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Abstract

Given a square matrix A, a Brauer’s theorem [Limits for the char-
acteristic roots of matrices IV: Applications to stochastic matrices, Duke
Math. J. 19 (1952), 75-91] shows how to modify one single eigenvalue of A
via a rank-one perturbation without changing any of the remaining eigen-
values. Older and new results can be considered in a framework of the
above theorem. In particular, we present some applications to stabilize
control systems, including the case when the system is noncontrollable.
Other applications are related with the Jordan form of A, Wielandt’s and
Hotelling’s deflations and the Google matrix. In 1955, Perfect presented
an extension of such Brauer’s result to change r eigenvalues of A at the
same time via a rank-r perturbation without changing any of the remain-
ing eigenvalues. The same results considered by blocks can be put into
the block version framework of the above theorem.

Keywords: eigenvalues, pole assignment problem, controllability, low rank perturba-

tion, deflation techniques, Google matrix.

1 The Brauer’s theorem

The relationship among the eigenvalues of an arbitrary matrix and the updated
matrix by a rank one additive perturbation was proved by A. Brauer [1] and
we will refer as the Brauer’s Theorem. It turns out that this result is related
with older and well known results on techniques as Wielandt’s and Hotelling’s
deflations (see [10]) and new results on the Google matrix (see [6]). Further, the
eigenvalue localization problem of control theory (see [5]) can be stated as an
application of the Brauer’s Theorem and so, the stabilization of these control
systems. In addition, the Brauer result has been first applied by Perfect [7] to
construct nonnegative matrices with a prescribed spectrum.

In the first part of the paper (sections 1 and 2), we give related results
that can be considered in a common framework of the Brauer’s Theorem as
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applications of it. A good introduction on the Brauer result and its application
to the nonnegative inverse eigenvalue problem can be followed in [9] where an
extended version is given. Further, this extended version, which is due to R.
Rado (see [7]), is considered in the second part of the paper (sections 3 and 4)
and applied to related results by blocks as the Brauer’s Theorem.

Throughout the paper, we assume that the set of numbers that may be
eigenvalues of a matrix are feasible in the corresponding field (i.e., closed under
complex conjugation in the real field).

For completeness, we shall give a proof of the Brauer’s Theorem based on
the Rado’s proof [7].

Theorem 1 Let A be an n×n arbitrary matrix with eigenvalues σ(A) = {λ1, λ2,
. . . , λn}. Let xk be an eigenvector of A associated with the eigenvalue λk, and
let q be any n-dimensional vector. Then the matrix A + xkqT has eigenvalues
{λ1, . . . , λk−1, λk + xT

k q, λk+1, . . . , λn}.

Proof: There is no loss of generality in assuming that k = 1. Let S = [x1 Y ]

be a nonsingular matrix and consider S−1 =
[

l1
V

]
. As Ax1 = λ1x1 we have

S−1AS =
[

l1
V

]
A [x1 Y ] =

[
l1
V

]
[Ax1 AY ] =

[
λ1 l1AY
O V AY

]
then σ(V AY ) = {λ2, . . . , λn} and

S−1(x1q
T )S =

[
l1
V

]
(x1q

T )S =
[

1
O

]
qT S =

[
qT x1 qT Y

O O

]
.

Therefore,

S−1(A + x1q
T )S = S−1AS + S−1(x1q

T )S

=
[

λ1 l1AY
O V AY

]
+

[
qT x1 qT Y

O O

]
=

[
λ1 + qT x1 l1AY + qT Y

O V AY

]
and

σ(A + x1q
T ) = {λ1 + qT x1} ∪ σ(V AY ) = {λ1 + qT x1, λ2, . . . , λn}.

The above proof gives the insight to preserve the Jordan structure when A
is perturbed by a one-rank update. We see that in the following result.

Corollary 1 Consider the conditions of Theorem 1. If the following statements
hold,
(i) S is the matrix such that tal que S−1AS = JA, where JA is the Jordan form
of A,
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(ii) λ1 is associated with a Jordan chain of length 1, that is, l1AY = O1×(n−1),
(iii) if we take q as an orthogonal vector to the remaining eigenvectors of A,
that is, qT xi = 0, i = 2, . . . , n, i.e., qT Y = O1×(n−1),
then the Jordan structures of A and A + x1q

T are the same.

Proof: Applying the statements in the proof of Theorem 1, it follows easily
that

S−1(A + x1q
T )S =

[
λ1 + qT x1 O

O V AY

]
with

S−1AS =
[

λ1 O
O V AY

]
= JA.

Then the Jordan structure of the matrices are the same.

Although only the eigenvalue λk changes to µk = λk + xT
k q and without

changing any of the remaining eigenvalues, xk is the only eigenvector of A that
is preserved as eigenvector of the matrix A + xkqT . The other eigenvectors of
A change as eigenvectors of A + xkqT associated with the same eigenvalues λi,
i 6= k. We can see these changes in the following result, which is well-known [8].
However we give the proof for completeness.

Proposition 1 Let A be an n×n arbitrary matrix with eigenvalues σ(A) = {λ1,
λ2, . . . , λn}. Let xi be an eigenvector of A associated with the eigenvalue λi,
with 1 ≤ i ≤ n. Let q be any n-dimensional vector and let µk = λk + xT

k q, with
µk 6= λi, i = 1, 2, . . . , n. Then, xk is an eigenvector of the matrix A + xkqT

associated with the eigenvalue µk = λk +xT
k q, and the eigenvectors of A+xkqT

associated with λi, i 6= k, are:

wi = xi −
qT xi

µk − λi
xk.

Proof: As xk is an eigenvector of A associated with the eigenvalue λk, we
have (A− λkI)xk = 0. Then,

(A + xkqT − (λk + xT
k q)I)xk = (A− λkI)xk + (xkqT )xk − (xT

k q)xk =

= 0 + xk(qT xk)− (xT
k q)xk =< q, xk > xk− < xk, q > xk = 0

and so xk is also an eigenvector of A + xkqT associated with µk.
For the eigenvectors associated with the unchanged eigenvalues (i 6= k), we

have

(A + xkqT )
(

xi −
qT xi

µk − λi
xk

)
= Axi + (qT xi)xk −

qT xi

µk − λi
µkxk

= λixi −
(

qT xi

µk − λi
µk − qT xi

)
xk

= λixi − λi
qT xi

µk − λi
xk

= λi

(
xi −

qT xi

µk − λi
xk

)

3



However, the changes of the left eigenvectors of A and A + xkqT are in the
opposite way as we can see in the next result for a diagonalizable matrix A.

Proposition 2 Let A be an n×n diagonalizable matrix with eigenvalues σ(A) =
{λ1, λ2, . . . , λn}. Let lTi be a left eigenvector of A corresponding to λi, with
1 ≤ i ≤ n. Let q be any n-dimensional vector and let µk = λk + xT

k q, with
µk 6= λi, i = 1, 2, . . . , n. Then, the left eigenvectors of A + xkqT corresponding
to λi, i 6= k, are rT

i = lTi , and the left eigenvector of A + xkqT corresponding to
µk is:

rT
k = lTk +

n∑
i = 1
i 6= k

qT xi

µk − λi
lTi .

Proof: By lTi is a left eigenvector of A corresponding to λi, we have lTi (A−
λiI) = 0, with i 6= k. Otherwise, < li, xk >= 0, for all i 6= k, then

rT
i (A + xkqT − λiI) = lTi (A + xkqT − λiI)

= lTi (A− λiI) + lTi (xkqT ) = 0 + (lTi xk)qT

= < li, xk > qT = 0,

and lTi , i 6= k, is a left eigenvector of A+xkqT corresponding to λi. With respect
to the left eigenvector rT

k , we have:
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rT
k (A + xkqT ) =

=

lTk +
n∑

i = 1i 6= k

qT xi

µk − λi
lTi

 (A + xkqT )

= lTk A + lTk xkqT +
n∑

i = 1
i 6= k

qT xi

µk − λi
lTi A +

n∑
i = 1
i 6= k

qT xi

µk − λi
lTi xkqT

= λklTk + qT +
n∑

i = 1
i 6= k

qT xi

µk − λi
λil

T
i

= λklTk +
n∑

i = 1
i 6= k

qT xi

µk − λi
λil

T
i + qT (x1l

T
1 + x2l

T
2 + · · ·+ xnlTn︸ ︷︷ ︸

I

)

= (λk + qT xk︸ ︷︷ ︸
µk−λk

)lTk +
n∑

i = 1
i 6= k

(
qT xi

µk − λi
λi + qT xi

)
lTi

= µklTk +
n∑

i = 1
i 6= k

qT xi

µk − λi
µklTi

= µk

lTk +
n∑

i = 1
i 6= k

qT xi

µk − λi
lTi

 = µkrT
k

2 Related results

The Brauer’s Theorem [1] can be applied to prove different related results as
we can see in the next subsections. Note that some results are previous to the
Brauer result.
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2.1 Deflation techniques

In 1944 Wielandt gave a deflation method for general matrices shifting one
eigenvalue to zero (see [10]). This result is an inmediate consequence of the
Brauer’s Theorem.

Corollary 2 (Wielandt’s deflation) Consider the conditions of Theorem 1.
Let q be any vector such that qT xk = −λk, then the matrix A + xkqT has the
eigenvalues {λ1, . . . , λk−1, 0, λk+1, . . . , λn}.

Proof: Apply Brauer’s Theorem with a vector q such that qT xk = −λk.

Remark 1 When the general matrix A is symmetric, then A is diagonalizable
and we can choose an orthogonal matrix X = [x1 x2 . . . xn] with the eigen-
vectors of A. In this case the matrix B = A + (µk − λk)xkxT

k is symmetric
(diagonalizable) and it can be verified that the eigenvectors of B remaining
eigenvalues are the eigenvectors of A.

The above result contains an older technique due to Hotelling in 1933 for
symmetric matrices that can be extended to nonsymmetric matrices.

Corollary 3 (Hotelling’s deflation) Consider the conditions of Theorem 1.
(i) Symmetric case. Let q = −λkxk, then the symmetric matrix A − λkxkxT

k

has the eigenvalues {λ1, . . . , λk−1, 0, λk+1, . . . , λn}, provided that xT
k xk = 1.

(ii) Nonsymmetric case. Let q = −λklk, where lk is the k-left eigenvector of A,
with lTk xk = 1. Then the matrix A− λkxklTk has the eigenvalues {λ1, . . . , λk−1,
0, λk+1, . . . , λn}.

Proof: Apply Brauer’s Theorem with a vector q = −λkxk in the symmetric
case and q = −λklk in the nonsymmetric case.

2.2 Google matrix

In the last decade a lot of work has been done on the Google matrix for comput-
ing the PageRank vector. To check mathematical properties of existence and
convergence of the Page Rank power method a stochastic matrix is updated by
a rank one matrix to construct the Google matrix. Then, in [6, Theorem 5.1]
the relationship between the spectrum of both matrices is given. This result
can be seen as a corollay of the Brauer’s Theorem 1.

Corollary 4 Let A be a row stochastic matrix with eigenvalues σ(A) = {1, λ2,
. . . , λn}. Denote by e the eigenvector associated with the eigenvalue 1. Then
the matrix αA + (1 − α)evT has eigenvalues {1, αλ2, . . . , αλn}, where vT is a
probability vector and 0 < α < 1.

Proof: Apply the Brauer’s Theorem 1 to the matrix αA with the vector
q = (1− α)v.
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2.3 Pole assignment of SISO systems

Another application can be obtained from the Brauer’s Theorem 1 for single-
input single-output (SISO) linear time invariant control systems when the sys-
tem given by the pair (A, b) is not completely controllable. Concretely, given a
SISO system we use an state feedback to place the poles of the closed-loop sys-
tem at specified points in the complex plane. More precisely, the pole placement
problem consist of:

Consider the pair (A, b) and let σ(A) = {λ1, λ2, . . . , λn}. Let µk a
number. Under what conditions on (A, b) does there exist a vector f
such that the spectrum of the closep-loop system A+bfT , σ(A+bfT ),
is {λ1, . . . , λk−1, µk, λk+1, . . . , λn}?

The following result answers this question.

Proposition 3 Consider the pair (A, b), let σ(A) = {λ1, λ2, . . . , λn} and let xk

be an eigenvector of AT associated with λk. If bT xk 6= 0, then there exists a
vector f such that σ(A + bfT ) = {λ1, . . . , λk−1, µk, λk+1, . . . , λn}.

Proof: As σ(AT ) = σ(A) and by the Brauer’s Theorem 1 applied to AT ,
the matrix AT + xkqT has eigenvalues λ1, . . . , λk−1, λk + qT xk, λk+1, . . . , λn,
where q is any n-dimensional vector. It is clear that σ(A + qxT

k ) = {λ1, . . . ,
λk−1, λk + qT xk, λk+1, . . . , λn}.

Consider q = b and f = xk. If bT xk 6= 0, we have:

λk + qT xk = λk + bT xk = µk =⇒ bT xk = µk − λk

then σ(A + bfT ) = {λ1, . . . , λk−1, λk + qT xk, λk+1, . . . , λn}.

Remark 2 (a) Note that the assumption of bT xk 6= 0 is needed only to assure
the change of the eigenvalue λk. Otherwise no eigenvalue changes.

(b) By this result we can say that the pole assignment problem has a solution
if xk is not orthogonal to the vector b (that is, bT xk 6= 0) (see [2]). When
this condition holds for all eigenvectors of AT , then it is said that the pair
(A, b) is completely controllable, in this case the solution is unique [3].

(c) If µk 6= λi, for i = 1, 2, . . . , n, i 6= k, then the eigenvectors of AT change
as Proposition 1 shows, that is, the eigenvector of AT associated with λk

is the same. Further, the eigenvectors of AT corresponding to λi, i 6= k,
such that bT xi = 0 remain unchanged.

(d) If λi 6= λj for each i 6= j, and bT xi 6= 0, then it is also obtained that
bT wi 6= 0, where wi is defined in Proposition 1.

7



Example 1 Consider the pair (A, b)

A =


−2 −3 −2 0

2 3 2 0
3 3 3 0
0 1 −2 2

 , b =


0
0
1
1

 .

This pair (A, b) is not completely controllable since the rank of the controllability
matrix

C(A, b) = [b Ab A2b A3b] =


0 −2 −8 −26
0 2 8 −26
1 3 9 27
1 0 −4 −18


is 3. Note that σ(A) = σ(AT ) = {0, 1, 2, 3} and the eigenvectors of AT are:

xT
λ=0 = (α1,−α1, 0, 0) ∀α1 6= 0 =⇒ bT xλ=0 = 0

xT
λ=1 = (α2, 0, α2, 0) ∀α2 6= 0 =⇒ bT xλ=1 = α2

xT
λ=2 = (α3, 2α3, 0, α3) ∀α3 6= 0 =⇒ bT xλ=2 = α3

xT
λ=3 = (α4, α4, α4, 0) ∀α4 6= 0 =⇒ bT xλ=3 = α4

Although the system is not completely controllable, we can change all the eigen-
values of A, but λ = 0. For instance, if we change λ = 3 by µ = 0.7 we consider
the eigenvector of AT associated with λ = 3 and obtain

bT xλ=3 = α4 = 0.7− 3 = −2.3 =⇒ α4 = −2.3

Then, fT = (−2.3,−2.3,−2.3, 0) and

A + bfT =


−2 −3 −2 0

2 3 2 0
0.7 0.7 0.7 0

−2.3 −1.3 −4.3 2

 with σ(A + bfT ) = {0, 0.7, 1, 2}.

Consider a SISO discrete-time (or continuous-time) invariant linear system
given by the pair (AT , b). Let σ(AT ) = {λ1, λ2, . . . , λn}. The system is asymp-
totically stable if all eigenvalues λi of AT satisfy |λi| < 1 (or Re(λi) < 0), see
for instance [3, 5]. Then applying properly Proposition 3 to an unstable pair
(A, b) we can obtain the closed-loop system A+ bfT with the feedback vector f
equals to the eigenvector associated with the eigenvalue λk such that |λk| ≥ 1
(or Re(λk) ≥ 0).

The following algorithm gives the stabilization of the SISO system (AT , b)
by Proposition 3 and the Power Method [8] assuming that AT has a dominant
eigenvalue. The advantage of the proposed method is that we do not need, in
general, the system be completely controllable.
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Algorithm Input: (AT , b).

Step 1. Set A0 = A1 = A, i = 1 and f0 the zero vector.

Step 2. Apply the power method to Ai, and obtain the dominant eigenvalue λi

and the corresponding eigenvector xi.

Step 3. If |λi| < 1, then the pair (Ai, b) is asymptotically stable, where Ai =
Ai−1 + fi−1b

T . END.

Otherwise,

Step 4. If < xi, b >= 0, then the pair (Ai, b) can not be stabilized (Proposition 3)
END.

Otherwise,

Step 5. Choose an scalar αi such that the new eigenvalue µi = λi+(αix
T
i )b satisfies

|µi| < 1. Let fi = fi−1 + αixi.

Step 6. Let Ai+1 = Ai + αixib
T . Note that σ(Ai+1) = {λ1, . . . , λi−1, µi, λi+1,

. . . , λn} with |µi| < 1. Let i = i + 1, GOTO Step 2.

3 The Rado’s theorem

Perfect [7] in 1955 presented the following result, due to R. Rado, which shows
how to modify, in only one step, r eigenvalues of an arbitrary matrix A wihtout
changing any of the remaining (n − r) eigenvalues. The Rado’s Theorem is an
extension of the Brauer’s Theorem and it has been applied to generate sufficient
conditions for the existence and construction of nonnegative matrices with pre-
scribed spectrum. As in the previous case, the immediate consequences of this
result are the block deflation methods and the pole assignment problem when
the MIMO linear control system is not completely controllable.

Theorem 2 [9, Brauer Extended, Theorem 5] Let A be an n × n arbitrary
matrix with eigenvalues {λ1, λ2, . . . , λn}. Let X = [x1 x2 . . . xr] be an n × r
matrix such that rank(X) = r and Axi = λixi, i = 1, 2, . . . , r, r ≤ n. Let C be
an r × n arbitrary matrix. Then the matrix A + XC has eigenvalues {µ1, µ2,
. . . , µr, λr+1, λr+2, . . . , λn}, where µ1, µ2, . . . , µr are eigenvalues of the matrix
Ω + CX with Ω = diag(λ1, λ2, . . . , λr).

Proof: It is very similar to the proof of Theorem 1 just working by blocks.

Theorem 2 shows how to change r eigenvalues of A in only one step. In
general, the eigenvector xi associated with λi of A, i = 1, 2, . . . , r, is not the
eigenvector associated with the new eigenvalue µi of A + XC. If the matrix
Ω + CX is diagonalizable the way in which xi changes is given below.
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Proposition 4 Let A be an n × n arbitrary matrix with eigenvalues {λ1, λ2,
. . . , λn}. Let X = [x1 x2 . . . xr] be an n × r matrix where its column vectors
satisfy Axi = λixi, i = 1, 2, . . . , r, r ≤ n. Let C be an r × n arbitrary matrix
and let Ω = diag(λ1, λ2, . . . , λr).

If µ1, µ2, . . . , µr are eigenvalues of the diagonalizable matrix Ω + CX and T
is the transition matrix to its Jordan form, then the column vectors of the matrix
product XT are the eigenvectors of A + XC associated with µ1, µ2, . . . , µr.

Proof: From the transition matrix T we have

(A + XC)X = X(Ω + CX) = XT diag(µ1, µ2, . . . , µr)T−1

then
(A + XC)XT = XT diag(µ1, µ2, . . . , µr)

and the result follows.

Remark 3 If we take the arbitrary matrix C such that

CX = diag(µ1 − λ1, µ2 − λ2, . . . , µr − λr)

then Ω + CX = diag(µ1, µ2, . . . , µr), and the matrix T , of Proposition 4, is
equal to the identity matrix. Therefore, the eigenvector xi associated with λi

of A, i = 1, 2, . . . , r, is the eigenvector associated with the new eigenvalue µi of
A + XC.

In this case, the eigenvectors associated with the eigenvalues λr+1, . . . , λn

change in the following way.

Proposition 5 Assume the conditions of Theorem 2 and Remark 3. Let xi be
the eigenvector of A associated with the eigenvalue λi, r + 1 ≤ i ≤ n. Then, the
eigenvectors of A + XC associated with λi are given by:

wi = xi −
r∑

j=1

cjxi

µj − λi
xj r + 1 ≤ i ≤ n

where cj is the j-th row of the matrix C.
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Proof: For xi, r + 1 ≤ i ≤ n, we have

(A + XC)(xi −
r∑

j=1

cjxi

µj − λi
xj) =

= Axi + XCxi −
r∑

j=1

(A + XC)
cjxi

µj − λi
xj

= λixi +
r∑

j=1

(cjxi)xj −
r∑

j=1

cjxi

µj − λi
µjxj

= λixi −
r∑

j=1

(
−(cjxi) +

cjxi

µj − λi
µj

)
xj

= λi

xi −
r∑

j=1

cjxi

µj − λi

 xj

4 Applications of the Rado’s Theorem

In this section we give the applications of the Rado’s Theorem to deflation
techniques and to the pole assignment problem for MIMO systems.

4.1 Block deflation techniques

Now using the Rado’s Theorem 2 we can obtain a block version of the deflation
results working with particular matrices C.

Corollary 5 (Wielandt’s deflation) Consider the conditions of Theorem 2.
Let C be a matrix such that Ω + CX has all the eigenvalues zero. Then the
matrix B = A + XC has eigenvalues {0, 0, . . . , 0, λr+1, λr+2, . . . , λn}.

Proof: It is a direct application of Rado’s Theorem.

Remark 4 When the general matrix A is symmetric, then A is diagonaliza-
ble and we can choose an orthogonal matrix X = [x1 . . . xr xr+1 . . . xn] =
[Xr Xn−r] with the eigenvectors of A. Consider Θ = diag(µ1 − λ1, µ2 − λ2, . . . ,
µr−λr), then the matrix B = A+XrΘXT

r is symmetric (diagonalizable) and it
can be verified that its eigenvectors associated with the eigenvalues λr+1, . . . , λn

are the eigenvectors of A.
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Corollary 6 (Hotelling’s deflation) Consider the conditions of Theorem 2.
(i) Symmetric case. Let C = −ΩXT , then the symmetric matrix A + XC has
the eigenvalues {0, 0, . . . , 0, λr+1, λr+2, . . . , λn}, provided that XT X = Ir.
(ii) Nonsymmetric case. Let X = [x1, x2, . . . , xr] and L = [l1, l2, . . . , lr] be
n × r matrices such that rank(X) = rank(L) = r, Axi = λixi, lTi A = λil

T
i

and LT X = I. Let C = −ΩLT , then the matrix B = A + XC has eigenvalues
{0, 0, . . . , 0, λr+1, λr+2, . . . , λn}.

Proof: Apply Rado’s Theorem with C = −ΩXT for the symmetric case
and with C = −ΩLT for the nonsymmetric case.

Remark 5 It is easy to check that the matrices A and A + XC have the same
eigenvectors and the same Jordan structure associated with the eigenvalues
λr+1, λr+2, . . . , λn.

4.2 Pole assignment of MIMO systems

An immediate application of the Rado’s Theorem 2 to the Control Theory in
multi-input, multi-output (MIMO) systems defined by the pair (A,B) is the
following problem, where we assume that the new eigenvalues µi are different
from the eigenvalues to be changed λj , 1 ≤ i, j ≤ r. .

Consider the pair (A,B) with A n × n and B n × m matrices and
the set of numbers {µ1, µ2, . . . , µr}, and let σ(A) = {λ1, λ2, . . . , λn}.
What are the conditions on (A,B) so that the spectrum of the closed
loop matrix A+BFT , σ(A+BFT ), coincides with the set {µ1, µ2, . . . ,
µr, λr+1, λr+2, . . . , λn}, for some matrix F?

The following result answers this question.

Proposition 6 Consider the pair (A,B), with A n×n and B n×m matrices.
Let σ(A) = {λ1, λ2, . . . , λn}. Let X = [x1 x2 . . . xr] be an n × r matrix such
that rank(X) = r and AT xi = λixi, i = 1, 2, . . . , r, r ≤ n. If there is a column
bji

of the matrix B such that bT
ji

xi 6= 0, for all i = 1, 2, . . . , r, then there exists
a matrix F such that σ(A + BFT ) = {µ1, µ2, . . . , µr, λr+1, λr+2, . . . , λn}.

Proof: As σ(AT ) = σ(A) and by the Rado’s Theorem 2 applied to AT , we
have that σ(AT + XC) = {µ1, µ2, . . . , µr, λr+1, λr+2, . . . , λn}, where {µ1, µ2,
. . . , µr} are the eigenvalues of Ω + CX, with Ω = diag(λ1, λ2, . . . , λr). Then,
σ(A + CT XT ) = {µ1, µ2, . . . , µr, λr+1, λr+2, . . . , λn}.

Let CT = [bj1 bj2 . . . bjr
], where bT

ji
xi 6= 0 for i = 1, 2, . . . , r. Then

A + CT XT = A + [bj1 bj2 . . . bjr
]XT = A + B[ej1 ej2 . . . ejr

]XT

where the matrix [ej1 ej2 . . . ejr ] is formed by the corresponding unit vectors.
Setting FT = [ej1 ej2 . . . ejr ]X

T , we have

σ(A + CT XT ) = σ(A + BFT ) = {µ1, µ2, . . . , µr, λr+1, λr+2, . . . , λn}
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where {µ1, µ2, . . . , µr} are the eigenvalues of Ω + [ej1 ej2 . . . ejr ]
T BT X, with

Ω = diag(λ1, λ2, . . . , λr).

Remark 6 (a) Note that the assumption of the existence of a column bji of
the matrix B such that bT

ji
xi 6= 0, for i = 1, 2, . . . , r, is needed only to

assure the change of the eigenvalue λi. Otherwise no eigenvalue changes.

(b) In the MIMO systems the solution of the pole assignment is not unique as
we can see in the next example. Further, note that Proposition 6 indicates
that we can locate poles even in the case of uncontrollable systems.

Proposition 6 is illustrated with the following example.

Example 2 Consider the pair (A,B) where

A =


−2 −3 −2 0

2 3 2 0
3 3 3 0
0 1 −2 2

 , B =


0 0
0 0
1 1
1 1

 .

Note that this pair is not completely controlable since the rank of the matrix

C(A,B) = [B AB A2B A3B] =


0 0 −2 −2 −8 −8 −26 −26
0 0 2 2 8 8 −26 −26
1 1 3 3 9 9 27 27
1 1 0 0 −4 −4 −18 −18


is 3. The spectral computation gives σ(A) = σ(AT ) = {0, 1, 2, 3} and the
eigenvectors of AT are:

xT
λ=0 = (α1,−α1, 0, 0) ∀α1 6= 0 =⇒ BT xλ=0 =

[
0
0

]
xT

λ=1 = (α2, 0, α2, 0) ∀α2 6= 0 =⇒ BT xλ=1 =
[

α2

α2

]
xT

λ=2 = (α3, 2α3, 0, α3) ∀α3 6= 0 =⇒ BT xλ=2 =
[

α3

α3

]
xT

λ=3 = (α4, α4, α4, 0) ∀α4 6= 0 =⇒ BT xλ=3 =
[

α4

α4

]
Since the above products are different from zero for the eigenvalues λ = 1, λ =
2 and λ = 3, we have considered three cases according with the number of
eigenvalues we want to change and the number of columns of the matrix B.

Case 1. Suppose we want to change the eigenvalues λ = 2 and λ = 3, by
µ = 0.5 and µ = 0.7, respectively. Then, r = m.

Since bT
1 xλ=2 6= 0 and bT

1 xλ=3 6= 0 then

CT = [b1 b1] = B

[
1 1
0 0

]
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and the matrix

Ω + CX = Ω +
[

1 0
1 0

]
BT X =

[
2 + α3 α4

α3 3 + α4

]
has the eigenvalues µ1 = 0.5 y µ2 = 0.7 when α3 = 1.95 and α4 = −5.75, so the
feedback matrix F is

FT =
[

1 1
0 0

]
XT =

[
−3.8 −1.85 −5.75 1.95

0 0 0 0

]
.

Then, the close-loop matrix

A + BFT =


−2 −3 −2 0
2 3 2 0

−0.8 1.15 −2.75 1.95
−3.8 −0.85 −7.75 3.95


has the spectrum σ(A + BFT ) = {0, 0.5, 0.7, 1}.

Note that working with the two column vectors of the matrix B, we will
obtain the feedback matrix

FT =
[

1.95 3.9 0 1.95
−5.75 −5.75 −5.75 0

]
.

Case 2. Now, we want to change only the eigenvalue λ = 3 by µ = 0.7, in this
case r < m.

Since bT
1 xλ=3 6= 0 then

CT = [b1] = B

[
1
0

]
and the matrix Ω + CX = Ω + [1 0] BT X = 3 + α4 has the eigenvalue µ = 0.7
if α4 = −2.3, so the feedback matrix F is

FT =
[

1
0

]
XT =

[
−2.3 −2.3 −2.3 0

0 0 0 0

]
.

Then, the close-loop matrix is

A + BFT =


−2 −3 −2 0

2 3 2 0
0.7 0.7 0.7 0

−2.3 −1.3 −4.3 2


whose spectrum is σ(A + BFT ) = {0, 0.7, 1, 2}.

Case 3. Finally, we want to change the three eigenvalues λ = 1, λ = 2 and
λ = 3, by µ1 = 0.2, µ2 = 0.5 and µ3 = 0.7, respectively. In this case r > m.
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Since bT
1 xλ=1 6= 0, bT

1 xλ=2 6= 0 and bT
1 xλ=3 6= 0 then

CT = [b1 b1 b1] = B

[
1 1 1
0 0 0

]
and the matrix

Ω + CX = Ω +

 1 0
1 0
1 0

BT X =

 1 + α2 α3 α4

α2 2 + α3 α4

α2 α3 3 + α4


has eigenvalues µ1 = 0.2, µ2 = 0.5 and µ3 = 0.7 when α2 = −0.06, α3 = 3.51
and α4 = −8.05, so the feedback matrix F is

FT =
[

1 1 1
0 0 0

]
XT =

[
−4.6 −1.03 −8.11 3.51

0 0 0 0

]
.

Then, the close-loop matrix

A + BFT =


−2 −3 −2 0

2 3 2 0
−1.6 1.97 −5.11 3.51
−4.6 −0.03 −10.11 5.51


with spectrum σ(A + BFT ) = {0, 0.2, 0.5, 0.7}.

Remark 7 As before a MIMO discrete-time (or continuous-time) invariant lin-
ear system, given by the pair (AT , B) is asymptotically stable if all eigenvalues
λi of AT satisfy |λi| < 1 (or Re (λi) < 0), see for instance [3, 5]. Then applying
properly Proposition 6 to an unstable pair (AT , B) we can obtain the closed-
loop system A + BFT with the feedback matrix F computed as in the proof of
the above proposition.
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