap between the upper bound and the LB listed in the
second column. HBP is capable of finding better upper bounds (usually optimal) for the instances of small
and medium size. In these cases, the computation time is alsovery short. However, for larger instances, the
upper bounds reported by Barreto et al (2007) are generally better. In addition, their heuristic algorithm is
very efficient—they report that in most of the instances, it provides the result in less than one second.

Table 1: Performance of Heuristic Branch-and-Price

Instance LB1 Barreto et al (2007) Heuristic Branch-and-Price
UB2 Gap UB Gap CPU(s)

Gaskell67-21x5 424.9∗ 435.9 2.59 424.9 0 1.2
Gaskell67-22x5 585.1∗ 591.5 1.09 585.1 0 41.5
Gaskell67-29x5 512.1∗ 512.1 0 512.1 0 67.7
Gaskell67-32x5 556.5 571.7 2.73 562.3 1.04 10801.8
Gaskell67-32x5-2 504.3∗ 511.4 1.41 505.8 0.3 85.6
Gaskell67-36x5 460.4∗ 470.7 2.24 460.4 0 1077.6
C69-50x5 549.4 582.7 6.06 565.6 2.95 239.4
C69-75x10 744.7 886.3 19.01 852.1 14.42 10802.3
C69-100x10 788.6 889.4 12.78 929.5 17.86 10836.6
Perl83-12x2 204∗ 204 0 204.0 0 0.2
Perl83-55x15 1074.8 1136.2 5.71 1121.8 4.37 10800.0
Perl83-85x7 1568.1 1656.9 5.66 1668.2 6.38 10813.8
Min92-27x5 3062∗ 3062 0 3062.0 0 4.2
Min92-134x8 - 6238 - 6421.6 - 10850.9
Dsk95-88x8 356.4 384.9 8 390.6 9.58 10808.9
1 Reported by Barreto (2004), found using branch-and-cut
2 Reported by Barreto et al (2007), found using a heuristic
∗ Branch-and-cut used in Barreto (2004) proves the optimality

Next, we used the EEBP-2S algorithm to test the ability to produce lower bounds and prove optimality.
With this algorithm, we could not solve all of the instances within the total time limit of 5 CPU hours (3
CPU hours for HBP and 2 CPU hours for EEBP). The lower bounds found by our algorithm, along with
the best integer solution found, optimality gap, and computation time are reported in Table 2. Note that
because Gaskell67-21x5 and Perl83-12x2 are very easy to solve, we used the EEBP algorithm instead of the
EEBP-2S algorithm in these cases.

Finally, for instances that we could not provide lower bounds by using the EEBP or the EEBP-2S algorithm,
we used the NEBP algorithm with a time limit of 5 CPU hours or evaluated node limit of 50 nodes. The
results are reported in Table 3. For the instances C69-100x10, Min92-134x8 and Dsk95-88x8, we could not
solve even the root node within the time limit.

In general, the lower bounds found by using branch-and-cut (Barreto, 2004) are better than our lower bounds.
However, in some cases, their computation times are much larger than our time limits. The HBP algorithm
can provide good upper bounds, but for the medium and large size problems, we need to improve our lower
bounding, perhaps by adding dynamic cut generation to our algorithm in order to close the optimality gap.
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Table 2: Performance of 2 Step Elementary Exact Branch-and-Price

Instance LB OPT/BestIP Gap CPU(s) Total CPU(s)
Gaskell67-21x51 424.9 424.9 0 3.0 3.0
Gaskell67-22x5 585.1 585.1 0 2999.9 3041.4
Gaskell67-32x5 544.1 562.3 3.24% 8453.1 19254.9
Perl83-12x21 204.0 204.0 0 0.2 0.2
Min92-27x5 3062.0 3062.0 0 833.6 837.8
1 EEBP algorithm is used

Table 3: Performance of Non-elementary Exact Branch-and-Price

Instance LB OPT/BestIP Gap CPU(s)
Gaskell67-29x5 441.2 512.1 13.85% 14411.5
Gaskell67-32x5-2 494.4 505.8 2.26% 5654.8
Gaskell67-36x5 455.5 460.4 1.05% 100.1
C69-50x5 526.2 565.6 6.96% 2634.1
C69-75x10 693.5 852.1 18.62% 8785.8
Perl83-55x15 852.3 1121.8 24.02% 319.5
Perl83-85x7 1272.4 1668.2 23.73% 1379.6

4.2 Random Instances

On random instances, Laporte et al (1986) provided computational results for an exact method (branch-and-
cut algorithm) for the capacitated LRP. Belenguer et al (2006) also developed a branch-and-cut algorithm
for the capacitated LRP, but neither the details of the instances nor the computational results are publicly
available. Therefore, we evaluated our algorithm by generating random instances as in Laporte et al (1986),
where they generated instances with 10, 15 and 20 customers and 4 to 8 facilities. In addition to these, we
generated instances with 30 and 40 customers and 5 facilities to test the performance of the algorithm on
larger instances. The coordinates of the customers and the facilities and the demand of each customer were
generated using a Uniform distribution on [0,100]. We then calculated the Euclidean distance between each
pair of customers and between customers and facilities and rounded the calculated distance to two decimal
places. Demand for each customer was rounded to the nearest integer. Vehicle capacityCV was calculated
as

CV = (1−α)maxi∈I{Di}+ α ∑
i∈I

Di, (40)

whereα was a parameter and the values were chosen in set{0, 0.25, 0.5, 0.75, 1}.

4.2.1 Small and Medium Random Instances

Laporte et al (1986) solved location and routing problems with capacitated vehicles, but they did not have
a facility capacity. Instead, they had a lower and upper bound for the total number of facilities that could
be open in a solution. In this experiment, in order to providea better comparison of our algorithm with that
of Laporte et al (1986), we removed constraint (13) from the SP-LRP. We setNF , the minimum number of
open facilities in (27), to 1, and we added constraint∑ j∈J t j ≤ MF , whereMF be the maximum number of
facilities that can be open in any solution. Facility and vehicle fixed costs were set to be zero. As in Laporte
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et al (1986), three groups of instances with different numbers of customers and facilities were available.
For each group, five different vehicle capacities were calculated by changingα . Some details about the
instances are listed in Table 4.

Table 4: Details for the instances

# of Customers # of Facilities NF MF # of instances α
10 4 1 3 3 {0, 0.25, 0.5, 0.75, 1}
15 6 1 4 3 {0, 0.25, 0.5, 0.75, 1}
20 8 1 5 3 {0, 0.25, 0.5, 0.75, 1}

Tables 5, 6 and 7 present the results achieved with our branch-and-price algorithm. Instances listed in these
tables are labeled with the number of customers, facilitiesand with letters{a,b,c,d,e} based on theα value
used. For example, the instancer10x4-a-1 has 10 customers, 4 facilities andα = 0. The integer from 1 to 3
after the letters represents the id of the instances within the same group. The tables present the name of each
instance, the LP solution value at the root node, the optimalsolution value, the number of evaluated nodes,
and the CPU time in seconds. In these instances, we first ran the EEBP algorithm for 5 minutes and if the
algorithm did not terminate within 5 minutes, we switched tothe EEBP-2S algorithm. Table 5 presents the
results for instances with 10 customers, Table 6 presents instances with 15 customers, and Table 7 presents
instances with 20 customers. We marked the instances with a “+” sign if the EEBP-2S algorithm was used.
For problems with at least 20 customers, we needed to use the EEBP-2S algorithm. The branch-and-price
algorithm was very successful in finding the optimal solution quickly. In general, our computation times
were much smaller than those reported by Laporte et al (1986), but it is difficult to make a fair comparison,
given advances in computing technology. In most of the instances, the LP solution found by our algorithm
at the root node was the optimal.

The instances become more difficult when the vehicle capacity increases (α increases) because the number
of labels generated in the pricing problem depends directlyon the vehicle capacity. Laporte et al (1986)
observed the reverse effect with regard to their branch-and-cut algorithm. The number of cuts generated
increases and the problem gets more difficult when the vehicle capacity is small. This is most likely due to
the fact that the problem structure becomes more like that ofthe traveling salesman problem (TSP) as the
capacity is increased and the TSP is much easier to solve by branch and cut than as a capacitated routing
problem.

To strictly differentiate the instances from those with a single depot, we experimented with changing the
value of parameterNF , the minimum number of open facilities, to 2 and ran the r15x6and r20x8 b and c
instances. There were no significant changes in the computational times or the number of evaluated nodes.
We then added facility capacities to the same set of problemsand ran our algorithm again. Table 8 presents
the computational results, as well as the facility capacityvalues used for the facilities. The capacity value
was chosen in order to require at least two open facilities. The computational results do not show any
significant difference from those of the uncapacitated instances. For larger instances, we expect that the
LP solution times will tend to increase if the master problemhas facility capacity constraints. Adding a
facility capacity to a two-index vehicle flow formulation requires an additional set of constraints (Belenguer
et al, 2006), the size of which can be large. In a branch-and-cut algorithm, it may require additional time to
generate this set of constraints.

Laporte et al (1986) report that adding facility fixed costs to the problem makes the problem easier. We
added facility fixed costs to r15x6 and r20x8 b and c instances. The performance of the branch-and-price
algorithm was not affected in instances with 15 customers. However, for some of the 20 customer instances,
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Table 5: Performance of Elementary Exact Branch-and-Pricefor 10 customer instances

Instance LP OPT. # of Nodes CPU(s)
r10x4-a-1 472.11 472.11 1 0.00
r10x4-a-2 421.44 421.44 1 0.00
r10x4-a-3 548.28 548.28 1 0.02
r10x4-b-1 313.01 313.18 3 0.04
r10x4-b-2 297.57 305.27 19 0.08
r10x4-b-3 352.66 354.92 3 0.03
r10x4-c-1 257.25 257.25 1 0.06
r10x4-c-2 259.76 259.76 1 0.04
r10x4-c-3 296.82 296.82 1 0.05
r10x4-d-1 243.42 257.25 21 0.52
r10x4-d-2 250.04 250.04 1 0.04
r10x4-d-3 296.82 296.82 1 0.04
r10x4-e-1 226.46 226.46 1 0.32
r10x4-e-2 225.82 225.82 1 0.17
r10x4-e-3 272.85 272.85 1 0.31

the computational times exceeded 2 CPU hours (for the results, see Akca (2008)).

4.2.2 Large Random Instances

In this section, we present the results of applying our algorithm to larger capacitated random instances. We
generated 6 instances with 30 customers and 6 instances with40 customers. Each instance had 5 facilities
with capacity constraints. The facilities had a fixed cost of100. The characteristics of each instance are listed
in Table 9. The first column includes the name of each instance, labeled based on the number of customers
and facilities and the vehicle capacity. For instances in group “a” the vehicle capacity value (listed in the
fourth column) was chosen to be 7 times the average demand andfor group “b”, the vehicle capacity value
was 5.5 times the average demand. Facility capacity (listedin the second column) was chosen based on
total demand such that at least two facilities (the minimum number of facilities is listed in the third column)
should be open in an integer solution.

We used the EEBP-2S algorithm in which the HBP and EEBP algorithms were both used with a time limit
of 3 CPU hours. Table 10 presents the results of both steps. The algorithm was very successful in finding
optimal or near-optimal solutions for these larger instances. Some details, such as the number of open
facilities, the number of vehicles used at each open facility, the average number of customers in each route
(vehicle), and the number of customers in the longest route,are presented in Table 9.

5 Conclusion

We have presented a set-partitioning-based formulation for the capacitated location and routing problem,
which to our knowledge is the first of its kind for this class ofproblem. We have demonstrated that it can
be obtained by applying Dantzig-Wolfe decomposition to thegraph-based formulation employed in most
previously reported research. We have described a branch-and-price algorithm and reported on our experi-
ence using it to solve both problems from the literature and randomly generated instances. Our experiments
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Table 6: Performance of Elementary Exact Branch-and-Pricefor 15 customer instances

Instance LP OPT. # of Nodes CPU(s)
r15x6-a-1 435.2 435.2 1 0.01
r15x6-a-2 663.32 663.32 1 0.01
r15x6-a-3 411.45 411.45 1 0.01
r15x6-b-1 313.46 313.46 1 0.31
r15x6-b-2 414.65 414.65 1 0.21
r15x6-b-3 285.01 285.01 1 0.12
r15x6-c-1 313.46 313.46 1 3.1
r15x6-c-2 392.75 392.75 1 1.98
r15x6-c-3 279.82 279.82 1 5.37
r15x6-d-1 313.36 313.46 3 4.92
r15x6-d-2 378.76 378.76 1 9.41
r15x6-d-3 279.82 279.82 1 14.13
r15x6-e-1 305.86 312.18 5 9.82
r15x6-e-2+ 374.86 374.86 1 16.62+

r15x6-e-3 274.22 274.22 1 300.01
+ The EEBP-2S algorithm was used, total time is reported.

indicate that the algorithm is very effective at producing quality solutions and can handle larger instances
than previously suggested approaches, which have been primarily based on two-index formulations. The
approach, however, does not seem as effective at producing quality lower bounds. This is likely due to the
absence of dynamic cut generation. The next step in this research will be to incorporate the generation of
known classes of valid inequalities into our algorithm. This should produce an algorithm exhibiting the
advantages of both the branch-and-price and branch-and-cut approaches.
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Table 9: Characteristics of the Instances and the Optimal Solutions

Instance OPT/BestIP Solution Info
Name Fac. NF LV # of # of Avg. # of # of Cust.

Cap. Fac. Vec. Cust/route longest route
cr30x5a-1 1000 2 350 2 3,2 6 8
cr30x5a-2 1000 2 350 2 3,2 6 7
cr30x5a-3 1000 2 350 2 3,3 5 7
cr30x5b-1 1000 2 275 2 3,2 6 8
cr30x5b-2 1000 2 275 2 4,3 4.29 7
cr30x5b-3 1000 2 275 2 3,4 4.29 6
cr40x5a-1 1750 2 340 2 3,3 6.67 8
cr40x5a-2 1750 2 390 2 3,4 5.71 8
cr40x5a-3 1750 2 370 2 3,3 6.67 7
cr40x5b-1 1750 2 275 2 3,5 5 7
cr40x5b-2 1750 2 275 2 3,5 5 7
cr40x5b-3 1750 2 325 2 5,3 5 7

Table 10: Performance of the EEBP-2S for Instances up to 40 Customers with Capacitated Facilities and
Facility Fixed Cost

Instance HBP EEBP Total
IP CPU(s) LP IP Gap # of N. CPU(s) CPU (s)

cr30x5a-1 819.53 43.5 810.29 819.5 0 33 993.3 1036.8
cr30x5a-2 823.49 7202.3 790.49 823.49 2.55 500 10806.5 18008.8
cr30x5a-3 702.29 44.2 687.72 702.19 0 51 917.9 962.1
cr30x5b-1 880.02 164.3 865.47 880.01 0 251 6420.6 6585
cr30x5b-2 825.32 8.3 815.95 825.3 0 7 33.2 41.5
cr30x5b-3 884.62 13.4 881.33 884.55 0 19 41.7 55.1
cr40x5a-1 928.11 631.8 911.39 928.11 1.49 11 10882.8 11514.6
cr40x5a-2 888.37 378.4 871.66 888.37 0.93 13 11052.9 11431.3
cr40x5a-3 947.24 173 939.54 947.24 0.18 28 10862 11035
cr40x5b-1 1052.07 257.3 1043.62 1052 0 627 8084.6 8342
cr40x5b-2 981.52 60.1 976.88 981.27 0 47 862.5 922.7
cr40x5b-3 964.32 62.6 959.05 964.23 0 45 963 1025.6
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