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Abstract 
 
The maximum weight independent set problem (MWISP) is one of the most well-known and well-

studied problems in combinatorial optimization.  This paper presents a novel approach to solve 

MWISP exactly by decomposing the original graph into vertex-induced sub-graphs.  The approach 

solves MWISP for the original graph by solving MWISP on the sub-graphs in order to generate 

columns for a branch-and-price framework.  The authors investigate different implementation 

techniques that can be associated with the approach and offer computational results to identify the 

strengths and weaknesses of each implementation technique. 
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1 Introduction 

A set of a graph’s vertices is an independent set if no two vertices in the set are adjacent (i.e., 

connected by an edge).  Given a weighting of vertices, the maximum weight independent set 

problem (MWISP), which is NP-hard [23], is to prescribe an independent set of the graph that has 

maximum weight.  MWISP has many important applications, including combinatorial auctions [44], 

graph coloring [34], coding theory [32], geometric tiling [18], fault diagnosis [11], pattern 

recognition [26], molecular biology [22, 24, 35], and scheduling [27].  Additional applications arise 

in more comprehensive problems that involve MWISP with side constraints.   

This paper investigates a novel approach that solves MWISP exactly.  Our approach 

partitions the vertex set of a graph to obtain smaller vertex-induced sub-graphs on which MWISP is 

less challenging, on average, to solve.  We use a branch-and-price (B&P) framework to solve 

MWISP on the original graph  using these specially constructed sub-problems to generate 

columns.  MWISP is a member of the class of graph problems that we call inheritly decomposable 

because instances can be decomposed with sub-problems of the same type as the original problem 

(i.e., they inherit the nature of the original problem). 

G

Our goal is to investigate methods to distribute and manage the challenges posed by 

complexity.  In a sense, a traditional application of B&P deals with complexity by decomposing a 

block diagonal matrix structure, distributing the challenges of complexity among sub-problems and 

the master problem. However, the analyst typically has little control over the sizes and structures of 

the sub-problems.  In contrast, our approach allows the analyst to distribute complexity by 

prescribing the sizes and structures of sub-problems and manage it, for example, by devising 

algorithms to solve resulting sub-problems, facilitating solution of the master problem (e.g., 

reducing degeneracy and improving the co-ordination of sub-problem solutions), implementing 
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special-purpose branching rules, and tightening the master problem to facilitate solution.  Specific 

objectives of this research are to present a rationale for using price-directed decomposition to solve 

MWISP, to investigate effective implementation techniques, and to conduct computational tests to 

identify strengths and weaknesses of the approach. 

This paper deals only with finite, simple graphs that are undirected.  In graph ),( EVG = , 

which comprises vertex set V and edge set , an edge in  joining vertices  is denoted uv .  

The neighbors of vertex are  = 

E E ,u v V∈

Vv∈ )(vN { }EuvVu ∈∈ :  and the non-neighbors of  are v

( ) ( ) { }(\N v V N v v= U ) .  We extend this notation to a set W  by defining 

 and 

V⊆

( ) ( )( ) \v WN W N v W∈= U ( ) ( )( )\N W V N W W= U .  For any W , we denote the sub-graph 

induced by W  as 

V⊆

[ ]G W ; and for any , we denote the sub-graph induced by  as G F .  A 

non-negative weight  is associated with vertex 

F E⊆ F � �

vw v V∈ .   We use  to denote an independent 

set of G and sub-graph  to denote a clique of G (i.e., a complete sub-graph of G ).  For an 

introduction to graph theory, we refer the reader to [45].   

VS ⊆

K

Bron and Kerbosch [15] initiated exact approaches to the maximum independent set 

problem, a special case of MWISP with 1vw =  for all v V∈ , by proposing an explicit enumeration 

procedure.  Subsequent improvements using branch-and-bound (B&B) [4, 17] stimulated 

development of optimization methods for MWISP [1, 2, 16, 19, 28, 33, 38, 39, 40, 41, 47].  Balas 

and Xue [3] devised a notable algorithm that extended their previous work [2], using a fast heuristic 

for the weighted-fractional coloring problem to obtain good upper bounds for B&B.  Other effective 

heuristics are also available [16].   Nemhauser and Sigismondi [36] and Verweij [42, 43] have 

reported applications of strong cutting plane methods.  Mehrotra and Trick [34] recently proposed a 

column generation approach to the minimum coloring problem that employs a set-covering master 
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problem and a single sub-problem, which generates columns, each of which is a solution to MWISP 

with objective function coefficients determined by the values of dual variables associated with the 

master problem. 

The body of this paper is organized in six sections.  Section 2 presents the decomposition of 

MWISP that our B&P approach uses to distribute the challenges of complexity.  Sections 3, 4, and 5 

describe methods for managing the challenges of complexity.  Section 3 discusses two methods for 

partitioning a graph to create the sub-problems required by our approach.  Section 4 relates two 

methods for managing the size of the restricted master problem (RMP) (so called because it deals 

with a restricted set of all possible columns), and Section 5 describes two special-purpose branching 

rules.  Section 6 summarizes our computational tests and Section 7 presents conclusions and 

recommendations for future research.   

2 B&P Formulation 

MWISP can be formulated as a linear integer program: 

* Max :MWISP v v
v V

Z w x Q
∈

⎧ ⎫= ∈⎨ ⎬
⎩ ⎭
∑ x , 

in which edge inequalities define Q : 

{ }: 1,V
u vQ B x x uv= ∈ + ≤ ∀ ∈x E ,      (2) 

where nB  denotes the set of binary  vectors (n n V=  in this case) and 

 1 if vertex v is included in the independent set and =vx 0=vx  otherwise. 

Our approach begins by partitioning the vertex set of graph ),( EVG =  into P parts, .  For 

every , we define sub-graph 

PVV ,,1 K

},,1{ Pp K∈ ][ pp VGG =  with edge set .  Edges of G )( pp GEE =
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whose ends lie in different sets of the partition constitute set , which induces the 

sub-graph  with vertex set that we denote by .  

1
ˆ \ P

pp
E E E

=
= U

ˆG E� �
� �� � V̂

 With this partitioning, MWISP can be expressed as 

{*

1

ˆMax : 1, , , 1,...,
p

P
p

MWISP v v u v p
p v V

}Z w x x x uv E Q p P
= ∈

⎧ ⎫⎪ ⎪= + ≤ ∀ ∈ ∈ ∀ ∈⎨ ⎬
⎪ ⎪⎩ ⎭
∑∑ x ,  (3) 

where { }: 1,pV
p u vQ B x x uv= ∈ + ≤ ∀ ∈x pE .  Formulation (3) has a block-diagonal structure that 

is amenable to B&P: 

∑∑
=∈

==
P

p

pp

Vv
vv xwZ

1

*
MWISP MaxMax xw  

subject to 

  and 

1 2 1

1 2

2

0 0
0 0

0 0

P

P

P

A A A
D

D

D

⎡ ⎤
⎛ ⎞⎢ ⎥
⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥ ≤⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥ ⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

1

L

L

L
M

M M O M

L

x
x

x

| |pVp B∈x , {1, , }p P∀ ∈ K , 

where : matrix of coefficients in inequalities associated with edges  pA Euv ˆ∈

 : matrix of coefficients in inequalities associated with edges  pD pEuv∈

 : px pV -vector of decision variables associated with vertices pVv∈  

 : pw pV -vector of weights associated with vertices pVv∈ . 

Applying Dantzig-Wolfe Decomposition [5] to the linear relaxation of (3), we obtain RMP, a 

restricted version of the master problem that includes a subset of the columns associated with the 

extreme points of sub-problem polytopes: 
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∑∑
= ∈

=
P

p Jj

jpp
jp

p

Z
1

*
LP )(Max xwλ  

subject to 

1
( )

p

P
jp

jp p
p j J

Aλ
= ∈
∑∑ x   1        (4) ≤

p

jp
j J

λ
∈
∑   = 1  {1, , }p P∀ ∈ K     (5) 

      jpλ     0  ≥ {1, , }, pp P j J∀ ∈ ∈K , 

where : set of integer extreme points of  associated with generated columns in RMP pJ pQ

 : jpx pV -vector that defines extreme point pJj∈  

 jpλ : RMP decision variable that corresponds to extreme point pJj∈ . 

MWISP sub-problem  has the form },,1{ Pp K∈

( ){ }* Max :p T p p
p p pZ A Q= − ∈w x xα , 

where  is the -vector of dual variables associated with the rows of constraints (4).  In this 

model,  is an improving column if , where 

α |ˆ| E

jpx 0* >− ppZ β pβ  is the dual variable associated with 

the pth convexity constraint (5).  The role of RMP is to co-ordinate sub-problem solutions (through 

the values of dual variables) to prescribe a solution to MWISP on graph G.  Depending on the sub-

graph structure, the sub-problem may also be NP-hard; however, sub-graphs are smaller than the 

original graph  and we expect that they will be less challenging, on average, for optimizing 

algorithms to solve. 

G

 For an introduction to column generation, we refer the reader to [46].  We manage our 

column pool and sub-problem optimization in standard ways (again, see [46]), for example, 
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entering, at each iteration, all improving columns into the column pool that CPLEX manages. 

3 Partitioning V(G) 

We use two alternative methods to partition V(G).  The first method (p1) employs the 

procedure of Balas and Yu [4] to find a maximal chordal induced sub-graph  in G.  We then find 

a maximal chordal induced sub-graph  in 

1G

2G ( ) ( )1\G V G V G⎡ ⎤⎣ ⎦  and repeat the process until every 

vertex of G has been included in a chordal induced sub-graph.  The advantage of (p1) is that 

MWISP can be solved on each chordal sub-graph in polynomial time, for example, using Frank's 

solver [21]. A prime disadvantage is that it results in a large number of small sub-problems so that 

Ê  is large and, consequently, RMP is also large and requires more computational effort. 

 The second method (p2) applies METIS [29-31], a well-known clustering heuristic, to 

partition V(G) into a predetermined number P  of sets.  METIS assigns vertices to sets so that the 

cardinalities of the sets differ as little as possible (i.e., to assign n vertices to k sets, it creates 

 sets of )mod( kn ⎡ ⎤k
n  vertices and )mod( knk −  sets of ⎣ ⎦k

n  vertices).  Subject to that constraint, 

METIS attempts to minimize the number of edges that have ends in different sets.  As many as 

P V=  sets can, in principle, be specified for (p2), but we determine  by setting an a priori 

bound based on the size of a sub-problem that can typically be solved in an acceptable amount of 

time.  The advantage of (p2) is that it gives the analyst more control over the number of sets P and 

the density of ; its primary disadvantage is that the induced sub-graphs cannot be expected to 

have a special structure so that, typically, sub-problems cannot be solved in polynomial time.  We 

adapted the Carraghan-Pardalos algorithm [17], which finds a maximum clique in a graph, to solve 

these sub-problems. 

P

Ĝ
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The resulting Carraghan-Pardalos Adapted Algorithm (CPAA) incorporates obvious 

adaptations to enumerate all maximal independent sets (which suffices when all vertex weights are 

non-negative) either explicitly or implicitly by pruning one of its ancestors in a search tree whose 

nodes represent all independent sets of G .  Next, we outline our adaptation, CPAA. 

First, index the vertices of as G { }1 nv , ,v… .  The root node of the search tree represents the 

empty set, but each of the other nodes in the tree represents an independent set containing all 

vertices that comprise its parent's independent set plus one additional vertex whose index (according 

to our numbering) is greater than those in its parent's independent set.  All children of a node in the 

search tree that represent independent sets must be considered to ensure that all independent sets are 

enumerated.  Since each leaf of the tree represents a maximal independent set, enumerating leaves 

of the tree corresponds to enumerating maximum weight independent sets (assuming, as we do, that 

all vertex weights are non-negative).  Because the number of maximal independent sets can be 

prohibitively large, searching major parts of the tree implicitly is most desirable. 

Begin a search by assigning the heaviest known independent set to be empty (i.e., Ŝ = ∅ ) 

and activating the root node in the search tree.  An active non-leaf node of the tree represents an 

independent set S to which we assign a weight that is the sum of the weights of vertices in 

( )S N S∪ .  If this exceeds the weight of , construct the children of that node and make one of 

them active.  Otherwise, eliminate the sub-tree rooted at the current node and set as active its 

nearest unexplored relative (sibling, parent's sibling, grandparent's sibling, etc.), if any exists.  If an 

active leaf of the tree represents an independent set  that is heavier than , update 

Ŝ

S Ŝ Ŝ S← , 

eliminate the sub-tree rooted at the current node, and designate as active the nearest unsearched 

relative of the current node, if any exists.  After enumerating the search tree in this manner until no 

additional nodes can be made active,  prescribes a maximum weight independent set of .  In Ŝ G
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addition to using CPAA to solve sub-problems, we use it in our computational tests to solve each 

MWISP instance as a basis of comparison with our approach.  

4 RMP 

Method (p1) results in a large number of edges whose ends lie in different sets of the 

partition (i.e., Ê  is large) so that RMP has a large number of rows.  Even though method (p2) 

employs METIS, which seeks to minimize Ê , it may also result in a large RMP, especially in 

application to a dense graph.  This leads to a second issue because it can be shown that edge 

inequalities (4) relegated to RMP form a polytope that is degenerate if any vertex is included in 

more than one inequality.  If a vertex appears in m edge inequalities, it increases the order of 

degeneracy of RMP by .  Method (p1) typically relegates many edge inequalities to RMP and 

causes most vertices to appear in several of these inequalities, so it leads to large, highly degenerate 

RMPs.  If K is a clique in G that induces m edges of 

1−m

Ê , replacing the m corresponding constraints 

in RMP by a single inequality of the form ( ) 1vv V K
x

∈
≤∑  would decrease the order of degeneracy of 

RMP by ( )2m V K− , assuming ( ) ˆV K V⊆  (we can substitute ( ) ˆV K VI  for  without 

reducing m).  Note, however, that for a second clique 

( )V K

K ′  that induces m′  edges in  

and  edges in , substituting the clique inequality would reduce RMP degeneracy by 

( )ˆ \G E V K� �
� �� �

m ′′ Ê

( ) ( )2 ' ' 2 " 'm V K m V K− ≤ − .  All degeneracy could be eliminated by such substitutions only if 

every component of  is a clique, an unlikely circumstance. ˆG E� �
� �� �

 We dealt with RMP using two alternative methods.  The first method (m1) simply uses the 

constraints associated with edges in Ê ; it offers the advantage of simplicity but incurs the 
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computational disadvantages caused by the resulting size of RMP and its attendant degeneracy.  

 The second method (m2) solves a set-covering problem using a greedy heuristic [37] to 

select a set of clique and edge inequalities that covers all edges in Ê .  To identify clique 

inequalities we employ a best-in greedy heuristic, which the next paragraph describes, to construct a 

clique K̂  that is maximal in  and then employ the same heuristic to find a maximal clique K 

of  such that .  This method offers the advantages of producing a smaller 

polytope than does method (m1), cutting off many fractional solutions that are feasible for the (m1) 

polytope; of reducing the size of RMP in comparison with method (m1); and of incorporating clique 

inequalities that tighten RMP, improving the bounds it prescribes.  However, it may cover some 

edges of 

ˆG E� �
� �� �

]ˆ[VG ( ) ( )ˆV K V K⊆

Ê  with more than one inequality, so that it may not eliminate degeneracy altogether.   

The best-in greedy heuristic, which we employ to find independent sets, uses the function 

Gη  to assign a value to each vertex v V∈  equal to the ratio of its weight to the weight of its 

neighbors: specifically, it starts by setting S = ∅  and assigning ( ) ( ) ( )(/G Gv w v w N vη = ) , where 

.  At each iteration, it selects a vertex ( )( ) ( )( )G
G u N v

w N v w u
∈

=∑ ( ){ }ˆ arg maxv V Gv vη∈=  and 

includes  in the independent set, v̂ { }ˆS S v← ∪ ; removes the neighbors  of  from 

consideration; and updates the values 

( )ˆN v v̂

( )G vη  for ( )ˆv N v∈ .  It implements this process at each 

iteration until the set of selected vertices  form a maximal independent set. We use a 

complementary procedure to find heavy cliques (see Section 5). 

S

5 Branching 

To obtain a lower bound for MWISP at each node in the search tree, we select the  vertices k
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with the highest Gη  values and apply our best-in heuristic to each of  graphs k ( )G N v⎡⎣ ⎤⎦ , where v  

is one of these  vertices.  For each independent set  prescribed by the heuristic, k S { }S v∪  is a 

maximal independent set in G ; we use the weight of the heaviest of these k  sets as an initial lower 

bound for MWISP.  We then solve RMP to optimality to obtain an upper bound for MWISP at that 

node. 

 We use two different branching rules when the optimal solution of RMP is fractional.  The 

first rule (b1) branches on the most fractional variable  =vx
p

jp
v jpj J

x λ
∈∑  where .  Two new 

(child) B&B nodes result: one in which 

pv V∈

0=vx , and one in which 1=vx .  This traditional branching 

rule offers the advantage that it has been used successfully in many situations.   

The second rule (b2) branches on the vertices of a clique.  We identify a clique for 

branching by weighting each vertex according to the fractional part of its associated variable (i.e., 

the weight of vertex v  is given by (0.5 0.5vx− − ) ) and then greedily constructing a clique K of 

large weight that includes no vertices whose variables are fixed in the current B&B node.  To 

branch on the clique (see successful, analogous methods in [6, 7, 8, 9, 10, 20]), we create ( ) 1V K +  

children, fixing  for one  at each child node 1=vx Kv∈ ( )1,..., V K  and all variables to zero at 

child node ( ) 1V K + .  Our sub-problem solvers enforce the fixed values of decision variables.  

Preliminary tests indicate that this method improves on traditional SOS branching [37] applied to 

the same set.  Note that K need not be maximal and need not correspond to a cut for the current 

fractional solution. 

6 Computational Benchmarks 
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This section describes the computational environment, sets of instances, and measures of 

performance we use in our tests.  A table displays the results of each test and we discuss them to put 

them into perspective. 

We conduct all tests using a Dell Optiplex GX240 with a 3-GHz Pentium IV processor and 

512 MB of memory. We use CPLEX 7.1 to solve the linear programs. 

We employ two sets of test instances.  The first set comprises instances from the Second 

DIMACS Implementation Challenge, which are unweighted (we actually use the complements of 

the listed graphs, and this is reflected in the values of E ).  These DIMACS instances represent 

several families of graphs, each with a special structure induced by a particular application.   

Second, we generate random π  graphs to study our methods in application to instances that 

have no special structure.  After specifying the number of vertices )(GV  and the parameter π , we 

generate each π  graph G by including each possible edge (denoted  and ) with probability uv vu π  

.  We then draw the weight of each vertex from a discrete uniform distribution on the 

interval , with M = 1, 20, 40, 60, or 100.   The M = 1 case is, of course, the (unweighted) 

independent set problem.  For each value of 

(0 π≤ ≤ )1

],1[ M

π , we generate 25 independent instances (each using a 

unique random number seed), forming five subsets, each with a different value of M and each 

comprising five instances.  We note that very sparse graphs (i.e., densities of 5% or less) are not 

likely to be connected; we use them in our tests to evaluate the robustness of our B&P approach in 

comparison with CPAA.  Very sparse graphs are encountered in practice (e.g., Hamming8-2 in 

Table 4) so robustness is a desirable characteristic of a solution approach. 

We describe the graph involved in each test, giving the number of vertices , the number 

of edges , and the  % Density 

||V

|| E ( ) ( )200 / 1E V V⎡ ⎤∆ = ⎡ ⎤ −⎣ ⎦ ⎣ ⎦ .  We relate P, the number of sets 

                                                                                  12 
                                                                            
 



we specified in the partition, and the resulting  and RMP Rows, the number of rows in RMP.  

To evaluate model tightness, we give , , and  (or appropriate ratios), the optimal value of 

RMP at the root node of the B&B tree, the value that the initial heuristic returns, and the optimal 

value of the integer program, respectively.  Finally, we use several measures of performance to 

evaluate our B&P approach: B&B Nodes, the number of B&B nodes required to find the optimal 

solution; MP Sols., the total number times RMP is solved; and B&P Time, the CPU run time for our 

B&P approach to prescribe an optimal solution. 

|ˆ| E

LPZ HZ IPZ

We started with a battery of preliminary tests to compare the performances of alternative 

methods (p1) and (p2), (m1) and (m2), and (b1) and (b2).  Of the 8 possible combinations of these 3 

pairs of alternative methods, we report results on the same set of 13 DIMACS instances for the 3 

most promising combinations in Tables 1-3. 

Table 1 compares performances of (m1) and (m2) using methods (p2) and (b2).  The first six 

columns in Table 1 define the instance: graph designation, , , ||V || E ∆ , P, and .  The last five 

columns give the method (i.e., (m1) or (m2)) and the results for each, including RMP Rows, B&B 

Nodes, MP Sols., and B&P Time.  Results show that (m2) solves 7 of these 13 instances faster than 

(m1) (including 3 of the 4 most challenging instances), essentially ties on 5 of the instances, and is 

substantially slower on only one instance (brock200-3).  Because (m2) must incur a “set up” time to 

identify cliques, it is at somewhat of a disadvantage, especially on relatively sparse and relatively 

dense instances, which tend to require longer times for this set up.  (m2) requires more B&B nodes 

than (m1) in only 2 instances (brock200-3 and p_hat300-1), indicating that (m2) typically leads to a 

tighter model.  (m2) yields a smaller RMP (see RMP Rows) in 11 of the 13 instances and ties in the 

remaining two.  This speeds solution time in two ways: a smaller RMP basis requires less 

computational effort and, significantly, less degeneracy is involved.  The advantage provided by a 

|ˆ| E
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smaller RMP may be substantial; for example, the p_hat300-1 instance (m2) requires considerably 

more B&B Nodes and MP Solutions, but it requires less run time because it yields a smaller RMP.   

Method (m1) outperforms (m2) substantially in only one instance (brock200-3).  Based on this 

comparison, we select (m2) as a default to use on other tests. 

  Table 2 compares performances of (p1) and (p2) using methods (m2) and (b2).  Results 

show that (p2) solves 12 of the 13 instances faster than (p1) and essentially ties (p1) on the 13  

instance (hamming8-2).  (p1) suffers from a property that is difficult to overcome.  In particular, 

MWISP on a sub-graph that results from (p1) may be modeled using edge inequalities as shown in 

(2).  The polytope of the linear relaxation of (2) contains the convex hull of feasible integer 

solutions.  However, chordal graphs are perfect (West [45]) so that associated clique inequalities 

can be used to model MWISP; the polytope of the linear relaxation in this case is the same as the 

convex hull of feasible integer solutions.  Thus, (p1) defines sub-problems that have the Integrality 

Property (Wilhelm [46]); it is well known that such formulations may offer the advantage that sub-

problems can be solved in polynomial time but they typically suffer the serious disadvantage that 

they do not prescribe tight bounds and, therefore, more nodes must be explored in the B&B tree, 

requiring longer solution times.  We conclude that (p2) outperforms (p1) because it yields sub-

problems that do not, in general, exhibit the Integrality Property, resulting in smaller, tighter RMPs.  

B&B Nodes shows that (p2) enjoys a considerable advantage from the tightness of RMPs.  Method 

(p1) typically results in more sub-problems so that 

th

Ê  and, consequently, RMP rows are larger, 

requiring more run time. 

 Table 3 compares the performances of (b1) and (b2) using methods (p2) and (m2).  Results 

show that method (b2) is faster than (b1) on 10 of the 13 instances; it is significantly faster on each 

of the 4 most challenging instances.  Method (b2) essentially ties (b1) on the remaining three 
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instances, which are small graphs for which the overhead involved in finding cliques puts (b2) at a 

disadvantage.  Although (b2) creates more children at each node in the branch-and-bound tree than 

(b1), (b2) requires much smaller search-trees than (b1), on average (see B&B Nodes).  We conclude 

that (b2) is superior because cliques promote more discerning branching, improving performance, 

even though (b2) requires time to identify appropriate cliques.  

 These tests show that a number of complex interactions influence the performance of our 

B&P approach.  Based on preliminary tests, which are only partially described above, we conclude 

that the (m2)-(p2)-(b2) combination is the most reasonable and intuitively appealing. 

 Next, we evaluate the (m2)-(p2)-(b2) combination more extensively.  Table 4 compares the 

performance of our B&P approach to that of CPAA on the set of 13 DIMACS instances.  We test 

three different values of  on each instance to evaluate the sensitivity of our B&P approach to that 

parameter.  We selected CPAA as a basis of comparison because the Carraghan-Pardalos algorithm 

is effective, easily implemented, and has been used for benchmarking previously (e.g., see Balas 

and Xue [2]). Columns 1-4 in Table 4 describe each DIMACS instance: graph designation, , 

P

||V E , 

and .  Columns 5-7 give the value of  we selected and the resulting  and RMP Rows, 

respectively.  Columns 8-10 list , , and 

∆ P |ˆ| E

LPZ HZ IPZ , respectively.  Finally, Columns 11-14 give the 

performance measures we use: B&B nodes; MP Sols.; B&P Time; and CPAA Time, the CPU run 

time for CPAA to solve the instance.   

Results show that the performance of our B&P approach is sensitive to P, the number of sets 

specified in the partition; that it is able to solve the Hamming and Johnson graphs at the root node; 

and that it is more effective than CPAA on graphs with densities less than 40%.  Method (m2) 

reduces the RMP size substantially for many of these graphs (compare Ê  and RMP Rows).  Our 

run times to solve these DIMACS instances are quite reasonable, even for graphs with a large 
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number of vertices. 

In preliminary tests, we selected  using the rule of thumb that each sub-graph should 

comprise 30–50 vertices, a size that CPAA can typically solve effectively.  We found that CPAA 

cannot deal effectively with large, sparse sub-graphs so we increased the value of  for sparse 

graphs to make sub-graphs smaller.  However, as  increases, 

P

P

P Ê  also increases because more 

edges connect vertices in two different partitions.  For larger values of , sub-graphs are smaller so 

that sub-problems contain fewer edge inequalities, RMP provides weaker bounds, and the gap (i.e., 

the difference between the optimal solutions of the integer program and its linear relaxation) is 

larger.  We conclude that smaller 

P

Ê  is good in two ways: it indicates that RMP is smaller and 

easier to solve and sub-problems contain more edge inequalities so that RMP provides tighter 

bounds.  Based on preliminary tests, we select 4P =  as a reasonable “default” value for all 

instances, although some can be solved much faster by selecting more appropriate  values. P

Table 5 describes the random π  graphs that we generate for testing; all graphs use |V| = 100 

and ; our analysis and conclusions relate to this set of graphs and do not attempt to extrapolate 

to other cases.  Column 1 gives the value of 

4P =

π  and other columns describe the generated set of 

instances.  Columns 2-4, 5-7, and 8-10 give minimum, maximum and average values (over five 

instances) for the generated value of  and the  and RMP Rows that result from method (m2) 

for the specified |V| , , and 

|| E |ˆ| E

P π , respectively.   

Method (m2) reduces the size of the master problem if cliques that include more than two 

vertices that are incident to edges in  can be found.  If our procedure identifies a clique that 

includes only two vertices connected by an edge in , it does not reduce the number of rows in the 

master problem.  Only a few cliques identified for the sparse graphs in Table 5 include more than 

Ê

Ê
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two vertices connected by an edge in , so that RMP Rows is not much less than Ê Ê  for these 

instances (i.e., π  = 0.01, 0.05, and 0.10).  In any event, clique inequalities tighten the master 

problem.  Thus, clique inequalities can improve run time in two ways: by reducing the size of the 

master problem and by tightening it.  We employ our best-in heuristic to identify cliques but a more 

sophisticated procedure may be able to find “better” cliques for (m2) to use. 

Table 6 reports test results.  Column 1 gives π , providing a cross-reference to 

corresponding measures in Table 5, and column 2 relates M .  We solve each generated graph for 

the unweighted case and then solve 4 additional instances, each using a different distribution for 

assigning weights to vertices.  Columns 3-6 give overall measures, including * */LP IPZ Z , */H IPZ Z , 

B&B nodes, and RMP iterations.  Columns 7-9 give the minimum, maximum and average run times 

for our B&P approach to solve each set of five random graphs. Columns 10-12 give corresponding 

run times for CPAA to solve each set of five random graphs. 

As π  increases, the upper bounds from the linear relaxations ( * */LP IPZ Z  values in column 3) 

as well as the lower bounds from the heuristic ( */H IPZ Z  values in column 4) degrade.  The tightness 

of *
LPZ , the optimal solution at the root node, reduces as π  increases because sub-graphs contain 

fewer edges (they are assigned to ) so that generated columns reflect fewer (edge inequality) 

constraints.  As expected, weaker bounds make the denser problems more challenging (note B&B 

Nodes in column 5, RMP iterations in column 6 and run times in columns 7-9).   

Ê

Results in columns 5 through 12 show that, for a given π , the set of unweighted instances is 

consistently more challenging than the set of related, weighted instances.  Weighted instances (i.e., 

with M  = 20, 40, 60, 100) have comparable run times for most values of π  (exceptions are for 

0.05π =  and for  with 100M = 0.10π =  and 0.15π = ). 
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Most of the random graphs we generate using 0.01π =  are disconnected; in these instances 

METIS is able to partition the vertices so that Ê  = RMP Rows = 0 (see Table 5).  Our B&P 

approach solves MWISP at the root node of the B&B tree in each instance with 0.01π =  (see Table 

6).   

For each value of M  there is a trend for average run time to increase monotonically up to a 

certain value of π , then to decrease monotonically as π  continues to increase.  For example, this 

value of π  is 0.20 for the 1M =  (i.e., unweighted) case.  CPAA failed to solve all instances with 

0.01 0.10π≤ ≤  because they exceeded memory capacity (512 MB).  Our B&P gives better run 

times for instances with 0.01 0.20π≤ ≤ , but CPAA requires less run time on denser instances with 

0.30 0.50π≤ ≤ .  Even in these denser cases, however, our B&P approach does not require 

excessive run times.   

Complex interactions cause the run time of our B&P approach to increase, then decrease, as 

π  increases.  When π  is small, Ê  is small so that RMP has few rows and a low order of 

degeneracy.  Even though CPAA is most effective in application to dense (sub)graphs, sub-problem 

solutions need little co-ordination so that B&P requires little run time to solve sparse problems.  Ê  

increases with π , increasing the number of rows in RMP, the order of degeneracy of RMP, and run 

times.  As π  increases further, Ê  and the number of rows in RMP and its order of degeneracy all 

continue to increase but CPAA can solve the resulting sub-problems, which are quite dense, 

effectively.  In addition, sub-problems provide more information about the global solution because 

they incorporate more edges; as a consequence, RMP requires fewer iterations to prescribe an 

optimal solution. 

7 Conclusions 
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This paper offers a new approach for solving MWISP by utilizing a price-directed decomposition 

approach in conjunction with a branch-and-price framework to divide the complexity of the 

problem between the master problem and sub-problems.  This paper also offers a computational 

evaluation of the approach and accompanying implementation techniques to offer guidance for 

utilizing the approach. 

We evaluate two methods for partitioning the graph, (p1) and (p2); two methods for dealing 

with the master problem, (m1) and (m2); and two methods for branching, (b1) and (b2).  

Preliminary computational tests indicate that the (p2), (m2), and (b2) combination is generally more 

effective than alternatives.   

 Tests using a set of graphs taken from the Second DIMACS Implementation Challenge and 

another set of randomly generated π  graphs show that our B&P approach is more effective in 

application to sparse graphs, which result in small RMPs with low orders of degeneracy.  These 

tests on random π  graphs also show that the unweighted maximum independent set problem is 

consistently more computationally challenging than its MWISP counterpart.  Run time is sensitive 

to , the number of sets in the partition.  Parameters P π  and  affect the magnitude of |  and, 

thus, the size of the master problem, which increases with , tending to require longer run times.  

Importantly, our B&P approach is effective in application to graphs of low densities, the category of 

instances that are most challenging for earlier approaches.  In particular, our B&P approach 

performs well on very sparse graphs, demonstrating its robustness in comparison with CPAA.  

These conclusions relate to the set of graphs we tested with 

P ˆ| E

|ˆ| E

100V =  vertices and  partitions; 

we do not attempt to extrapolate to other cases.   

4P =

Clearly, the challenges of complexity cannot be eliminated.  This paper shows, however, 

that they can be distributed and managed to improve performance.  By investigating two methods to 
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partition a graph, this paper explores alternatives for distributing the challenges of complexity by 

prescribing the sizes and structures of sub-problems.  By studying two methods to formulate the 

master problem and two branching rules, this paper assesses means of managing these challenges.  

Specific techniques used to this end include controlling the size and tightness of the master 

problem, devising algorithms to solve resulting sub-problems, facilitating solution of the master 

problem (e.g., reducing degeneracy and improving the co-ordination of sub-problem solutions), 

implementing special-purpose branching rules, and tightening the master problem to facilitate 

solution.  The tests described in this paper demonstrate that a complex set of trade offs must be 

accommodated in managing these challenges, including the sizes and structures of sub-problems; 

the size, tightness, and order of degeneracy posed by the master problem; the size and density of the 

graph induced by edge inequalities that are relegated to the master problem; and the capabilities of 

the algorithm(s) employed to solve sub-problems and the overall B&B search. 

 Future research could contribute, for example, by devising techniques to determine a priori 

an optimal number of partitions (i.e., value of ) for a particular instance.  Other fertile 

opportunities to advance this line of research include devising more effective methods for 

partitioning, for dealing with large degenerate master problems, and for incorporating cutting planes 

to tighten the master problem in a branch-and-price-and-cut approach.  In addition, this study 

indicates an attractive potential for the successful application of B&P to other inheritly 

decomposable graph problems.  Our research continues along these lines. 
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Graph ||V  || E  ∆ P |ˆ| E Method RMP

Rows
B&B 

Nodes 
MP

Sols.
B&P
Time 
(sec.)

(m1) 626 1 3 0.6hamming8-2 256 1,024 3.1 20 626
(m2) 626 1 3 0.6
(m1) 26 98 2,091 2.4MANN_a9 45 72 7.3 5 26
(m2) 20 19 527 0.5
(m1) 96 1 3 0.3hamming6-2 64 192 9.5 8 96
(m2) 96 1 3 0.3
(m1) 240 6 89   0.9johnson8-4-4 70 560 23.2 3 240
(m2) 127 1 23 0.6
(m1) 1,082 >3,500 >76,809 *johnson16-2-4 120 1,680 23.5 8 1,082
(m2) 42 1 14 0.6
(m1) 3,293 21,067 405,073 4,557.1keller4 171 5,100 35.1 5 3,293
(m2) 1,995 12,523 307,029 1,812.2
(m1) 6,528 1 6 4.4hamming8-4 256 11,776 36.1 4 6,528
(m2) 3,707 1 12 6.1
(m1) 3,463 775 15,331 1,671.5brock200-3 200 7,852 39.5 2 3,463
(m2) 2,736 3,624 62,432 2,537.4
(m1) 137 136 1,962 1.3johnson8-2-4 28 168 44.4 8 137
(m2) 23 8 126 0.2
(m1) 9,523 45 1,321 86.1c-fat200-5 200 11,427 57.4 7 9,523
(m2) 9,393 33 1,238 86.3
(m1) 16,580 712 9,802 705.7p_hat300-1 300 33,917 75.6 2 16,580
(m2) 10,441 1,086 11,564 479.4
(m1) 12,261 17 233 20.9c-fat200-2 200 16,665 83.7 4 12,261
(m2) 11,406 8 127 19.2
(m1) 8,999 6 53 7.5c-fat200-1 200 18,366 92.3 2 8,999
(m2) 7,453 6 68 8.9

 
(m1) edge constraints only in master problem 
(m2) clique constraints replace edge constraints in master problem 
* exceeded memory capacity of 512 MB  
 
Table 1: Comparison of methods (m1) and (m2) 
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Graph ||V  || E  ∆  P Method |ˆ| E RMP

Rows
B&B 

Nodes 
MP

Sols.
B&P
Time 
(sec.)

(p1) 846 846 1    3 0.6hamming8-2 256 1,024 3.1 20
(p2) 626 626 1     3 0.6
(p1) 32 26 40 904 2.7MANN_a9 45 72 7.3 5
(p2) 26 20 19 527 0.5
(p1) 156 156 1 3 0.3hamming6-2 64 192 9.5 8
(p2) 96 96 1 3 0.3
(p1) 433 295 79 2,882 11.5johnson8-4-4 70 560 23.2 3
(p2) 240 127 1 23 0.6
(p1) 1,243 108 16 400 1.7johnson16-2-4 120 1,680 23.5 8
(p2) 1,082 42 1 14 0.6
(p1) 4,499 3,226 >26,370 >853,215 *keller4 171 5,100 35.1 5
(p2) 3,293 1,995 12,523 307,029 1,812.2
(p1) 10,650 7,434 >3,500 >38,126 *hamming8-4 256 11,776 36.1 4
(p2) 6,528 3,707 1 12 6.1
(p1) 7,325 6,738 >9,334 >200,240 *brock200-3 200 7,852 39.5 2
(p2) 3,463 2,736 3,624 62,432 2,537.4
(p1) 113 22 8 99 1.1johnson8-2-4 28 168 44.4 8
(p2) 137 23 8 126 0.2
(p1) 11,201 11,077 >13 6,396 *c-fat200-5 200 11,427 57.4 7
(p2) 9,523 9,393 33 1,238 86.3
(p1) 31,511 24,833 >2,170 >84,660 *p_hat300-1 300 33,917 75.6 2
(p2) 16,580 10,441 1,086 11,564 479.4
(p1) 15,912 15,156 25 1,293 261.1c-fat200-2 200 16,665 83.7 4
(p2) 12,261 11,406 8 127 19.2
(p1) 16,696 14,504 90 2,047 158.5c-fat200-1 200 18,366 92.3 2
(p2) 8,999 7,453 6 68 8.9

(p1) partitioning the graph into chordal subgraphs 
(p2) partitioning the graph using METIS 
* exceeded memory capacity of 512 MB  
 
Table 2: Comparison of methods (p1) and (p2) 
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Graph ||V  || E  ∆ P |ˆ| E RMP 

Rows
Method B&B 

Nodes 
B&P
Time 
(sec.)

626 (b1) 1 0.7hamming8-2 256 1,024 3.1 20 626
626 (b2) 1 0.6
20 (b1) 13 0.6MANN_a9 45 72 7.3 5 26
20 (b2) 19 0.5
96 (b1) 1 0.2hamming6-2 64 192 9.5 8 96
96 (b2) 1 0.3

127 (b1) 1 0.6johnson8-4-4 70 560 23.2 3 240
127 (b2) 1 0.6
42 (b1) * *johnson16-2-4 120 1,680 23.5 8 1,082
42 (b2) 1 0.6

1,995 (b1) 16,579 12,793.5keller4 171 5,100 35.1 5 3,293
1,995 (b2) 12,523 1,812.2
3,707 (b1) 1 6.0hamming8-4 256 11,776 36.1 4 6,528
3,707 (b2) 1 6.1
2,736 (b1) >7,500 *brock200-3 200 7,852 39.5 2 3,463
2,736 (b2) 3,624 2,537.4

23 (b1) 7 0.7johnson8-2-4 28 168 44.4 8 137
23 (b2) 8 0.2

9,393 (b1) 51 293.2c-fat200-5 200 11,427 57.4 7 9,523
9,393 (b2) 33 86.3

10,441 (b1) >2,000 *p_hat300-1 300 33,917 75.6 2 16,580
10,441 (b2) 1,086 479.4
11,406 (b1) 13 41.5c-fat200-2 200 16,665 83.7 4 12,261
11,406 (b2) 8 19.2
7,453 (b1) 9 9.5c-fat200-1 200 18,366 92.3 2 8,999
7,453 (b2) 6 8.9

 
(b1) branch on most fractional variable 
(b2) branch on vertices (i.e., nodes) of a clique 
* exceeded memory capacity of 512 MB  
 
Table 3: Comparison of methods (b1) and (b2) 
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Graph ||V  || E  ∆ P |ˆ| E RMP 

Rows
LPZ HZ IPZ  B&B

Nodes
MP

Sols.
B&P
Time 
(sec.)

CPAA
Time 
(sec.)

hamming8-2    256 1,024 3.1 11 493 493 128.0 128 128 1 3 1.0 *
hamming8-2    256 1,024 3.1 20 626 626 128.0 128 128 1 3 0.6 *
hamming8-2    256 1,024 3.1 24 716 716 128.0 128 128 1 3 0.6 *
MANN_a9  45 72 7.3 5 26 20 18.0 16 16 19 527 0.5 620.8
MANN_a9   45 72 7.3 6 29 22 18.0 16 16 25 687 0.5 620.8
MANN_a9   45 72 7.3 8 35 31 18.5 16 16 43 1,363 0.7 620.8
hamming6-2    64 192 9.5 4 64 64 32.0 32 32 1 3 0.3 *
hamming6-2    64 192 9.5 6 114 114 32.0 32 32 1 3 0.3 *
hamming6-2    64 192 9.5 8 96 96 32.0 32 32 1 3 0.3 *
johnson8-4-4   70 560 23.2 2 140 62 14.0 14 14 1 22 1.7 14.9
johnson8-4-4   70 560 23.2 3 240 127 14.8 14 14 1 23 0.6 14.9
johnson8-4-4   70 560 23.2 6 348 217 16.4 14 14 13 492 0.8 14.9
johnson16-2-4    120 1,680 23.5 6 1,088 15 8.0 8 8 1 9 0.6 *
johnson16-2-4    120 1,680 23.5 8 1,082 42 8.5 8 8 1 14 0.6 *
johnson16-2-4    120 1,680 23.5 10 1,234 128 10.5 8 8 11 335 0.9 *
 
* exceeded memory capacity of 512 MB  

Table 4: Instances taken from the Second DIMACS Implementation Challenge  

      solved using the (m2)-(p2)-(b2) combination of methods 
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Graph ||V  || E  ∆ P |ˆ| E RMP 
Rows

LPZ HZ IPZ  B&B
Nodes

MP
Sols.

B&P
Time 
(sec.)

CPAA
Time 
(sec.)

keller4 171 5,100 35.1 4 3,003 1,853 17.8 8 11 14,456 329,556 1,934.2 3,075.4
keller4 171 5,100 35.1 5 3,293 1,995 18.1 8 11 12,523 307,029 1,812.2 3,075.4
keller4 171 5,100 35.1 8 3,744 2,554 20.7 8 11 24,690 694,846 12,831.5 3,075.4
hamming8-4  256 11,776 36.1 4 6,528 3,707 16.0 16 16 1 12 6.1 *
hamming8-4  256 11,776 36.1 5 7,707 4,505 20.8 16 16 440 21,373 536.5 *
hamming8-4  256 11,776 36.1 8 8,774 6,529 23.5 16 16 2,332 97,283 2,357.9 *
brock200-3  200 7,852 39.5 2 3,463 2,736 20.0 11 15 3,624 62,432 2,537.4 *
brock200-3 200 7,852 39.5 3 4,709 3,964 24.0 11 -- >10,024 >50,049 >14,400 *
johnson8-2-4  28 168 44.4 4 100 12 4.0 4 4 1 7 0.53 0.0
johnson8-2-4   28 168 44.4 5 124 32 5.3 4 4 6 95 0.45 0.0
johnson8-2-4   28 168 44.4 8 137 23 5.0 4 4 8 126 0.23 0.0
 
* exceeded memory capacity of 512 MB  
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Graph ||V  || E  ∆ P |ˆ| E RMP 

Rows
LPZ HZ IPZ  B&B

Nodes
MP

Sols.
B&P
Time 
(sec.)

CPAA
Time 
(sec.)

c-fat200-5  200 11,427 57.4 4 8,118 7,985 66.7 58 58 33 1,328 157.8 41.4
c-fat200-5  200 11,427 57.4 7 9,523 9,393 66.7 58 58 33 1,238 86.3 41.4
c-fat200-5  200 11,427 57.4 8 9,787 9,655 66.7 58 58 33 1,599 112.1 41.4
p_hat300-1  300 33,917 75.6 2 16,580 10,441 12.9 5 8 1,086 11,564 479.4 3.9
p_hat300-1  300 33,917 75.6 3 21,972 13,968 16.0 5 8 4,032 44,928 2,302.3 3.9
p_hat300-1  300 33,917 75.6 5 26,448 17,813 20.7 5 8 8,834 122,254 6,411.4 3.9
c-fat200-2  200 16,665 83.7 4 12,261 11,406 26.2 24 24 8 127 19.2 1.2
c-fat200-2  200 16,665 83.7 5 13,156 12,300 25.5 24 24 8 138 22.6 1.2
c-fat200-2  200 16,665 83.7 8 14,504 13,783 26.9 24 24 26 685 56.6 1.2
c-fat200-1  200 18,366 92.3 2 8,999 7,453 13.0 12 12 6 68 8.9 1.0
c-fat200-1  200 18,366 92.3 3 12,137 9,996 14.0 12 12 19 219 19.4 1.0
c-fat200-1  200 18,366 92.3 6 15.232 12,807 13.3 12 12 13 181 24.6 1.0
 
* exceeded memory capacity of 512 MB  
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π    E     Ê   RMP Rows 
  Min Max Avg  Min Max Avg Min Max Avg 
            

0.01  37 62 50.0  0 3 0.4 0 3 0.4 
0.05  219 276 246.2  67 107 91.4 67 107 86.6 
0.10  461 534 497.2  224 281 252.7 195 243 220.5 
0.15  704 780 742.6  390 453 419.2 332 397 361.8 
0.20  949 1,040 983.1  549 629 591.6 462 538 503.2 
0.30  1,405 1,530 1,471.9  883 977 939.0 747 819 786.4 
0.40  1,919 2,089 1,981.6  1,268 1,407 1,321.4 1,025 1,143 1,079.4 
0.50  2,395 2,586 2,475.8  1,622 1,779 1,697.2 1,231 1,362 1,325.2 
 
Table 5: Randomly generated graphs 
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  Overall measures B&P Run Times CPAA Run Times 

π  M  

* /LPZ  
*
IPZ  

/HZ  
*
IPZ  

B&B 
Nodes 

RMP 
Iterations Min Max Avg Min Max Avg

          
0.01 1 1.00 1.00 1.0 3.0 0.3 0.6 0.4 * * *
 20 1.00 0.91 1.0 3.0 0.2 0.5 0.3 * * *
 40 1.00 0.98 1.0 3.0 0.2 0.5 0.3 * * *
 60 1.00 0.98 1.0 3.0 0.2 0.5 0.3 * * *
 100 1.00 0.98 1.0 3.0 0.2 0.4 0.3 * * *
          
0.05 1 1.03 0.93 11.2 553.4 25.1 65.8 36.8 * * *
 20 1.01 0.94 6.2 350.8 3.5 27.9 10.2 * * *
 40 1.00 0.91 0.6 56.2 0.8 7.7 4.5 * * *
 60 1.00 0.93 1.2 74.6 0.3 7.3 3.3 * * *
 100 1.01 0.94 7.0 453.4 0.3 52.2 19.6 * * *
          
0.10 1 1.21 0.86 696.4 31,760.6 88.5 437.3 261.0 * * *
 20 1.06 0.92 22.6 1,348.6 13.8 46.3 27.1 * * *
 40 1.11 0.91 106.0 6,224.4 29.8 137.3 72.7 * * *
 60 1.10 0.93 72.8 4,459.2 27.7 97.7 55.3 * * *
 100 1.13 0.90 182.6 11,423.2 66.9 295.0 128.5 * * *
          
0.15 1 1.33 0.87 365.0 69,322.0 138.4 538.5 311.3 11,125.0 16,046.0 12,745.0
 20 1.24 0.91 384.6 17,263.0 29.7 135.9 84.1 1,688.6 5,281.4 3,100.2
 40 1.23 0.90 331.6 16,167.8 28.6 129.84 79.8 1,772.4 4,011.2 2,879.2
 60 1.24 0.89 247.2 11,392.4 44.0 76.9 59.2 1,992.0 4,626.9 2,998.8
 100 1.26 0.92 365.4 25,243.6 45.1 225.5 112.6 1,844.8 3,355.2 2,845.3
          
0.20 1 1.43 0.82 3,516.8 109,975.4 179.1 548.9 362.3 836.6 1,991.5 1,527.6
 20 1.30 0.90 403.8 15,594.6 35.7 83.2 63.9 245.4 1,032.8 570.6
 40 1.30 0.90 483.8 17,932.6 30.3 82.5 69.1 321.4 772.9 529.1
 60 1.31 0.91 447.0 17,645.2 46.3 83.3 67.4 212.6 1,141.9 437.8
 100 1.32 0.87 505.4 19,118.6 41.8 92.1 72.7 356.9 595.7 471.3
          
0.30 1 1.55 0.85 2,142.4 49,392.2 77.7 220.1 148.5 58.1 73.2 66.7
 20 1.43 0.88 351.2 9,881.2 25.2 45.2 34.4 15.2 30.3 20.6
 40 1.46 0.90 455.6 13,170.4 21.2 69.1 43.8 18.7 34.0 24.1
 60 1.46 0.86 687.8 18,199.4 38.7 122.9 59.6 19.6 40.9 28.7
 100 1.40 0.88 351.2 10,186.8 20.5 48.5 33.9 12.7 35.5 22.7
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0.40 1 1.68 0.83 1,327.2 25,159.8 35.3 114.8 84.4 4.3 8.6 6.6
 20 1.57 0.86 444.6 9,500.2 19.5 43.9 33.8 2.5 3.7 3.1
 40 1.64 0.87 590.0 12,355.0 33.9 53.8 41.3 2.6 3.8 3.3
 60 1.51 0.87 353.2 7,780.8 19.3 37.1 27.2 3.2 4.4 3.8
 100 1.59 0.87 548.2 11,431.0 20.6 56.3 39.6 2.9 4.2 3.6
          
0.50 1 1.66 0.73 605.6 10,261.4 26.2 52.0 39.0 1.1 1.4 1.2
 20 1.68 0.78 377.0 6,637.4 18.2 35.7 25.1 0.7 1.0 0.8
 40 1.61 0.76 287.4 5,117.8 9.6 28.8 19.7 0.6 0.8 0.7
 60 1.56 0.75 227.6 4,100.2 12.9 20.1 16.3 0.6 0.8 0.7
 100 1.64 0.87 370.6 6,441.4 23.1 30.8 27.4 0.6 0.8 0.7
 
* exceeded memory capacity of 512 MB  
 
Table 6: Test results on randomly generated graphs 
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