A Branch-and-Price Algorithm for Multi-stage
Stochastic Integer Programming with Application
to Stochastic Batch-Sizing Problems

Guglielmo Lulli and Suvrajeet Sen

Department of Systems and Industial Engineering - University of Arizona
Tucson, USA.

July 31, 2002

Abstract

In this paper we present a branch-and-price method to solve special struc-
tured multi-stage stochastic integer programming problems. We validate our
method on two different versions of a multi-stage stochastic batch-sizing prob-
lem. One version adopts a recourse formulation, and the other is based on
probabilistic constraints. Our algorithmic approach is applicable to both for-
mulations. Our computational results suggest that both classes of problems
can be solved using relatively few nodes of a branch-and-price tree. The
success of our approach calls for extensions in methodology as well as appli-
cations.

Keywords: Stochastic Programming, Integer Programming, Batch-sizing, Branch-
and-price Algorithm.

1 Introduction

Integer requirements on decision variables are indispensible in many operational and
planning models. For instance, resource acquisition decisions that represent factors
such as fixed-charges, change-over costs etc. lead to mixed-integer programming
models. A variety of applications, such as those arising in scheduling, routing, loca-
tion, production planning and finance lead to integer and combinatorial optimization
models. Traditional approaches to these applications usually assume that all data
for these models are known with certainty. However, this is seldom the case. Op-
erations problems often involve parameters (e.g. demand, lead-time etc.) that are
unknown at the time of planning, and their values are unveiled over time. The need
to explicitly model uncertainty within mixed-integer programming models leads to
the so called stochastic mixed-integer programming (SMIP) problems. As in other
areas of mathematical optimization, integer requirements in stochastic programming
problems have serious consequences on structural properties and algorithm design.
SMIP problems are aimed at finding nonanticipative (here-and-now) decisions that
must be taken prior to knowing the realization of the random variables. These
decisions are required to be made in such a way that total expected costs or rev-
enues (from here-and-now decisions and possible recourse actions) are optimized,
and moreover, some of the decisions (including recourse actions) are restricted to be
integer. Several classes of SMIP problem may arise depending on when the integer
decision are made, relative to the observations of outcomes of the random variables.

In this paper, we are interested in the general case where there can be any number

of integer variables in any and all stages, and where any part of the data can be
stochastic. However, in keeping with much of the literature, we deal with discrete
random variables with finite support (Birge and Lauveaux [6]).

Interest in SMIP problems is relatively recent. Klein-Haneveld, Stougie and van
der Vlerk [12] proposed solution schemes for the two-stage stochastic integer prob-
lems with simple integer recourse. Because of the special structure of the second
stage, their approach is based upon the construction of the convex hull of the second
stage value function. Laporte and Louveaux [15] proposed a decomposition-based
approach for stochastic integer program when both the first and second stage vari-
ables are binary. They proposed a branch and bound approach in which optimality
cuts approximate the non-convex second stage value function for a given binary first
stage solution. Carge [7] addresses a slightly more general mixed-binary SMIP prob-
lem, and adapts the lift-and-project methodology of Balas, Ceria and Cornuéjols [4]
to this class of problems. Sen and Higle [20] developed a decomposition based al-
gorithm for the solution of the two-stage stochastic integer programming problems
emphasizing decomposition among the integer variables that appear in the first
and second stages. Sherali and Fraticelli [21] have studied a related approach in
which the reformulation-linearization technique has been used within a decomposi-
tion scheme. Also Ahmed, Tawarmalani and Sahinidis [3] proposed a branch and
bound algorithm for the two-stage stochastic integer programs with mixed-integer
first stage variables and pure integer second stage variables. They use a reformula-
tion which exploits the special structure arising from a fixed recourse matrix in a

two-stage SMIP. Finally, we should note that the last three papers mentioned above

were announced somewhat simultaneously in the year 2000, and there appears to be
significant on-going activity for two stage SMIP problems.

As for multi-stage SMIP, much less is known. Lgkketangen and Woodruff [16]
applied a heuristic in which the progressive hedging algorithm was combined with a
tabu search to solve multi-stage SMIP with binary variables. Carge and Schultz [8]
proposed a Lagrangian relaxation for use within a branch and bound algorithm for
multi-stage SMIP. However their computational results were restricted to two-stage
problems.

In this paper, we provide an algorithm based on a branch-and-price method-
ology to solve multi-stage SMIP problems. There are several reasons motivating
the use of the branch-and-price methodology. First, it allows us to decompose the
original stochastic problem into a collection of deterministic (scenario) subproblems
which are coordinated by a master problem. Hence, the method allows us to take
advantage of any deterministic special structure. Furthermore it is amenable for
parallelization. Another motivation results from noting that the branch-and-price
algorithm is applicable to both two-stage SMIP as well as multi-stage SMIP; the
only difference is the amount of computational work. Moreover, column generation
allows us to get lower bounds of the same quality as those based on Lagrangian
relaxation, which are of course tighter than those obtained by simply solving the LP
relaxation. Finally, the use of LP software allows efficient implementation because
modern LP codes easily deal with the addition of variables and constraints during
the solution process, which is essential for branch and bound algorithms.

We begin this paper by developing a general multi-stage branch-and-price algo-

rithm. This method is then specialized to a batch sizing problem under uncertainty.
This class of problems is a generalization of the lot sizing problem and allows us to il-
lustrate the applicability of our branch-and-price methodology to special structured
problems. We also formulate a probabilistically constrained batch-sizing problem.
This formulation is particularly applicable in cases where the cost of accommodating
all possible demand realizations is astronomical. In such instances, managers often
attempt to satisfy demand with significant reliability. We show that the branch-
and-price methodology can also be applied to this new formulation of the stochastic
batch sizing problem. The algorithm has been implemented using COIN, an IBM
open source software, and CPLEX 7.0. Our results demonstrate the viability of
using branch-and-price as a methodology for special structured multi-stage SMIP.
The paper is organized as follows: in § 2, we present a branch-and-price method
for multi-stage stochastic integer programming problems for which a general for-
mulation is also given. We verify the validity of the method on the multi-stage
stochastic batch-sizing problem. In § 3, we provide a formulation of the problem
and some of its extension are discussed. Computational results are reported in § 4.

Finally, § 5 contains some modelling considerations and conclusions.

2 Branch-and-Price for Multi-stage SMIP

We consider a finite horizon sequential decision process under uncertainty. Denoting
with 7 = {1,...,|T|} the decision horizon, we assume that the information is

given by a discrete time stochastic process {&; 7@1 defined on some probability space

(2, F,P). Decisions are based on the information available at that time, i.e. on the
set of decisions already made and on the outcome of the random variable in the
previous stages. If we denote the vector of all decisions made from stage 1 to stage ¢
by z, = (21, ..., ;) and the vector of the random variable outcomes during the same
interval by § = (&1,...,&) then, a prototypical multi-stage stochastic program is

given by the following problem:

min{ci(&1)x1 + Q1 (x1) : Wizy < hi(&1), 21 € X1},

where
Qi(z,) = Eg,,, e min{cep (§er1)Tep1 + Quia (Zs1) -
Tita (§t+1)£t + Wiz < hia(§,,), T € Xeqa}
fort=1,...,|T|—1 with Q7 = 0. Here we assume that & is known at time ¢t =1

and E§t+1|§t denotes expectation with respect to the distribution of ét+1 conditioned
on the observation §t. For all realizations of £ and time stages, we suppose that
Ti(&,), Wi, ci(&), hu(€,) are matrices and vectors of conformable dimensions. The set
X} denotes restrictions that require some or all the decision variables to be integer.

In this paper, we assume that the random vector £ has a finite support; that is
E=(¢,...,£") with probabilities p', ..., p". This hypothesis allows us to represent
uncertainty by means of scenarios. A scenario is a realization of the random variable
(c(€),h(&), T(€)) corresponding to an elementary atom ¢ € =. The relationship
between scenarios is represented via a scenario tree &, which captures the evolution
of all information trajectories over time (Birge and Louveaux [6]). At any node of the

tree, there are several branches to indicate future possible outcomes of the random

6

variable from the current node. Because a scenario includes one node at each stage
exactly once, it is represented by a path from the root node (at stage 1) to a leaf
node (at stage |7|) of the scenario tree. Note that with the exception of leaf nodes,
other nodes of the scenario tree may belong to more than one scenario. Given the
set of scenarios § = {1,...,7}, the correspondence between nodes of the scenario
tree and 2-tuples (¢,s) € T x S is given by the surjective map H : 7 x § — S.
Furthermore we use || to denote the number of nodes composing the tree.

A vector of decisions z(£°) = (z1(£°), - . ., z7r(£%)) is associated with each scenario
s € §. A multi-stage SMIP problem can now be restated as a large-scale MIP of

the following form:

T T
min Y P al&)m ()]
s=1 t=1
s.t. Wla:l(gs) S h,l(gf) Vs € S.
ﬂ+1(§:+1)£t(fs) + Wiz (€°) < ht(g;_l) VseSvVteT. (1)

w(6) =D pz(€9)]/) Y p" VseSVteT. (2)

u€B; u€B;

(&) € Xy VseSVvteT.

where B; represents the set or bundle of scenarios that are indistinguishable from sce-
nario s at time ¢, i.e. all scenarios u for which £ = ¢’ for all 7 = 1,...,¢. Therefore,
a bundle of scenarios for any node #(t, s) of the scenario tree & includes all those
paths passing through node #(t, s). Constraints (2) are the non-anticipativity con-
straints which state that all scenarios with same history until the #-th stage should

result in the same decision until this stage, i.e. decisions depend only on information

revealed in the past and not in the future. Non-anticipativity constraints can also
be represented by associating decision vector Xy) for each node H(t,s) of the

scenario tree. In this case, constraints (2) are replaced by

X’H(t,s) = iL't(fs) Vse SVte T. (3)

What separates stochastic programming from deterministic optimization is the
presence of non-anticipativity constraints. These couple the decisions associated
with different scenarios, thus making the problem “harder” to solve. If we relax the
problem, discarding all the non-anticipativity constraints from the formulation, we
obtain a fully decoupled block-angular mixed-integer programming problem. De-
composition methods are particularly attractive for problems with this feature, as
they allow us to split the mixed-integer programming problem into more manageable
pieces corresponding to single scenario subproblems. In this paper, we are going to
use a column generation methodology in order to take advantage of this particular
feature of multi-stage SMIP problems. Such methods, referred to as “Branch-and-
Price” (B&P) algorithms in the MIP literature, have been successfully implemented
to solve a broad class of large-scale integer programming problems arising in applica-
tions such as routing and distribution (Desrosiers et al. [10]), airline crew scheduling
(Vance et al. [23]) and generalized assignment problem (Salvesberg [18]) among
others.

The basic idea of B&P consists of combining column generation with branch-
and-bound. A comprehensive description of branch-and-price methodology, includ-

ing a discussion of practical issues concerning efficient implementation, is provided

in Barnhart et al. [5], Johnson et al. [14] and Martin [17]. Vanderbeck [25] and Van-
derbeck and Wolsey [24] provide an alternative approach to combining the Dantzig-
Wolfe decomposition method with branch-and-bound. The method proposed here

can be interpreted in either setting.

Let (657 hfa T;:s’ xt,s) = (Ct(gs)a ht(é's)’ ,-Z—:‘/(gs)a xt(gs)) For any scenario define
[y = {{%,s}@1 Doy € Xy, Timy +Witgas < hi, VEE€TH.
Then the deterministic equivalent of SMIP can be written as follows:

7= min{Zps chfvt,s : {:vts}g ely, Xups —21s=0, Vt€T, Vs e S}
sES teT

In our development, we assume that the set of feasible solutions is nonempty and
bounded. Applying the Mixed Integer Finite Basis Theorem (Theorem 4.30 in [17])
to the subset of constraints I'y, we note that there exists a finite set of its points
Qs C I'y such that all points of I'; can be represented as a convex combination of
points in ;. Let G, denote the index set of these points. Then the equivalent
deterministic formulation, also called master problem, can be restated as follows:

. s S0 %
min E P E ctxt,sas

SES tET,ieG,

s.t. Xo(t,s) — Z xi’sai =0 VseS, vteT. (4)
1€G,
[RMP] Y al=1 VseS. (5
1€G,
ol >0 Vi € Gy, Vs € S.
Xez

Constraints (4) and (5) are the non-anticipativity constraints and the convexity
constraints respectively. The formulation reported above, is obtained by applying
the Dantzig-Wolfe decomposition principle based on the convexification of the inte-
ger scenario polyhedron I'y. This is the most common approach in branch-and-price
applications. In this case, the integer requirements are imposed directly on the
convex combinations that arise in the master formulation.

Another approach is to apply the Dantzig-Wolfe decomposition method based on
a complete discretization of the subsystem Iy, as in Vanderbeck [25]. In this case,
the integer restrictions are naturally translated into integrality restrictions on the

master problem variables, therefore constraints X &€ Zf' are replaced by
ot €{0,1} Vi€G,, Vs€S.

However, as we shall discuss subsequently, the two alternatives are not significantly
different in the context of SMIP.

Because the number of variables in the master problem is exponential in terms of
the original problem size, the reformulation is carried out only implicitly by way of
using a column generation procedure. Only a subset of variables is selected, defining
a restricted master problem (RMP). To verify the optimality of the restricted master
problem RMP solution, we have to verify if columns not listed in RMP can generate
an improvement of the objective function, if added to the RMP, i.e. price out
negative. The reduced cost of the master problem variables o, is given by (3, (p*-
c — Uts) x@s) — s where u; ; and 7, are the dual variables associated with the non-

anticipativity constraints (4) and the convexity constraints (5) respectively. This

10

task of verifying the RMP optimality is accomplished by solving the following pricing

program for each scenario s € S:

min Cy - x4

s.t. rzs €1

where Cs = (p° - ¢f —u15,...,0° - Cir — uj7),s)- If the cost obtained from the above
program is smaller than 7, then the corresponding column has negative reduced cost
and it can be added to the RMP for a new iteration.

The |S| pricing problems are independent of each other, and moreover, they
inherit any special structure associated with the scenario problems. This permits the
use of parellalization in the computation of new columns. When the LP relaxation
of RMP is solved, integrality conditions on the decision variables have to be verified.
If the master LP solution is not integral, and the LP bound is not higher than
the current incumbent SMIP solution, branching must take place. When dealing
with the master reformulation, several issues have to be addressed in the branching
phase. Special branching schemes have been developed for integer programming
column generation. The challenge in designing a branching scheme, is to find the
one that excludes the current fractional solution, validly partitions the solution space
of the problem and provides a pricing problem that is still tractable.

Henceforth in this section, we denote with DRMP and CRMP the restricted
master problems obtained applying the Dantzig-Wolfe decomposition principle based
respectively on discretization and convexification of the integer scenario polyhedron

['s. The CRMP reformulation of SMIP problems results in the same formulation as

11

[RMP] given earlier in this section. The DRMP reformulation is as follows:

. s S, .1 i
min E p E thEt,sOds

s€S teT,ieGs

st Xpus — Y 25,00 =0 VseS, VteT.
1€Gs
[DRM P) Y al= Vs e S.
1€EGs
o € {0,1} Vi€ Gy, Vs €S.
X e R'f‘

Note that the main distinction between CRMP and DRMP concerns the integrality
conditions. In the former formulation they are imposed on the X variables while in
the latter formulation are imposed on the « variables.

For the CRMP reformulation of SMIP problems, a straightforward branching
scheme is based on the partition of the solution space using the original problem
variables for which we impose the integer requirements. Therefore, if a component of
the X vector of the master LP solution (&, X) is fractional, say the i-th component,

then branching takes the form

X; < |Xi) or X, > [X;]. (6)

Even though it is not mandatory, we eliminate (from the successor nodes) all those
columns whose components do not satisfy the new branching constraint. This
branching scheme defines a partition of the integer polyhedron I', (T, T,\L,) for
all scenarios belonging to the bundle of scenarios of scenario tree node 1.

Next we comment on branching scheme for DRMP proposed in Vanderbeck [25]
and Vanderbeck and Wolsey [24]. Their scheme is based on the following partition

12

of the feasible solution set;

Doy < (A or > i), (7)

i€Gs i€Gs\Gs
where A = Y. @) € [0,1] is fractional, and the values & are obtained from
a continuous relaxation of DRMP. In order to partition Gg (set of columns that
have been generated) into (G, G, \ G,) Vanderbeck suggests using inequality of
the form 7 -z > 7y (on the original variables). This implies that columns that do
not satisfy this inequality can be deleted from the corresponding master program.
Of course, the other branch would then include these columns. This branching
scheme may provide a little more flexibility, although one would still have to derive
appropriate inequalities (v -z > 7). One common choice for 7 is i-th unit vector,
which corresponds to fixing the lower and upper bounds on the #-th component of
X € Ngesls. Because we eliminate those columns that do not satisfy (6), this
implementation is equivalent to (7) with v = e'.

The Branch-and-price procedure is summarized as follows.

Initialization set

s =00 and G, = {0} Vs € S,
Ut,SZO VSES, VtET,
UB = oc or equal to the objective function of some computed fea-

sible solution.
Step 1 Vs € S solve the pricing problem:

min{ Q, = Cex' st 2' €L}

13

If Qy < 75 add the column to the current RMP and i — G with total cost g°

computed using the original cost vector (cf,...,c5). Otherwise go to Step 5.

Step 2 Solve the linear relaxation of the restricted master problem RMP, and up-

date dual variables u;, and ;.
Step 3 If X € Zf', update the incumbent solution and go to Step 5.

Step 4 Start a branch phase using the following rule:

find a component of X that is fractional, say ¢. Define two subproblems adding

the constraints X; < | X;| or X;> [X;] respectively.

Step 5 Select an active node of the branching tree and go to Step 1, otherwise the

current solution is optimal, STOP.

3 The stochastic batch-sizing problem

In this section, we present a formulation for the multi-stage stochastic batch-sizing
problem. The batch-sizing problem belongs to the class of economic lot-sizing (ELS)
models. These models deal with production and/or inventory systems, and in gen-
eral, their deterministic versions can be stated as follows: given a demand and a
cost structure for T time periods, the object of production planning is to mini-
mize the total production and inventory costs. One of the earliest versions of ELS
problem is given by the model of Wagner and Whitin [22]. They studied the unca-
pacitated model with fixed set-up cost and linear inventory and production costs.
In addition to the model formulation, Wagner and Whitin’s main contribution was

14

in demonstrating that an optimal replenishment policy is one in which production
is undertaken when inventory is zero. Furthermore, they proposed an efficient for-
ward dynamic programming algorithm to solve the problem. A broad variety of
ELS models have been studied in the literature. These models include the ones in
which backlogging may be allowed, production and inventory capacities may be fi-
nite, start-up costs may be non-zero, etc. We have only mentioned a few extensions
of the Wagner and Whitin model available in the literature. For a more complete
description of the state of the art on the ELS models, see Martin [17], Aggarwal et
al. [1] and Kuik et al. [13].

In the literature, two papers recently appear on the stochastic version of the
ELS models. Haugen, Lgkketangen and Woodruff [11] have proposed a heuristic
algorithm casting the progressive hedging algorithm as a meta-heuristic to solve
the problem. As a heuristic algorithm to solve the single scenario sub-problem,
the authors implement the dynamic programming algorithm proposed by Zangwill.
Structural properties of the stochastic ELS have been presented in Ahmed, King
and Parija [2]. In particular, the authors show the effectiveness of the Krarup Bilde
reformulation of the ELS also in stochastic setting. As an interesting by-product
of their work, Ahmed, King and Parija showed that the deterministic optimality
condition (i.e. production is undertaken only if inventory is zero) does not apply
to the stochastic case.

In this paper we consider the stochastic version of the problem in which the
demand, production, inventory and set-up costs are uncertain problem parameters

evolving as discrete random variables. Furthermore, production takes place in a

15

batch mode, i.e. production level is a multiple of the batch size and consequently
the corresponding decision variables are discrete. Finally, the problem is capacitated,
i.e. capacity constraints on production and/or inventory levels are effective for at
least one time period. Under these hypotheses, Wagner and Whitin’s optimality
conditions are no longer valid. The peculiarity of stochastic optimal solutions is
that they may have a non-zero level of production even though inventory levels are
non-zero. This is the manner in which a stochastic model helps hedge against future
uncertainty. In § 3.1, we will discuss this aspect of the problem in greater detail.
We begin the formulation by providing summary of the notation used in the

model.

S =1{1,...,S} is the set of scenarios,
T ={1,...,|T|} is the decision time horizon,
b = batch size,
C; = production capacity at time period ¢ in terms of number of batches,
I, = inventory capacity at time period ¢ in terms of number of batches,
d: s = demand at time period ¢ in scenario s,
ct,s = production cost at time period ¢ in scenario s,
his = holding (or inventory) cost at time period ¢ in scenario s,
fts = fixed (or set-up) cost at time period ¢ in scenario s,

ps = probability of scenario s.

16

The decisions variables are:

zt,s production batch level at time ¢ in scenario s,

i,s inventory level at time ¢ in scenario s,
1 if production is set-up at time ¢ in scenario s,
Yt,s =

0 otherwise.

Z(t,s) Production quantity at node H(t,s) of the scenario tree.

The stochastic batch-sizing problem for minimizing total expected cost is given by

Min Z Zps) (Ct,s * Tt,s + ht,s) 7:t,s + ft,s) yt,s)

seS teT
subject to
Q15+ b-Trs =dps+ips VteT, Vse 8. (8)
Tys — Zu(tys) = 0 VteT, VseS. 9)
Tps < Cp- Yy s VteT, Vse€S. (10)
s <b-I, VteT, VseS. (11)
ys €{0,1}, s € Z%, 45 € RY VieT, Vse 8. (12)

Constraints (8), are the collection of inventory balance constraints. They define
the relation between demand, production level and inventory level for each time
period t of any scenario s. Constraints (9) are the non-anticipativity constraints
on production level decisions. We make decisions before realizing the random out-
comes of demand. Note that non-anticipativity constraints are enforced only on the
production decision variables, since the non-anticipativity constraints on the set-up

17

variables are automatically satisfied once they are satisfied by the production level
variables. Constraints (10) and (11) are capacity constraints on production and
inventory levels respectively. Constraints (10) are also set-up forcing constraints.
The basic idea is to force variable 1; to be one if production takes place.

We propose to solve the multi-stage stochastic batch-sizing problem applying a
branch-and-price methodology as described in § 2. For each scenario, the pricing
problem will be a deterministic batch-sizing problem solved using a dynamic pro-
gramming algorithm. The branch-and-price algorithm follows the same procedure

as outline in § 2, with step 4 (branching) specialized as follows.

Step4alfidieJ: 2 & Z* define two subproblems adding the constraints

Zrs < |zi] or mps > (%] Vi, s: Hys =1.

Go to Step 5.

Step 4 b If

Is'€B] : Tys-xey =0 and xps+ a9 >0

then branch on gy ,. For each newly generated node of the search tree
define an appropriate RMP, consistent with values assumed by the branching
variables, i.e. eliminate all the columns whose entries are not consistent with

the branching variable. Go to Step 5.

18

3.1 The stochastic batch-sizing problem with probabilistic
constraints

In the stochastic batch-sizing model developed above in § 3, we require that demand
is satisfied at any time period ¢, and no backlogging is allowed. According to the
demand balance constraints (constraint (8)), at any stage of the system the pro-
duction level should be large enough to cover all the possible demand outcomes in
the next stage. Operation managers often consider these situations uneconomical.
To overcome this potential drawback it may be appropriate to enforce a probabilis-
tic constraint, which limits the number of scenarios accommodated in the optimal
solution. Let ¢ denote the acceptable level of service and u,; a binary variable,
which assumes value one if scenario s is included in the solution and zero otherwise.
Mathematically, the condition therefore is

Zps'/vl’s EQ-

SES
The master formulation of SBSP with probabilistic constraint can be represented

as follows:

Min Z ps'éi,s Nz

SES, i€G;

s.t.

SNzl ol -y > M- (L—p) VEET, Vs€S.

1€G,

19

in,s-ai—zﬂ(t,s)gM-(l—us) VteT, Vs e S.

1€G

Zps,u'szq

SES

Zai—uszo Vs € S.

1€G

04220 Vi e Gy, Vs € S.

us € {0,1} Vs e S.

where ¢; ; is the total cost associated to the it" column of scenario s. Note that the
non-anticipativity constraints are imposed only on those scenarios that are accom-
modated when pu, is equal to 1 while they are ignored when pu; = 0. The above
formulation is somewhat unique in that it uses both continuous and discrete de-
cision variables to enforce non-anticipativity constraints within a probabilistically

constrained model.

4 Computational results

In this section, we present the computational results on both the stochastic batch-
sizing problem and its probabilistic version, described in § 3.

In our computational analysis we used randomly generated instances. We gen-
erated different sets of problems by varying the number of time periods (stages)
of the system. These instances are also characterized by the scenario tree. In our
experiments we generated binary trees with conditional probability for any branch
being p,, and the other branch having conditional probability 1 —p, where n denotes
a node of the tree. Here p, is chosen from the uniform [0,1] distribution. By choos-

20

ing alternative values of p,,, as well as cost and demands we can generate different
problem instances corresponding to any given planning horizon. Such classes are
classified according to the length of the planning horizon (number of stages). For

each set of instances, the characteristics of the scenario tree are given in Table 1.

Class of || Number of | Number of | Scenario Tree
Instances Stages Scenarios Nodes
3-4 3 4 7
4-8 4 8 15
5-16 5 16 31
6-32 6 32 63

Table 1: Test instances’ characteristics

We implemented the column generation method using BCP, which is part of
COIN-OR, the Common Optimization INterface for Operations Research [9], a free-
ware open source software. BCP is a framework for Branch, Cut and Price algo-
rithms. It handles all bookkeeping related to search tree management, column and
cut generation, and so on. We used CPLEX 7.0 as the LP engine to solve the linear
relaxation of RMP. The subproblems were solved using a customized dynamic pro-
gramming algorithm. Our experiments were conducted on a workstation SUN Ultra
80 with two processors and 1 GB RAM.

For the computational results presented below, we compare the performance
of our algorithm with CPLEX Branch-and-Bound method (CPLEX-MIP), imple-
mented using AMPL as modeling language. A time limit of 3600 sec. was imposed
for both the solvers.

Moreover, CPLEX default relative tolerance of 0.0001 was

used.

21

4.1 Computational results on the Batch-Sizing Problem

In this subsection, we present computational results with the batch-sizing problem.
In the multi-stage model for CPLEX-MIP, we used a “node” formulation of the
stochastic programming problem which handles the non-anticipativity constraints
implicitly. This is a common approach to multi-stage SLP formulations because it
results in a more compact formulation (Birge and Louveaux [6]). In fact, the total
number of variables and constraints in the formulation solved by Branch-and-Price
is three times the number of variables and constraints for the formulation solved by
CPLEX.

The results for the batch-sizing problem are given in Table 2, which reports the
name of the instance, and associated solution statistics both for SP-COIN-BCP and
for CPLEX-MIP for each instance solved.

In this table, the total running time for SP-COIN-BCP includes the time spent
in generating the scenario tree and all the concerning data structures, in reading the
input and in writing the output. Note that these times are not considered in the
solution time statistic of CPLEX-MIP. However, this difference does not impugn the
essence of our analysis because there are very few instances that have comparable
times ! (total running time for SP-COIN-BCP, and solution time for CPLEX-MIP).

The remaining columns in the table are interpreted as follows:

Time in VG = time spent in variables generation,

!nstances with comparable times include: 3-4g, instances a, b, f, g, h and i of the set 4-8 and

instances b and [belonging to the set 5-16.

22

SP-COIN-BCP solution CPLEX solution
Total B&B | Time | Time | Time | Time || B&B CPU MIP
Instance || running | nodes | in in for in nodes time

time VG | HEU | LPs SB Iter.ns
3-4a 0.45 3 0.00 | 0.00 0.08 0.10 10 0.20 55
3-4b 0.64 2 0.00 | 0.00 0.22 0.03 19 0.20 53
3-4c 0.80 3 0.01 | 0.00 0.21 0.03 26 0.20 46
3-4d 0.41 2 0.00 | 0.00 0.12 0.02 6 0.20 40
3-4e 0.06 0 0.00 | 0.00 0.01 0.00 2 0.00 24
3-4f 0.09 0 0.00 | 0.00 0.02 0.00 0 0.00 10
3-4g 0.08 0 0.00 | 0.00 0.03 0.00 27 0.04 64
3-4h 0.69 3 0.00 | 0.00 0.17 0.03 23 0.01 53
3-4i 0.29 3 0.00 | 0.00 0.06 0.02 2 0.00 22
3-41 0.17 0 0.00 | 0.00 0.03 0.00 7 0.02 31
4-8a 0.32 0 0.00 | 0.00 0.07 0.00 219 0.20 319
4-8b 0.24 0 0.00 | 0.00 0.07 0.00 196 0.17 331
4-8¢ 1.28 3 0.04 | 0.01 0.27 0.20 356 0.26 501
4-8d 0.41 0 0.02 | 0.00 0.11 0.00 233 0.19 462
4-8e 0.36 0 0.01 | 0.00 0.11 0.00 57 0.10 168
4-8f 0.24 0 0.00 | 0.00 0.07 0.00 62 0.09 154
4-8¢g 0.37 0 0.00 | 0.00 0.08 0.00 161 0.15 283
4-8h 0.42 0 0.02 | 0.00 0.08 0.00 156 0.13 286
4-8i 0.40 0 0.02 | 0.01 0.10 0.00 385 0.30 604
4-81 1.59 4 0.10 | 0.00 0.32 0.07 1775 1.00 2069
5-16a 1.13 0 0.04 | 0.01 0.27 0.00 1722 1.80 3623
5-16b 1.15 0 0.04 | 0.00 0.24 0.00 569 0.71 1203
5-16¢ 11.68 8 0.45 | 0.02 1.72 0.26 1626 1.80 3689
5-16d 16.37 11 0.67 | 0.04 2.32 0.31 5585 6.30 11195
5-16e 13.29 8 0.55 | 0.05 1.73 0.28 761 0.87 1487
5-16f 9.96 8 0.27 | 0.03 1.45 0.19 1401 1.50 2554
5-16g 18.35 9 0.85 | 0.06 2.59 0.28 7816 7.60 21421
5-16h 4.18 3 0.24 | 0.03 0.64 0.04 1820 1.90 3206
5-161 1.30 0 0.00 | 0.00 0.26 0.00 149 0.28 360
5-161 1.59 0 0.19 | 0.00 0.39 0.00 1722 1.50 2731
6-32a 156.31 11 784 | 0.25 | 12.16 | 1.19 || 1.74¢® T 4.51€®
6-32b 2045.03 | 103 | 38.40 | 1.58 | 165.90 | 19.83 || 1.85€° T 4.93¢°
6-32c 91.07 7 2.75 | 0.12 8.09 0.71 || 5.49¢° | 1.11 10° | 1.27¢°
6-32d 1064.91 71 12.15 | 0.49 | 73.63 | 8.85 1.6€® T 6.09¢°
6-32e 403.64 29 7.86 | 0.34 | 28.26 | 2.90 | 1.61e® | 2.8 10° | 3.98¢°
6-32f 530.66 35 12.17 | 0.49 | 37.14 | 3.98 | 1.62€° T 4.89¢°
6-32g 233.60 19 5.80 | 0.26 | 17.86 | 1.95 | 7.08¢> | 1.4 10° | 1.70€°
6-32h 134.83 11 4.43 | 0.17 9.46 1.12 || 7.20e® | 1.4 10° | 1.56€°
6-321 294.74 19 6.79 | 0.24 | 22.51 | 1.84 || 1.74¢° T 4.85¢€°
6-321 215.37 17 5.82 | 0.28 | 16.98 | 2.02 | 1.59¢€° T 5.40€8

Table 2: Computational results for the Batch-Sizing Problem

23

Time in HEU = time spent in restoring feasibility (i.e. computing heuristic

solutions when the search tree nodes’ solutions are not feasible),

Time for LPs = time spent in solving the linear relaxation of RMPs,

Time in SB = time spent in strong branching.

To verify the effectiveness of our proposed methodology, we first compare the
total running time of SP-COIN-BCP and the CPU time requested by CPLEX-MIP.
From the performance reported in Table 2, it is apparent that for smaller instances
(i.e. less than five stages) CPLEX-MIP solution times are shorter than those ob-
tained for SP-COIN-BCP. However, for larger instances, and precisely instances of
class 6-32, the SP-COIN-BCP procedure provides better running times. It turns out
that we were able to solve larger instances using SP-COIN-BCP, but the same was
not true for CPLEX. For example, we solved an instance of the seven-stage batch-
sizing problem with 64 scenarios. For this instance, the statistics are as follows:
2133.6 sec. total running time, 43.2 sec. in variables generation, 1.2 sec. for restor-
ing feasibility, 98.3 sec. in solving LLPs and 6.4 sec. strong branching. However,
CPLEX-MIP was unable to provide a solution after several hours of computing.
Similarly we compare the number of nodes of the search tree visited by the two
methods. In this case the differences are much more evident. For the largest in-
stances we have a difference in several orders of magnitude. Indeed for the instances
solved, CPLEX visits hundreds of thousands of nodes while SP-COIN-BCP visits
at most 103. These results demonstrate the quality of our method and the viability

of using branch-and-price as a methodology for special structured multi-stage SMIP

24

problems.

4.1.1 Computational comments on SP-COIN-BCP

One of the intriguing points of the results with SP-COIN-BCP is that the compu-
tational time required for the entire process is dominated by the amount of time
required in traversing the search tree. We investigate this dominance in the Table

3. The search tree time reported in the table, is the overall time spent waiting for

Instance || Number of Total Search Tree | Ratio
Scenarios | Running Time Time
51 16 43.20 27.65 0.64
5-2 16 55.43 40.30 0.73
5-3 16 51.62 33.81 0.66
5-4 16 58.75 41.13 0.70
5-5 16 99.36 64.39 0.65
6-1 32 3451.34 2823.20 0.82
6-2 32 666.16 497.62 0.75
6-3 32 3617.84 2888.15 0.82
6-4 32 1233.12 853.32 0.69
6-5 32 690.48 456.41 0.66

Table 3: Search tree time

a new search node of the search tree, to be processed, after the previous node has
been fathomed. The “Ratio” is the percentage of the total running time spent in
visiting the search tree. Clearly, an inordinate amount of time is spent in travers-
ing the search tree. Moreover it has the tendency to increase as the dimension of
the test problem and the depth of the search tree increase as well. In comparison,
CPLEX-MIP is able to handle a far greater number of nodes of its search tree. With
improved tree management routines within COIN-BCP, we expect to improve upon

the running times reported for SP-COIN-BCP.

25

4.2 Computational results on the Batch-Sizing Problem
with probabilistic constraints

The computational results on the stochastic batch-sizing problem with probabilistic
constrained are discussed here. For this version of the problem, we implement a
scenario formulation for the CPLEX-MIP too. In our analyses, we use q = 0.75.
The computational results are reported in Table 4.

Due to the combinatorial structure of the non-anticipativity constraints, the
probabilistically-constrained version of the stochastic batch-sizing problem requires
a greater number of search nodes. This irremediably affects the running times of
our implementation of SP-COIN-BCP. While the number of nodes still remains
manageable, the inefficiencies of the tree management routines (see § 4.1.1), result

in higher running times than those obtained through CPLEX-MIP.

5 Modelling Considerations and Conclusions

In this paper, we have accomplished two objectives: we have provided a methodology
for special structured multi-stage stochastic integer programming problems, and
used this methodology for the stochastic version of the well known batch-sizing
problem. To the best of our knowledge, this paper appears to be the first one
to accommodate cost/demand uncertainty in a dynamic batch-sizing problem. In
addition, we have proposed a probabilistically constrained formulation. One of the
main advantages of our approach is that we handle the recourse formulation, and

the probabilistically-constrained formulation within the same framework.

26

SP-COIN-BCP solution

CPLEX solution

Total | B&B | Time | Time | Time | Time | B&B CPU MIP
Instance || running | nodes | in in for in nodes time

time VG | HEU | LPs SB Iter.ns
3-4a 1.39 9 0.03 0 0.61 | 0.06 28 0.1 143
3-4b 1.15 7 0.02 0 0.51 | 0.04 46 0.1 176
3-4c 0.78 3 0.01 | 0.01 0.3 0.03 36 0.11 173
3-4d 1.43 9 0.01 | 0.01 | 0.55 | 0.05 43 0.09 162
3-4e 0.36 3 0.01 0 0.14 | 0.01 3 0.03 65
3-4f 0.55) 0.01 0 0.24 | 0.01 22 0.06 127
3-4g 0.52) 0.02 0 0.18 | 0.02 36 0.11 195
3-4h 0.53 5 0 0 0.19 | 0.03 126 0.18 286
3-4i 0.83 7 0.02 0 0.31 | 0.06 10 0.06 98
3-41 0.67 5 0.02 0 0.28 | 0.03 38 0.11 153
4-8a 5.16 23 0.08 0 1.31 | 0.07 7350 43 66517
4-8b 2.4 13 0.05 0 0.61 | 0.07 1401 3.8 7712
4-8¢ 3.27 13 0.07 0 0.98 0.1 363 1.3 1863
4-8d 8.05 21 0.14 | 0.01 | 2.51 | 0.26 8953 18 30119
4-8e 12.82 31 0.29 | 0.01 | 3.76 | 0.34 143 0.65 985
4-8f 10.22 25 024 | 0.01 | 3.28 0.3 262 0.75 1440
4-8g 2.8 9 0.06 | 0.03 | 091 | 0.08 657 1.6 2370
4-8h 3.6 9 0.09 0 1.24 | 0.08 1000 2.5 4495
4-8i 2.79 9 0.06 | 0.01 | 0.83 | 0.09 1296 3.4 7248
4-81 3.86 11 0.11 0 1.25 | 0.13 || 11356 22 30732
o-16a 73.87 65 1.08 | 0.08 | 13.36 | 1.16 | 41483 | 3.8 10% | 453063
5-16b 1466.64 | 309 | 9.98 | 0.26 | 428.84 | 10.04 | 5789 29 40641
5-16¢ 3205.37 | 447 |27.65 | 0.87 | 946.3 | 23.37 || 59477 | 2.6 10” | 270258
5-16d 1400.57 | 343 [16.37 | 0.4 |286.38 | 13.86 || 50823 | 3.0 10* | 521205
o-16e 1308.85 | 381 [11.88 | 0.4 |[194.39 | 15.67 || 123357 | 6.7 107 | 800819
5-16f 156.07 91 2.57 | 0.07 | 36.82 | 2.07 || 60037 | 3.4 10 | 358439
5-16g 3037.26 | 571 | 41.69 | 1.33 | 638.68 | 35.2 7350 43 66517
5-16h 128.94 7 2.61 | 0.07 | 27.44 | 1.66 1632 9.6 14032
9-161 82.42 77 1.22 | 0.06 | 16.07 | 14 2591 14 26458

Table 4: Computational results for the Probabilistic formulation with q=.75

27

cost

L

75 .90 1.0

Figure 1: Reliability vs. Cost

In order to help the reader appreciate the value of such a unified framework,
we present some modelling considerations arising from varying the level of service
embodied by ¢. Solutions with higher ¢ represent fewer stock-outs and hence more
reliable. Obviously, higher reliability comes at a cost. A trade-off between reliability
and costs may be depicted as shown in Figure 1. The data for which it was computed,
used the average value of instances in class 5-16.

From an operational point of view, we may choose the level of service correspond-
ing an acceptable cost structure. Such insights are made possible by the models and

algorithm studied in this paper.

Acknowledgment

This research has been partially supported by NSF and the work was performed in

the Raptor Lab. The authors are grateful to Laszlo Ladédnyi and Ted Ralphs for the

28

valuable suggestions and comments in the implementation of SP-COIN-BCP.

References

[1] Aggarwal A. and J.K. Park: “ Improved Algorithms for Economic Lot Size
Problems”, Operations Research 41 (1993) 549-571.

[2] Ahmed S., A.J. King and G. Parija. A Multi-stage Stochastic Integer Program-
ming Approach for Capacity Expansion under Uncertenty, SPSS E-print Seeries
(2001).

[3] Ahmed S., M. Tawarmalani and N.V. Sahinidis: “A Finite Branch and Bound
Algorithm for Two-stage Stochastic Integer Programs”, preprint University of
Illinios, 2000.

[4] E. Balas, S. Ceria and G. Cornugjols, “A lift-and-project cutting plane algorithm
for mized 0-1 programs”, Mathematical Programming 58, (1993) 295-324.

[6] Barnhart C., E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsberg and P.H.
Vance: “ Branch-and-Price: Column Generation for Solving Huge Integer Pro-
grams”, Operations Research 46 (1998) 316-329.

[6] Birge J.R. and F. Louveaux: “Introduction to Stochastic Programming”,
Springer, 1997.

[7] Carge C.C.: “Decomposition in Stochastic Integer Programming”, PhD thesis,
University of Copenhagen (1998).

[8] Carge C.C. and R. Schultz: “ Dual Decomposition in Stochastic Integer Pro-
gramming”, Operations Research Letters 24 (1999) 37-45.

[9] COIN - “Common Optimization INterface for Operations Research”,
http//www.coin-or.org

[10] Desrosiers J., Y. Dumas, M.M. Solomon and F. Soumis: “Time Constrained
Routing and Sheduling”, Handbook in Operations Research and Management
Science: Networks, M.O.Ball et al. editors, Elsevier Science Publishers B.V.,
1995.

[11] Haugen K.K., A. Lgkketangen and D.L. Woodruff: “Progressive hedging as
a meta-heuristic applied to stochastic lot-sizing”, European Journal of Opera-
tional Research132 (2001) 116-122.

[12] Klein-Haneveld W.K., L. Stougie and M.H. van der Vlerk: “An Algorithm for
the Construction of Convex Hulls in Simple Integer Recourse Programming”,
Annals of Operational Research 64 (1996) 67-81.

[13] Kuik R., M.Solomon and L.N. van Wassenhove: “ Batching decisions: Structure
and models”, European J. of Operational Research 75 (1994) 243-263

29

[14] Johnson E.L., G.L. Nemhauser and M.W.P. Savelsbergh: “Progress in Lin-
ear Programming Based Branch-and-Bound Algorithms: An Ezposition”, IN-
FORMS J. on Computing. (1997)

[15] Laporte G. and F.V. Louveaux: “The integer L-shaped Method for Stochastic
Integer Programs with Complete Recourse”, Operations Research Letters 13
(1993) 133-142.

[16] Lokketangen A. and D.L. Woodruff: “Progressive Hedging and Tabu Search
Applied to Mized Integer (0,1) Multi-stage Stochastic Programming”, Journal
of Heuristics 2 (1996) 111-128.

[17] Martin R.K.: “Large Scale Linear and Integer Optimization”, Kluwer Academic
Publishers, 1999.

[18] Savelsberg M.W.P.: “A Branch-and-price Algorithm for the Generalized As-
signment Problem”, Operations Research 45 (1997) 831-841.

[19] Sen S.: “A Branch and Price Algorithm for Multi-stage Stochastic Integer Prob-
lems”, INFORMS 2000, San Antonio.

[20] Sen S. and J.L.Higle: “The C® Theorem and a D?* Algorithm for Large Scale
Stochastic Integer Programming: Set Convezification”, submitted for publica-
tion.

[21] Sherali H.D. and B.M.P Fraticelli: “A modified Benders’ partitioning approach
for problems having discrete subproblems with application to stochastic programs

with integer recourse” Working paper, Virginia Polytechnic Institute and State
University, Blacksburg, VA (2000).

[22] Wagner H.M. and T.M. Whitin: “Dynamic Version of the Lot Size Model”,
Management Science 48 (1958) 578-590.

[23] Vance P.H., C. Barnhart, E.L. Johnson and G.L. Nemhauser: “ Airline Crew
Scheduling: A New Formulation and Decomposition Algorithm”, Operations
Research 45 (1997) 188-200.

[24] Vanderbeck F. and L.A. Wolsey: “An Ezact Algorithm for IP Column Gener-
ation” Operations Research Letters 19 (1996) 151-159.

[25] Vanderbeck F.: “On Dantzig-Wolfe decomposition in integer programming and
ways to perform branching in a branch-and-price algorithm”, Operations Re-
search 48 (2000) 111-128.

30

