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O wonder! 1 

How many goodly creatures are there here! 2 

How beauteous mankind is! O brave new world, 3 

That has such people in't. 4 

— William Shakespeare, The Tempest, Act V, Scene I, ll. 203–206 ‘Miranda’s speech’ 5 

 6 

 7 

ABSTRACT 8 

RNA-binding proteins (RBPs) are typically thought of as proteins that bind RNA through one 9 

or multiple globular RNA-binding domains (RBDs) to change the fate or function of the 10 

bound RNAs. Several hundreds of such RBPs have been discovered and investigated over 11 

the years. Recent proteome-wide studies have more than doubled the number of proteins 12 

implicated in RNA binding and uncovered hundreds of additional RBPs lacking classical 13 

RBDs. This review integrates these new RBPs and discusses their possible functions, 14 

including the notion that some may be regulated by RNA rather than exerting control over it. 15 

 16 

 17 

INTRODUCTION 18 

A ‘classical’ RNA-binding protein (RBP) participates in the formation of ribonucleoprotein 19 

(RNP) complexes that are principally involved in gene expression1. It does so by binding to 20 

sequence and/or structural motifs in RNA, via modular combinations of a limited set of 21 

structurally well-defined RNA-binding domains (RBDs)2 such as the RNA recognition motif 22 

(RRM)3, the K homology (KH)4 or DEAD box helicase domains (Fig. 1a)5. These assertions 23 

represent decades of cumulative knowledge, including, cellular, biochemical and structural 24 

data. However, recent advances in determining the structures of large RNP machines such 25 
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as the ribosome6-8 and spliceosome9-11 reveal complex protein-RNA packaging without 1 

involvement of canonical RBDs. This suggests that unorthodox RNA binding is a broader 2 

phenomenon than previously anticipated. 3 

A widely held assumption is that RBPs with high affinity and/or specificity for their targets 4 

are more likely to have (ascertainable) biological functions12. Implicit in this conventional 5 

view of RBPs is also that they should act in furtherance of the RNA’s function13. A recent 6 

review used the metaphor of RBPs as the mRNA’s clothes that will ensure that different 7 

mRNA domains (i.e. the 5’ and 3’ untranslated regions [UTRs] and the coding region [CDS]) 8 

are at times covered up or exposed, helping it to pass through different stages of its life14. 9 

The processes driving change of RNP composition have been likened to those involved in 10 

chromatin activity15,16. Accordingly, post-translational modifications (PTMs) of RBPs and 11 

epitranscriptomic modifications of RNA, together with the action of ATP-dependent RNA 12 

helicases, lead to dynamic RNP remodelling. 13 

The above concepts have broad but clearly not universal applicability, as indicated by 14 

emerging evidence from several directions. First, multiple microscopically visible 15 

membrane-less RNP granules have been characterised in different cell types and cellular 16 

compartments17,18. These include Cajal bodies and paraspeckles in the nucleus as well as 17 

processing (P-) bodies and stress granules (SGs) in the cytoplasm. The term granule is 18 

somewhat of a misnomer as several of these RNP bodies have now been shown to form by 19 

liquid-liquid phase separations (LLPS), thought to be driven by intrinsically disordered 20 

regions (IDRs; protein regions lacking stable tertiary structure in their native state) of their 21 

constituent RBPs19,20. Their dynamicity and amorphous structure still remains puzzling, and 22 

well-defined functions remain to be assigned to the formation of these RNP bodies. 23 

Second, our realisation of the existence of a myriad of long noncoding RNAs (lncRNAs) 24 

triggered intense efforts to uncover their functions21,22. Many lncRNAs are presently 25 
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expected to act in the recruitment of transcription factors or chromatin-modifying complexes 1 

to genomic loci, or otherwise organise, scaffold or inhibit protein assemblies23,24. These 2 

latter scenarios tend to break with convention, indicating that an RNA may act on its protein 3 

binding partner rather than itself being the target of regulation (Fig. 1b). Finally, several 4 

unbiased approaches to identify RBPs proteome-wide have been developed recently, 5 

yielding a growing collection of RNA-binding proteomes from multiple organisms and 6 

cellular contexts. These compendia persistently identify large numbers of novel RBPs25 that 7 

defy convention, lacking either discernible RBDs or established cellular functions that link 8 

them to RNA biology in a straightforward fashion, or both. 9 

The features and functions of classical RBPs have been expertly covered by the reviews 10 

cited above and other recent works26-28. This review focuses primarily on the challenges 11 

posed by unconventional RBPs, their methods of discovery and emerging information about 12 

their modes of RNA-binding, RNA targets, as well as their molecular and cellular functions. 13 

We will contrast and integrate these with what we know about classical RBPs.  14 

 15 

THE ERA OF RNA INTERACTOMES 16 

Since the discovery in the early nineties of several metabolic enzymes that engage in 17 

‘moonlighting’ RNA-binding activity, it became apparent that the number and diverse nature 18 

of RBPs had been underestimated29-32. The list of unconventional RBPs grew incrementally 19 

over the decades, urging the development of methods to identify RBPs comprehensively in 20 

living cells. 21 

 22 

Experimental approaches to catalogue RBPs 23 

In vitro approaches were devised using either immobilised RNA probes or arrayed proteins 24 

(Box 1), identifying multiple novel RBPs33-36. More recently, RNA interactome capture was 25 
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developed as an in vivo approach focusing on native protein-RNA interactions (Box 1). It 1 

entails UV crosslinking of RBPs to RNA in live cells followed by collective capture of RNPs 2 

containing poly(A)+ RNA on oligo(dT) beads, and identification of proteins by quantitative 3 

mass spectrometry (Q-MS)37. Two groups independently deployed RNA interactome 4 

capture to yield 860 and 791 proteins as the RBP repertoire of human HeLa and HEK293 5 

cells, respectively38,39. Both RNA interactomes overlap considerably, with 543 shared 6 

RBPs, and enrichment for the gene ontology (GO) term “RNA binding” (e.g. 468 of a total of 7 

860 proteins in the HeLa RNA interactome, based on annotation current at the time)40, and 8 

detected the majority of the well-established RBPs. Classical RBDs such as the RRM, KH, 9 

DEAD box helicase and some zinc finger domains were also strongly enriched. Altogether 10 

this attested to the technical robustness of the approach. Beyond that, about half of the 11 

proteins in each RNA interactome lacked known RBDs, and hundreds had no previous 12 

relation to RNA biology. Interestingly, both studies revealed common biological roles and 13 

molecular functions among the newly discovered proteins, including intermediary 14 

metabolism, cell-cycle progression, antiviral response, spindle organization, protein 15 

metabolism (chaperons and prolyl cis-trans isomerases), and others38,39. The discovery of 16 

RNA-binding activity of proteins involved in biological processes without apparent relation to 17 

RNA biology (‘enigmRBPs’) suggested unexplored regulatory layers between gene 18 

expression and other biological processes. About two dozen of these enigmRBPs were 19 

validated by orthogonal approaches38,39,41, seven of them were analysed by 20 

immunoprecipitation followed by sequencing of bound RNA, demonstrating that these 21 

proteins specifically interact with distinct sets of poly(A)+ RNAs38,39 and exert defined 22 

biological functions. 23 

RNA interactome capture was since applied to samples from diverse sources (Fig. 2), 24 

typically identifying several hundreds of active RBPs. Sources include several additional 25 
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human38,39,42-44 and mouse cell lines45-47, yeast43,48,49, the unicellular parasites Leishmania 1 

donovani50, Plasmodium falciparum51 and Trypanosoma brucei52, as well as plants53-55, 2 

flies56,57, worms49 and fish58. The RBP sets of different origins each featured enrichment of 3 

RNA-related annotation (for example, see Fig. S1a), and orthogonal methods were typically 4 

used to validate some of the unexpectedly discovered RBPs, including dual-fluorescence 5 

RNA-binding assay39,41,49, crosslinking and immunoprecipitation (CLIP) followed by 5’ 6 

radioactive labelling of RNA by T4 polynucleotide kinase38,43,45,46,56,57, RT-PCR 49 or 7 

sequencing38,39,43. Using updated annotation, we compiled here all published RNA 8 

interactomes into RBP supersets for Homo sapiens (1914), Mus musculus (1393), 9 

Saccharomyces cerevisiae (1273), Drosophila melanogaster (777), Arabidopsis thaliana 10 

(719) and Caenorhabditis elegans (593) (Fig. 2a, Table S1). These datasets represent a 11 

resource to mine for shared and selectively identified RBPs (Fig. 2b-f). While simple 12 

technical reasons will explain some of the differences in coverage and overlap, the outlines 13 

of shared ‘core’ RNA interactomes are emerging43. To illustrate this, we performed 14 

InParanoid59,60 analysis to yield a high number of orthologue groups especially between 15 

mammals, which expectedly decreases in more evolutionary distant organisms (Fig. 2g-h). 16 

On the whole, widely shared RBPs tend to be more highly enriched in established RNA-17 

related annotation than RBPs with cell or organismic context-dependent expression or 18 

activity. 19 

Some specific observations from these datasets deserve attention. For example, the mouse 20 

embryonic stem cell (mESC) RNA interactome was found to be enriched in proteins with 21 

differential expression during differentiation, suggesting that RBPs are regulated during the 22 

transition from stem to differentiated cell45. In particular, the transcriptional network of the 23 

proto-oncogene Myc was found to be enriched among mESC RBPs, suggesting that RBPs 24 

contribute to Myc-dependent cell fate decisions. Moreover, mESC RBPs were significantly 25 
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upregulated during the third day of reprogramming into induced pluripotent stem cells 1 

(iPSC). RNA interactome capture was further combined with nuclear fractionation to 2 

determine the repertoire of nuclear RBPs of K562 myeloid leukaemia cells; the p53 3 

interaction network was enriched among the newly discovered nuclear RBPs61. 4 

RNA modifying enzymes such as RNA tailing enzymes and ‘writers’ of epitranscriptomic 5 

modifications consistently form part of RNA interactome compendia. The cardiomyocyte 6 

RNA interactome contains 29 RBPs annotated for 5-methylcytosine (m5C), N6-7 

methyladenosine (m6A) and pseudouridine modifications, as well as adenosine-to-inosine 8 

editing46. Such epitranscriptomic marks may affect RNA-protein interactions, or otherwise 9 

modulate RNA function62,63 (Box 2). 10 

Metabolic enzymes were recurrently identified as RBPs. Our meta-analysis revealed 71 11 

such ‘moonlighting’ metabolic enzymes in humans, 104 in mouse and 132 in yeast RNA 12 

interactomes (Table S1), adding a plethora of new examples to a list of about twenty RNA-13 

binding metabolic enzymes discovered by classic low-throughput studies64-66. Collectively, 14 

these dual RBP-enzymes cover a breadth of metabolism, with interesting differences in 15 

predominant pathways depending on the source material. For example, the RNA 16 

interactome of Huh-7 cells harbours numerous enzymes from glycolysis and other 17 

pathways of intermediary metabolism43,49. This likely relates to the important metabolic role 18 

of hepatocytes at the organismal level43. The HL-1 cardiomyocyte RNA interactome exhibits 19 

a high incidence particularly of mitochondrial metabolic enzymes46, reflecting their high 20 

organelle content and energy needs. Many of these RNA-binding metabolic enzymes were 21 

validated by orthogonal approaches39,43,44,46, including mitochondrial fractionation followed 22 

by T4 polynucleotide kinase (PNK) assay46. Interestingly, some of these enzymes interact 23 

with their own mRNA49, perhaps hinting at the existence of negative feedback loops by 24 

cognate enzyme-mRNA interaction under conditions of substrate or co-factor deprivation, 25 
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as previously proposed64-68. Taken together, this suggests that RNA binding by metabolic 1 

enzymes is a common and widely conserved occurrence.  2 

 3 

In silico approaches to catalogue RBPs 4 

A set of 1,542 human RBPs (7.5% of the proteome) was defined based on computational 5 

analyses that required a protein to harbour known RBDs or other domain features 6 

characteristically found in proteins with RNA-related functions. This was complemented by 7 

manual curation to add missing but well-documented RBPs or proteins forming part of 8 

known RNPs, and to remove proteins with established RNA-unrelated functions69. Members 9 

of this curated set of RBPs tend to display ubiquitous expression profiles across tissues, 10 

suggesting housekeeping roles in cell biology, and the set overlaps well with the 11 

experimental human RNA interactomes (Fig. S1b). Notwithstanding its strengths, the 12 

approach might generate false positive results for i) proteins harbouring a classified RBD 13 

that serves a different functional role in that particular case70, or ii) proteins interacting with 14 

RNA solely via protein-protein interactions with a direct RBP (as in the case of Y14 in the 15 

exon junction complex)71. A similar domain/function-search algorithm was recently applied 16 

to Plasmodium falciparum51. This study reported 924 RBPs, a surprisingly high fraction 17 

(18.1%) of the relatively small number of protein-coding genes of the malaria parasite. 18 

The propensity of RBPs to interact with other RBPs, either directly or via bridging RNAs, 19 

was also exploited to identify novel RBPs39,72,73. The classification algorithm, referred to as 20 

“support vector machine obtained from neighbourhood associated RBPs” (SONAR), 21 

evaluates each protein of a proteome (or a dataset) against protein-protein interaction (PPI) 22 

data, and calculates its RBP classification score (RCS). The algorithm was trained on sets 23 

of human RBPs merged from available sources39,69,74, where the “neighbourhood” of each 24 

protein was determined using the BioPlex PPI dataset75, which includes many thousands of 25 
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experimentally determined protein-protein interactions. Sets of SONAR-predicted RBPs 1 

were established for human (1,784 proteins), Drosophila melanogaster (489) and 2 

Saccharomyces cerevisiae (745); these agree well with the experimentally determined RBP 3 

sets (Fig. S1c,d). SONAR can be readily applied to any organism as long as substantial 4 

PPI data are available. SONAR thus presents the same limitations as any proteomic-based 5 

approach, including the depth of the protein-protein interaction data available in a given 6 

organism. In addition, it may lead to false positives because proteins that interact with 7 

RBPs are not always RBPs themselves71. 8 

 9 

The plasticity of RNA-binding proteomes 10 

Biology is dynamic. The binding of RBPs to RNA constantly changes, and the composition 11 

of RNA interactomes is context-dependent and responds to stimuli. While a subset of 12 

‘house-keeping’ RBPs might be constitutively and ubiquitously active69, many RBPs have 13 

more restricted expression patterns and/or their RNA-binding activity may be regulated, e.g. 14 

by post-translational modifications76-78, cofactor binding79 or protein-protein interactions80. 15 

Moreover, some RBPs can ‘sit idle’ for lack of their RNA targets81-83. For example, cellular 16 

sensors against viral infection such as interferon-induced, double-stranded RNA-activated 17 

protein kinase (EIF2AK2 or PKR), retinoic acid-inducible gene-I (RIGI or DDX58) or toll-like 18 

receptors (TLRs) may only be activated by the presence of unusual RNA products derived 19 

from viral replication such as long double stranded RNA tracts81 or triphosphate 5’ ends82,83 20 

(Fig. 1b). 21 

RNA interactome capture has been adapted to investigate responses of RNA-binding 22 

proteomes to physiological changes and environmental cues. This was recently applied to 23 

murine macrophages responding to lipopolysaccharide stimulation47, primary mouse 24 

embryonic fibroblasts treated with etoposide84, as well as to fruit fly and zebrafish embryos 25 
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at different stages of development56,58. During the maternal-to-zygotic transition (MZT), 1 

gene expression switches from maternally deposited mRNAs whose timed expression is 2 

orchestrated by RBPs, to a new transcriptome emerging after zygotic genome activation 3 

(ZGA)85. The dynamic changes in RBP activity expected during MZT were investigated in 4 

Drosophila embryos56. Using tandem mass tags (TMT)86, biological triplicate samples 5 

derived from pre- (0-1 hours post fertilisation [hpf]) and post-ZGA embryos (4.5-5.5 hours) 6 

were analysed. Comparison between UV-irradiated versus non-irradiated pooled pre- and 7 

post-ZGA stage samples was used to determine the ‘static’ RNA interactome capture. In 8 

separate experiments, UV-irradiated samples from pre- and post-ZGA stages were directly 9 

compared for the identification of ‘dynamic’ RBPs. The former analysis yielded 523 proteins 10 

as high confidence fly embryo RBPs, whereas the latter identified 1131 proteins, 116 of 11 

which were differentially captured at 10% false discovery rate (FDR). To determine whether 12 

differential RNA binding was due to alterations in protein levels, the total proteomes were 13 

also determined in parallel. Comparison of the RNA interactome and whole proteome data 14 

revealed three classes of RBPs: class 1 (1015 proteins) showed no significant change in 15 

either RNA binding or total abundance; class 2 (78 proteins) showed commensurate 16 

changes in both parameters, suggesting that differential RNA binding was due to altered 17 

protein levels; and, class 3 (38 proteins) with a clear change in RNA binding without a 18 

corresponding change in RBP abundance, implying a modulation in the ability of these 19 

proteins to interact with RNA. These RBPs were thus dubbed ‘dynamic binders’. The latter 20 

include eight known splicing factors, and seven of these bind RNA more avidly in pre-MZT 21 

embryos. These findings broadly concur with an analysis using mRNA expression and 22 

localisation as proxies to reveal that RBP expression peaks during the prezygotic phase 23 

and MZT, while transcription factors are highly expressed during the first zygotic waves and 24 

mid embryogenesis57. A similarly configured analysis of zebrafish embryos before (1.75 hpf) 25 
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and during zygotic genome activation (3 hpf) uncovered a repertoire of 227 RBPs active 1 

during vertebrate MZT. As expected, this set included many regulators of mRNA 2 

polyadenylation, translation and stability but proteins involved in RNA modification and pre-3 

mRNA processing factors were also notably represented. 24 and 53 proteins were 4 

differentially active at pre-ZGA and ZGA, respectively, and appeared to be mostly ‘dynamic 5 

binders’58. 6 

Comparative RNA interactome capture can thus be used to investigate dynamic changes in 7 

RNA-binding proteomes. It should thus be feasible to study a wide range of questions, from 8 

development and differentiation to signalling, metabolism, infection and other disease 9 

processes and drug effects. 10 

 11 

UNORTHODOX RNA-BINDING DOMAINS 12 

Many of the RBPs newly discovered by the different methods described above lack known 13 

RBDs, posing questions of how they interact with RNA. Tried-and-tested approaches exist 14 

to map RBDs within individual proteins, for example by mutagenesis combined with RNA-15 

binding assays, such as electrophoretic mobility shift assay (EMSA)87 or the CLIP-coupled 16 

PNK assay45, however, high(er) throughput methods were required to identify the RBDs of 17 

hundreds of novel RBPs in a time-efficient manner. Thus, three approaches were 18 

developed, each using mass-spectrometry in a different configuration to identify protein 19 

regions that become crosslinked to RNA after UV exposure of live cells. 20 

One approach focused on the purification and direct detection of the RNA-crosslinked 21 

peptides, whose mass is altered by the nucleic acid remnant (Fig. 3a)42,88. Data analysis 22 

was performed with RNPxl 42, a custom-designed software to reduce the complexity of the 23 

search for peptide-nucleotide matching spectra. Applied to yeast RBPs, RNPxl identified 24 

376 crosslinked peptides corresponding to 133 unique crosslinking sites in 57 different 25 
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proteins, mostly canonical RBPs such as ribosomal proteins and proteins with RRM or KH 1 

domains42. A number of RNA-binding sites were identified in unorthodox RBPs, including 2 

the enzymes peptidyl-prolyl cis-trans isomerase (CPR1), enolase 1 (ENO1) and 3 

phosphoglycerate kinase (PGK1).  4 

RBDmap adds a further digestion step with a protease that cleaves every 17 amino acids 5 

on average and a second round of oligo(dT) capture to the RNA interactome capture 6 

workflow44. After the second oligo(dT) capture, the covalently linked polypeptides are 7 

proteolysed by trypsin, generating an RNA-crosslinked peptide and a neighbouring peptide 8 

with native mass (Fig 3b). RBDmap employs the neighbouring peptides with native mass to 9 

assign RNA-binding sites (Fig. 3b)44. Applied to HeLa cells, RBDmap discovered 1,174 10 

RNA-binding sites within 529 proteins44, while more limited analysis of HL-1 cardiomyocytes 11 

still revealed 568 RNA-binding sites from 368 proteins46. RBDmap data display strong 12 

concordance with regular RNA interactome studies, reinforcing the identification of 13 

unorthodox RBPs even after two oligo(dT) purification steps and after extensive proteolytic 14 

treatment44,46. As expected, RBDmap “re-discovered” the classical RBDs such as the RRM-15 

, KH-, or cold shock domains2. Notably, many of the reported RNA-binding sites mapped to 16 

globular proteins and domains lacking previous association with RNA binding. For HeLa 17 

cells these include the thioredoxin (TXN) fold, heat shock protein (HSP) 70 and HSP90 18 

domains, 14-3-3, domain associated with zinc fingers (DZF), PDZ and NDR (complete list 19 

in44), many of which were validated by orthogonal approaches. Interestingly, the mapped 20 

RNA-binding sites showed enrichment for homologous regions across different proteins 21 

from the same family, and many mapped to enzymatic cores or protein-protein interaction 22 

surfaces, suggesting a possible interplay between these activities and RNA binding44. For 23 

HL-1 cells, RNA-binding regions were identified in 24 metabolic enzymes, 12 of which 24 
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mapped to di-nucleotide binding domains46. These data corroborate and expand the 1 

previously suggested RNA-binding activity of di-nucleotide-binding domains32,65,66,89,90. 2 

Unexpectedly, many of the identified RNA-binding regions mapped to IDRs, implicating 3 

them as predominant sites of protein interaction with RNA in vivo (see below). Another 4 

observation was that RNA-binding regions were enriched for regions mutated in Mendelian 5 

diseases, while natural variants distributed equally across binding and non-binding 6 

regions44. This suggests that numerous Mendelian diseases arise from altered RNA 7 

biology. Finally, the RNA-binding regions strongly overlap with known post-translational 8 

modification sites, including phosphorylation, acetylation and methylation44. This enrichment 9 

was not observed for protein regions lacking RNA-binding activity. Thus, posttranslational 10 

modifications may regulate RNA binding and RNP dynamics akin to chromatin remodelling. 11 

Peptide cross-linking and affinity purification (pCLAP) is a recently described cousin of 12 

RBDmap, which implements the first protease treatment directly after lysis, requiring only 13 

one oligo(dT) capture round91. The trade-off is that pCLAP does not quantify the peptides in 14 

the released fraction. This reference is used in RBDmap to determine with high confidence 15 

the protein regions engaged in RNA binding (Fig. 3b) 44. 16 

A third approach, termed proteomic identification of RNA-binding regions (RBR-ID) 17 

identifies peptides with reduced intensity in UV-irradiated samples compared to non-18 

irradiated controls (Fig. 3c)92. RBR-ID of nuclear proteins from mESCs detected 1,475 19 

RNA-binding sites mapping to 803 mESC proteins with a 5% FDR. 47% of the RBR-ID 20 

proteins were present in the RNA interactome studies38,39,43,45,61, while 865 previously 21 

known RBPs were missing. Interestingly, the 427 RBPs newly identified by RBR-ID were 22 

enriched for gene-regulatory and chromatin-associated functions. At the domain level, 23 

peptides with UV-dependent intensities (i.e. RNA-binding sites) mapped to RRM, KH, 24 

DEAD box and other classical RBDs, validating the approach. The RNA-binding sites of the 25 
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427 newly discovered RBPs surprisingly often mapped to chromatin-related domains such 1 

as the chromodomain and bromodomain, invoking a potential crosstalk between DNA and 2 

RNA. Some of the latter results confirmed prior candidate-based approaches characterizing 3 

the activity of chromatin remodelling proteins such as the catalytic subunit of the polycomb 4 

repressor complex 2 (PRC2) EZH2, which has been shown to interact with long non-coding 5 

RNA and nascent transcripts93-95; RBR-ID data suggest that this phenomenon might be 6 

broader than previously anticipated.  7 

Together, RNPx1, RBDmap and RBS-ID have greatly expanded the known repertoire of 8 

RBDs. However, we know little about the RNA targets of these novel RBDs or the function 9 

of these interactions. To address this, functional studies including determination of the 10 

specificity and affinity of these novel RBDs for their target sequences96-100 will be required. 11 

 12 

NOVEL RNA-BINDING MODES 13 

The many novel RBPs and their non-typical RBDs raise pertinent questions regarding their 14 

biological function(s)101. Not every bimolecular collision that happens in cells should be 15 

assumed to be physiologically relevant. Which ranges for the affinities and RNA-binding 16 

specificities are to be expected? Concepts regarding specificity and non-specificity in RNA-17 

protein interactions were recently reviewed12. A first relevant aspect is that indiscriminate 18 

RNA binding by RBPs is common and can be important to their function. For example, 19 

numerous proteins involved in mRNA translation (for example, the eukaryotic initiation 20 

factor [eIF]4F complex) and degradation need to be non-selective to fulfil their functions 21 

(Fig. 4a vs b). Similarly, the exon junction complex is deposited through protein-protein 22 

interactions102 at a constant position upstream of splice junctions, and interacts with a 23 

plurality of RNA sequences103 (Fig. 4c). Second, one must distinguish between ‘biological 24 

specificity’, the binding characteristics of RBPs in vivo, and ‘intrinsic specificity’, such as 25 
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one might determine by selection from a random pool of sequences in vitro. An interesting 1 

upshot of this distinction is that intrinsically specific RBPs may function biologically as less 2 

specific RBPs, when they bind their physiological RNA targets without much discrimination 3 

because these do not fall into the high-affinity/high-specificity range of their RNA-binding 4 

potential12. 5 

 6 

RNA Binding by Intrinsically Disordered Regions 7 

As described above, IDRs are not only involved in aggregation of RNPs into granules by 8 

protein-protein interactions19,20 but also directly engage in RNA binding44,46,104,105. RBPs are 9 

enriched in IDRs that are characterized by a low content of bulky hydrophobic amino acids, 10 

with the exception of tyrosine (Y), and a high proportion of small, polar or/and charged 11 

amino acids, particularly glycine (G), serine (S), arginine (R), lysine (K), glutamine (Q), 12 

glutamic acid (E) and aspartic acid (D)44. Interestingly, mutations in RBPs causing human 13 

Mendelian diseases occur with higher frequency within these RNA-binding IDRs than in 14 

globular domains, suggesting strong sequence constraints40. The occurrence of IDRs within 15 

RBPs appears to be conserved from yeast to human43, often in the form of repeats such as 16 

RGG, YGG, SR, DE or KK39,104. A recent report proposes that the number of repeats within 17 

the IDRs of RBPs has expanded from yeast to human43. Because the number and identity 18 

of globular domains present within these proteins have remained the same, IDRs may 19 

represent a plastic component of RBPs that co-evolved with the increasing complexity of 20 

eukaryotic transcriptomes.  21 

Around half of the RNA-binding sites reported by RBDmap (1,174) in HeLa cells mapped to 22 

IDRs, reflecting their prevalence as a mode of RNA binding44. 170 RBPs appeared to 23 

interact with RNA exclusively through IDRs, suggesting that these regions can suffice to 24 

mediate RNA binding. Amongst the arginine-rich motifs (ARM), RGG and SR repeats were 25 
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previously reported to bind RNA104. The discovery of numerous additional examples 1 

allowed assignment into sub-classes that differ by the lengths of their glycine linkers44,106. 2 

Nuclear magnetic resonance (NMR) analyses of human fragile X mental retardation protein 3 

 (FMRP) showed that the positioning of the arginines is essential for selective binding of the 4 

RGG box to the guanidine-rich sequence in the sc1 mRNA107, where the glycine linker 5 

orients the arginines geometrically to interact with the Watson-Crick nucleotide base pairs, 6 

which stack on two G-quadruplexes resulting from the protein-RNA co-folding (Fig. 4d). In 7 

addition, the glycine linker contributes to RNA binding by shape complementarity 8 

interactions at the interface between G-quadruplexes and Watson-Crick base pairs. Hence, 9 

the affinity and selectivity of RGG boxes for their target RNAs may be determined by the 10 

frequency of arginines and glycines.  11 

A second RNA-binding family of IDRs involves aromatic residues, especially tyrosines (Y), 12 

that combine with glycines (G) and serines (S) forming [G/S]Y[G/S]. These motifs display a 13 

tendency to aggregate in vitro, inducing hydrogel formation and amyloid-like fibres, and 14 

engage in dynamic liquid-liquid phase separations in vivo108,109. Aromatic residues tend to 15 

form part of hydrophobic protein cores, but, when present at the protein surface, can 16 

interact with amino acids or nucleotides by stacking or hydrogen bonding2. When 17 

embedded in a glycine-rich context, the aromatic residue is particularly exposed, likely 18 

fostering its propensity to aggregate when interacting with similar protein motifs108,109, or to 19 

bind RNA44.  20 

Finally, a heterogeneous set of linear motifs involving lysine (K) and, to a lesser extent, 21 

arginine (R) was also enriched within RBPs44. Interestingly, the stoichiometry and distances 22 

between the positively charged residues, as well as the combination of these with other 23 

amino acids, were conserved even across non-homologous proteins. Notably, the basic 24 

IDRs present in RBPs are similar to motifs in DNA-binding proteins. Here, the basic arms 25 
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can alter the DNA-binding of transcription factors by a large capture radius110. In this 1 

“monkey bar” model, transcription factors utilise their basic arms to reach distant DNA sites 2 

by “hopping” and “sliding” instead of 3D diffusion110. It is currently unknown whether basic 3 

arms may play similar roles in RBPs. 4 

Thus, IDRs could represent malleable, potentially multifunctional RNA-binding motifs. Their 5 

RNA binding can range from highly specific to non-selective, and may promote co-folding 6 

upon interaction with their target RNAs104,105,107,111 (Fig. 4d). Interestingly, the high 7 

sequence constraints of IDRs40 enable RNA-binding regulation by reversible 8 

posttranslational modifications such as acetylation or phosphorylation44. In principle, these 9 

properties qualify IDRs as versatile modules for interaction with RNA, either alone or in 10 

cooperation with globular RBDs.  11 

 12 

Shape Complementarity Interactions and Protein-Binding RNAs  13 

Protein-RNA interactions are typically described as a process in which a protein harbours 14 

“sensors” (RBDs) to recognize and bind particular sequence and/or structural elements 15 

within its “target RNA” (Fig. 1a). However, synthetic RNA aptamers can bind proteins 16 

following the same molecular principles as those that enable proteins to bind RNA112, 17 

suggesting that RNA can equally be the driving force mediating protein-RNA interactions 18 

(Fig. 1b). The 169 annotated ribosomal proteins follow 119 distinct domain architectures69 19 

but does this postulate an equal number of distinct RBDs? A more probable explanation 20 

appears to be that ribosomal proteins and rRNAs have co-evolved to interact with each 21 

other, where extended shape complementarity and the right spatial configuration of 22 

molecular interactions play a major role in forming a perfectly packed machinery: the 23 

ribosome8. Another example of intricate protein-RNA interactions is the spliceosome, where 24 

small nuclear (sn)RNAs interact with proteins to form the functionally active complex11. 25 



18	

	

These interactions are enabled by the ability of RNA to fold into three-dimensional (3D)-1 

structures resulting in complex surfaces with potential to interact with complementary (both 2 

in shape and biochemical properties) protein partners (Fig. 1b and 4e), as illustrated by 3 

tRNAs113. 4 

The fact that RNA can be more than just the “passive” partner in protein-RNA interactions is 5 

also illustrated by the 5’ UTRs of viral RNAs, which evolved to interact with host proteins. 6 

For example, the internal ribosome entry site (IRES) of poliovirus binds the C-terminal 7 

moiety of the eukaryotic initiation factor (eIF)4G to recruit the 40S ribosomal subunit114. 8 

Similarly, the hepatitis C virus (HCV) IRES interacts directly with eIF3 and the 40S 9 

ribosomal subunit for translation initiation (Fig. 4e). A closer look at the HCV IRES-10 

ribosome co-structure shows that the interaction is not mediated by well-defined protein 11 

regions endowed with RNA-binding activity; instead, the protein-RNA interface is large and 12 

displays strong shape-complementarity115,116 (Fig. 4e). 13 

Recently, two studies identified widespread RNA binding by chromatin-associated factors 14 

and DNA-binding proteins61,92. One of the proposed possibilities is that these factors 15 

interact with lncRNAs and nascent transcripts93-95. Plausibly, the lncRNAs themselves may 16 

‘drive’ such interactions, and it might make sense to think of these RNAs as displaying 17 

protein-binding activity, rather than the other way around (Fig. 1b). Functionally, the RNA 18 

moiety can play different roles in this interaction, such as scaffolding protein-RNA 19 

complexes as illustrated by the viral IRES of HCV116 (Fig. 4e) and the lncRNA nuclear 20 

enriched abundant transcript 1 (NEAT1) in paraspeckle formation117 (Fig. 4f), or altering the 21 

activity of the bound protein as exemplified by RIGI and PKR and their interaction with 22 

intermediaries of viral replication81-83 (Fig. 4g).  23 

 24 

RNA Binding by Metabolic Enzymes 25 
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RNA interactome studies have persistently identified enzymes of intermediary metabolism 1 

as RBPs. Some of these enzyme RBP-RNA interactions appear to serve direct feedback 2 

gene regulation. For example, thymidylate synthase (TYMS), an enzyme that catalyses the 3 

formation of dTMP from dUMP, binds to its own mRNA and inhibits its translation when 4 

dUMP levels are low118. A more indirect form of feedback regulation is exerted by the 5 

cytosolic aconitase/iron-regulatory protein 1 (IRP1) paradigm. To be active as an enzyme, 6 

the protein requires an iron sulfur cluster in its active site, which simultaneously precludes 7 

RNA binding119. In iron deficiency, this cluster is lacking and, in an open conformation, IRP1 8 

controls the expression of proteins to increase iron uptake and decrease its storage, 9 

utilization and export119,120 (Fig. 4h). 10 

Other enzymes display more oblique links to metabolism when acting as RBPs. The 11 

glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) oxidises its 12 

substrate to generate NADH, but it also has a diverse range of other cellular functions121. 13 

An important role for GAPDH as an RBP was discovered in T lymphocyte biology90. In 14 

resting T cells, which rely on oxidative phosphorylation for energy generation, GAPDH 15 

binds to AU-rich elements (AREs) in the 3’UTRs of cytokine mRNAs including g-interferon 16 

mRNA and inhibits their translation. Following the metabolic switch to aerobic glycolysis 17 

upon T cell activation, GAPDH disengages from RNA binding, thus de-repressing cytokine 18 

production. 19 

The high number of identified RNA-binding metabolic enzymes suggests that not all of 20 

these may have ‘moonlighting’ functions in post-transcriptional gene regulation as 21 

described above. Alternatively, (yet to be discovered) RNAs could affect their metabolic 22 

function. As discussed in more detail elsewhere66, this could affect the enzyme’s 23 

localisation or activity, e.g. by affecting an enzymatic side reaction, by allosteric control, or 24 

by providing a scaffold that organizes multi-enzyme complexes and even pathways. 25 
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Interestingly, the globular Rossmann-fold (R-f) domain has emerged as a common non-1 

conventional RBD. The cardiomyocyte RNA-binding proteome includes an impressive 173 2 

R-f proteins, and 29 of the 73 cardiomyocytic RNA-binding metabolic enzymes harbour at 3 

least one R-f domain46. The dinucleotide-binding R-f domain of oxidoreductases has long 4 

been discussed as a RNA-binding interface32. NAD+ and NADH have been reported to 5 

interfere with RNA binding by GAPDH, while cytokine mRNA sequences can inhibit the 6 

enzymatic activity of GAPDH in vitro89. Analysis of RBDmap data for 24 metabolic enzymes 7 

(including multiple R-f domain proteins) revealed diverse spatial relationships between the 8 

identified RNA contacts and previously characterized catalytically relevant regions. While 9 

there is a striking overlap for some examples, in other cases the mapped RNA contacts and 10 

the catalytic regions did not appear to overlap. Although this could partly reflect falsely 11 

negative assignments by RBDmap, the data also implicate possible roles of RNA in 12 

allosteric control or enzyme scaffolding46. 13 

Many enzymes are regulated allosterically by metabolites66. Conceivably, such control 14 

could also affect their RNA-binding activity. Furthermore, metabolism and metabolites could 15 

control enzyme-RNA interactions via metabolite-driven PTMs. For example, S-16 

glutathionylation blocks the RNA-binding activity of GAPDH122. Many metabolic enzymes 17 

are acetylated, which requires sufficient concentrations of acetyl-CoA123. More broadly, 18 

RBDmap identified RBDs as hotspots for PTMs, including tyrosine phosphorylation, 19 

methylation, acetylation and malonylation44. Thus, there is considerable scope for cross-talk 20 

between cellular metabolism and RNA binding66,124. 21 

 22 

CHARACTERISATION OF UNORTHODOX RBPs 23 

A key step in characterising the molecular and cellular function of novel RBPs is to identify 24 

their RNA targets. Several high-throughput sequencing-based methods to achieve this have 25 
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emerged in recent years, either using carefully controlled in vitro methods125 or preserving 1 

the context of the living cell126. Examples of the latter build on classic approaches such as 2 

RNP immunoprecipitation (RIP), potentially augmented by stabilisation of complexes 3 

through UV irradiation and/or chemically-induced covalent crosslinks (CLIP). These include 4 

photoactivatable-ribonucleoside-enhanced and individual-nucleotide-resolution CLIP (PAR-5 

CLIP97 and iCLIP98, respectively). Enhanced CLIP (eCLIP; Box 1) is a variant of iCLIP with 6 

improved sensitivity and specificity99,127. CLIP-type studies have already helped to 7 

functionally characterise the biological roles of several unorthodox RBPs. These include 8 

metabolic enzymes (e.g. HSD17B10)43, regulators of alternative splicing128,129, the E3 9 

ubiquitin/ISG15 ligase TRIM25130,131, the nuclear cap binding protein 3 (NCBP3, previously 10 

known as C17orf85)132, the FAST kinase domain-containing protein 2 (FASTKD2)133, 11 

tropomyosin134 and others. 12 

The 3-hydroxyacyl-CoA dehydrogenase type-2 (HSD17B10) is a mitochondrial enzyme 13 

involved in the oxidation of isoleucine, branched-chain fatty acids, and xenobiotics as well 14 

as in the metabolism of sex hormones and neuroactive steroids135. Mutations in HSD17B10 15 

cause a hereditary mitochondrial cardiomyopathy and neuropathy syndrome (OMIM 16 

300438). Interestingly, the severity of the disorder does not correlate with the loss of 17 

enzymatic activity, and the disease thus may be caused by a non-catalytic function of this 18 

protein136. A recent report identified HSD17B10 as a component of the mitochondrial 19 

RNase P complex, together with mitochondrial ribonuclease P protein 1 (TRMT10C) and 3 20 

(MRPP3)137. HSD17B10 was identified as an RBP in several RNA interactomes, indicating 21 

that it binds directly to RNA43. Investigation of HSD17B10 by iCLIP98 revealed an 22 

enrichment in mitochondrial RNAs43. Specifically, HSD17B10 preferentially interacts with 23 

the 5’ ends of 15 of the 22 mitochondrial tRNAs, binding particularly at the D-stem, D-loop, 24 

anticodon stem and loop regions of these tRNAs. The results suggest that a metabolic 25 
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enzyme of the di-nucleotide-binding family, HSD17B10, plays a role in guiding RNase P to 1 

the ends of the mitochondrial tRNAs. The mutation R130C causes the classical 2 

cardiomyopathy and neuropathy phenotype associated with HSD17B10 dysfunction136. This 3 

mutant exhibits reduced binding to TRMT10C in vitro, although it retains the ability to form 4 

tetramers138. iCLIP data revealed that the R130C mutant also displays reduced RNA-5 

binding activity43, suggesting that the dysfunctional association with RNA contributes to the 6 

disease phenotype. 7 

The HeLa RNA interactome catalogued four (out of six) members of the FAST kinase 8 

protein family as RBPs39. One of these, the mitochondrial FASTKD2, was recurrently 9 

identified in most human and mouse RNA interactomes38,39,44-47,61. Analysis of its binding 10 

partners by iCLIP revealed that FASTKD2 selectively associates with mitochondrial 11 

transcripts133. CRISPR-mediated depletion of FASTKD2 causes a strong reduction of its 12 

binding target 16S mitochondrial rRNA, in agreement with a recent report that FASTKD2 is 13 

important for the assembly of the mitochondrial ribosome139. Lack of FASTKD2 function 14 

also leads to a reduction in the levels of RNAs that it binds to, including those encoding the 15 

complex IV components COX1, COX2 and COX3, cyb and nd6 mRNAs as well as 7S RNA 16 

and the prolyl-tRNA133. A nonsense mutation in FASTKD2 causes a hereditary neurological 17 

disorder140. iCLIP and functional assays thus suggest that this disorder is explained by 18 

defects in RNA binding causing altered mitochondrial protein synthesis and 19 

metabolism133,139. 20 

C17orf85 was catalogued as an RBP by RNA interactome studies39, and more recently 21 

identified as a cap-binding protein that localizes to nuclear speckles, and renamed as 22 

NCBP3132. NCBP2 assembles with NCBP1 forming the canonical cap-binding complex 23 

(CBC) that binds to nuclear RNAs and plays important roles in RNA processing and export. 24 

NCBP1 knock down induced the expected retention of poly(A)+ RNA in the nucleus, and 25 
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caused defects in cell proliferation132. However, almost no effect was observed when 1 

NCBP2 was depleted, suggesting that NCBP2 could be replaced by another nuclear factor 2 

enabled with similar cap-binding activity. NCBP3 harbours a predicted RRM and this 3 

domain suffices for in vitro binding to m7GTP132. Similar to the poly(A)-specific ribonuclease 4 

(PARN)141, NCBP3 interaction with m7GTP is mediated by a tryptophan and two aspartic 5 

acids present at the RRM loops, and the mutation of these residues to alanine impairs the 6 

cap-binding activity of NCBP3132. Importantly, immunoprecipitation followed by mass 7 

spectrometry revealed that, like NCBP2, NCBP3 also interacts with NCBP1 forming part of 8 

an alternative nuclear cap-binding complex (CBC)132. 9 

Several members of the E3 ubiquitin/ISG15 tripartite motif ligase (TRIM) family have 10 

recurrently been catalogued as RBPs by RNA interactome studies. This includes 11 

TRIM2539,45, which has additionally been validated as an RBP by orthogonal approaches 12 

and its RBD was identified by RBDmap44,45,130. TRIM25 harbours an N-terminal zinc finger 13 

of the RING family that is important for its ubiquitin ligase activity. Although no canonical 14 

RBD can readily be recognized, TRIM25 crosslinks very efficiently to RNA45. Recently, 15 

TRIM25 has been identified to interact with protein lin-28 homolog A (LIN28A) and terminal 16 

uridylyltransferase 4 (TUT4), factors involved in pre-miRNA polyuridylation, enhancing their 17 

activity130. Because pre-miRNA polyuridylation triggers miRNA decay142, TRIM25 emerges 18 

as a regulator of miRNA biology. TRIM25 also appears to play a role as an RBP in virus-19 

infected cells131. TRIM25 was identified as a ubiquitin ligase that triggers β-interferon (β-20 

IFN) through stimulation of the antiviral factor RIGI143. Notably, dengue virus 2 (DENV2) 21 

genomic RNA is processed by the 5’ to 3’ exoribonuclease 1 (XRN1) until it gets stalled by 22 

a pseudoknot present at its 3’ region, leading to the production of a shorter subgenomic 23 

RNA enabled with pathogenic activity144. A recent report showed that the role of this 24 

subgenomic RNA is to sequester TRIM25 preventing its enhancing activity on RIGI and 25 
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thus reducing β-IFN production (Fig. 5a)131. Hence, the interaction of DENV2 subgenomic 1 

RNAs with TRIM25 supports its capacity to counteract the antiviral response, implicating 2 

the unorthodox RBP TRIM25 in innate immunity against viruses.  3 

Cyclins regulate the cell cycle by activating cyclin-dependent kinases (CDK). They have 4 

also sporadically been identified as unconventional RBPs in RNA interactome capture 5 

studies38,45,46,56. The Cyclins B and T are part of the RNA interactome of Drosophila 6 

embryos, and Cyclin B RNA-binding activity was validated by CLIP-PNK assay56. Cyclins 7 

(CCN) A2, L1 and T1 were identified in the nuclear RNA-binding proteome of mouse 8 

embryonic stem cells92. Mice with reduced CCNA2 expression are prone to tumour 9 

formation and chromosomal instability due to a predisposition to form lagging chromosomes 10 

and chromatin bridges145. This defect resulted from insufficient expression of the meiotic 11 

recombination 11 (Mre11) nuclease, apparently due to impaired translation. CCNA2 directly 12 

binds to two evolutionarily conserved regions in the 3’UTR of Mre11 mRNA, which appears 13 

to be necessary and sufficient for CCNA2 regulation (Fig. 5b)145. A C-terminal CCNA2 14 

fragment lacking CDK-binding is both necessary and sufficient for RNA-binding, and its 15 

expression in mouse embryonic fibroblasts restored appropriate Mre11 synthesis. 16 

Interestingly, the CCNA2 RNA-interacting region binds eIF4A2. Taken together, the data 17 

identify an unexpected, CDK-independent function of CCNA2 as an RNA-binding protein to 18 

promote Mre11 mRNA translation, potentially through an interaction with eIF4A2. 19 

 20 

OUTLOOK 21 

What do we have to expect with so many new RBPs to be considered? Some might side 22 

with Miranda from Shakespeare’s Tempest and marvel at these novel and goodly RBPs 23 

that populate the RNA interactome. Others may fear dystopia, as presented by Aldous 24 

Huxley’s in his novel ‘Brave New World’, where newly discovered RBPs represent 25 
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nonconformist misfits lacking biological function. Which roles do these new RBPs play? 1 

Some may indeed play none, having been discovered on the basis of a biophysical property 2 

that mediates above background interaction with RNA without biological consequence for 3 

the protein or the RNAs that it interacts with. Quite remarkably, however, the list of 4 

unorthodox RBPs that fulfil professional roles continues to grow, as discussed above. 5 

Although better known for other biological functions and lacking in classical RBDs, they 6 

‘moonlight’ as RBPs and affect RNA fate, akin to the functions of orthodox RBPs (Fig. 1a). 7 

It will be illuminating to study these RNA-protein interactions structurally. Likewise, it will be 8 

important to decipher the mechanisms by which these RNA-protein interactions are 9 

regulated, both by epitranscriptomic changes as well as by posttranslational modifications. 10 

An intriguing facet of this is the question of whether and how intrinsically disordered regions 11 

that bind RNA contribute to the formation of higher order assemblies by liquid-liquid phase 12 

separation and to understand the role of RNA in these transitions.  13 

Might unorthodox RBPs be controlled by RNA? We have become accustomed to the view 14 

that protein functions are typically modulated by other proteins, but there is ample room for 15 

the possibility that the known biological function of a protein be altered by ‘riboregulation’, a 16 

change in the protein’s function elicited by interaction with RNA (Fig. 1b). The RBPs PKR 17 

and RIGI can serve as examples of this class of proteins that could vastly expand. We 18 

already know much about RBPs, but future experiments are bound to surprise our intuition.  19 

 20 
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 7 

Box 1. Technical approaches to study RNA-protein interactions 8 

System-wide identification of RBPs in vitro: In one approach, a series of immobilised 9 

RNA probes are used as bait, exposed to cellular extracts and binding proteins are 10 

identified by quantitative mass spectrometry (Q-MS) (panel a)33. Applied to combinations of 11 

different mRNA UTRs and human HeLa extract, this yielded a dozen proteins that 12 

differentially bound to the baits, several of these were novel RBPs. In a more recent 13 

iteration, incubation of a set of pre-miRNA baits with multiple different cell lysates yielded 14 

~180 RBPs with distinct specificities36. In a second approach, arrayed proteins are provided 15 

as bait and incubated with labelled cellular RNA. RNA binding is determined by measuring 16 

the fluorescence intensity at each individual protein spot, in analogy to DNA microarrays 17 

(panel b). Two such proteome-wide screens identified 18034 and 6835 yeast RBPs, 18 

respectively. In a third approach, purified polyadenylated [poly(A)+] cellular RNA was 19 

immobilized on oligo(dT) magnetic beads and, after incubation with cell extract, bound 20 

proteins were analysed by Q-MS35. 88 mostly highly abundant proteins were identified and 21 

22 were known RBPs. 22 

Identification of in vivo RBP repertoires by RNA interactome capture. In this approach, 23 

UV crosslinking of cultured cells or organisms covalently links proteins to RNA positioned at 24 

“zero distance”. This is followed by denaturing cell lysis, collective capture of all RNPs 25 
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involving poly(A)+ RNA on oligo(dT) beads, and identification of proteins by quantitative 1 

mass spectrometry (Q-MS)37 (panel c). One study used both conventional crosslinking 2 

(cCL) and photoactivatable ribonucleoside-enhanced crosslinking (PAR-CL)97. The first 3 

relies on the natural excitability of nucleoside bases by 254 nm ultraviolet light, which 4 

generates short-lived, free radicals that attack amino acids in close proximity forming 5 

covalent bonds146. By contrast, PAR-CL utilizes the nucleoside analogue 4-thiouridine 6 

(4SU), which is taken up by cultured cells and incorporated into nascent RNAs. 7 

Crosslinking is then achieved by irradiation with ultraviolet light at 365 nm97. Another study 8 

also used PAR-CL, combining 4SU and 6-thioguanosine (6SG) labelling38. This latter study 9 

further exploited the U to C transitions occurring as a consequence of the crosslinking 10 

between 4SU and the RBP to analyse globally the footprints of the RNA interactome on the 11 

RNA. The protocol has been adapted to different model systems43,48,49,53-57, can be used to 12 

monitor differential association of RBPs with RNA under different physiological conditions or 13 

in response to biological cues47,56 as well as to identify RBPs in different subcellular 14 

compartments61. 15 

The eCLIP method.  This approach is used to determine the footprints of a given RBP on 16 

its targets RNA with single nucleotide resolution99,127. UV-irradiation of live cells is followed 17 

by cell lysis and limited RNA digestion to fragment RNA. Protein-RNA complexes are 18 

immunoprecipitated with an antibody against the RBP under study. Then, the 19 

immunoprecipitated material is resolved by denaturing gel electrophoresis, transferred to a 20 

membrane. Segments of the membrane corresponding to RNPs are excised. The RNA is 21 

recovered and after cDNA library, the RNA regions bound by the RBP are identified by high 22 

throughput sequencing (panel d). Since reverse-transcription often stalls at the site of the 23 

protein-RNA crosslink, eCLIP affords single nucleotide resolution. TAG-eCLIP broadens the 24 

scope of the approach, as it includes a CRISPR/Cas9-mediated insertion of a C-terminal 25 
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affinity tag into the endogenous RBP gene, bypassing the need for individual antibodies147. 1 

Together with several hundred antibodies against known RBPs that have now been tested 2 

for immunoprecipitation74, this provides for a growing list of eCLIP datasets, which are 3 

accessible at https://www.encodeproject.org. Among the 122 proteins with available eCLIP 4 

data, 34 lack classical RBDs. 5 

 6 

Box 2. Epitranscriptomic control of RNA binding. Progress has been swiftest with 7 

understanding m6A function in diverse cellular contexts. The YT521-B homology (YTH) 8 

domain proteins were identified as m6A ‘readers’ that specifically bind m6A-containing 9 

mRNA regions to impact splicing, export, translation, or turnover62,63. The ensuing 10 

downstream effects are determined by the specific YTH protein that is recruited and on the 11 

mRNA context. The YTH-containing proteins YTHDC1, YTHDC2, YTHDF1, YTHDF2 and 12 

YTHDF3 were consistently found in both human and mouse RNA interactome datasets. 13 

The RNA-binding proteome of A. thaliana contains most plant YTH domain proteins, 14 

including cleavage and polyadenylation specificity factor 30 (AtCPSF30), possibly 15 

explaining a plant-specific link between m6A and mRNA cleavage54. When YTHDF1 is 16 

recruited to m6A sites in the 3’UTR of human mRNAs, it enhances their translation, likely 17 

through interactions with subunits of the translation initiation factor eIF3148. Conversely, 18 

when YTHDF2 binds to 5’UTR sites in the nucleus of murine embryonic fibroblasts, it blocks 19 

their demethylation in heat shock, thus facilitating selective translation in the cytoplasm by 20 

direct binding of eIF3 to these m6A sites149. More generally, cytoplasmic YTHDF2 binds 21 

m6A-containing mRNAs in human cells and promotes their relocation to processing bodies 22 

and degradation150. The latter function is critically involved in murine embryonic stem cell 23 

differentiation151-153, facilitates maternal mRNA clearance, and the maternal-to-zygotic 24 

transition in zebrafish embryos154. Epitranscriptomic marks can also modulate RBP binding 25 
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indirectly by affecting RNA structure. For example, the nuclear protein HNRNPC responds 1 

to m6A-operated ‘structural switches’ to gain access to thousands of its target sites in 2 

human nuclear RNAs155. HNRNPC preferentially binds to single-stranded U tracts, and m6A 3 

can destabilise local RNA structure, making the U-tracts more accessible. Thus, when 4 

considering the determinants of RNP formation, epitranscriptomic changes need to be 5 

considered in addition to posttranslational RBP modifications. 6 

7 
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FIGURES & LEGENDS  1 

 2 

Figure 1. Functional crosstalk between proteins and RNA. Schematic representation of 3 

the biological consequences of protein-RNA interactions. (a) RNA-binding proteins (RBP) 4 

interact with RNA through defined RNA-binding domains to regulate various aspects of the 5 

RNA’s function. (b) Inversely, the RNA binds to the RBP to affect the protein’s fate. 6 

 7 

Figure 2. Comparison of published RNA interactomes. The reported lists applying the 8 

most stringent criteria for RBPs identified by different studies and from various source 9 

materials were extracted, curated and their annotations were updated, and converted to 10 

base identifiers. The underlying data are provided in Table S1. (a) Supersets of RBPs 11 

identified by the combination of RBP detection studies in a given organism. These were 12 

compiled for Mus musculus (Mm), Homo sapiens (Hs), Saccharomyces cerevisiae (Sc), 13 

Drosophila melanogaster (Dm), Arabidopsis thaliana (At) and Caenorhabditis elegans (Ce).  14 

RBP sets for Danio rerio (Dr), Trypanosoma brucei (Tb), Leishmania donovani (Ld) and 15 

Plasmodium falciparum (Pf) were also added. (b-h) Venn Diagrams and UpSet plots156 16 

showing overlaps, set and intersections sizes between different RBP sets. Differences in 17 

technical approaches and data processing (for example, thresholds for detection and 18 

reproducibility) will affect these comparisons. (b) RBP repertoires as detected in human 19 

source material. RNA interactome capture (RIC; Box 1) with either conventional UV 20 

crosslinking (cCL) or photoactivatable ribonucleoside-enhanced crosslinking (PAR-CL) was 21 

applied to the following cell lines: cervical cancer HeLa39, embryonic kidney HEK29338,39, 22 

hepatocytic HuH743 and myeloid leukaemia K562 (serial nuclear RIC)61. HeLa cells were 23 

further subjected to RBDmap44 and RNPxl42. The human datasets show very high overlap, 24 

likely because of the preponderance of ‘generic’ cell lines as source material and related 25 
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experimental approaches. (c) Murine RBP repertoires. RIC was applied to primary 1 

embryonic fibroblasts (MEF ±etoposide)84, embryonic stem cells (mESC, total cell and 2 

nuclear fraction), macrophages (RAW264.7 ±lipopolysaccharide)47. HL-1 cardiomyocytes 3 

were subjected to both RIC and RBDmap44. These datasets overlap less well, probably due 4 

to the use of more ‘idiosyncratic’ cell lines and inclusion of drug treatments. (d) Budding 5 

yeast RNA-binding proteomes. Two studies used either in vitro protein arrays or, in one 6 

case, oligo(dT) capture screens to identify RBPs34,35. Three in vivo RNA interactomes were 7 

generated, either employing conventional UV crosslinking (cCL)48,49 or photoactivatable 8 

ribonucleoside-enhanced crosslinking (PAR-CL)43. RNPxl was used with two crosslinking 9 

approaches42. The diversity of technical approaches likely explains the big differences in 10 

coverage and overlap. (e) Fruit fly RBP sets. Two studies applied RNA interactome capture 11 

to Drosophila melanogaster embryos, using solely cCL56 or both cCL and PAR-CL57. The 12 

focus here were embryos undergoing maternal-to-zygotic transition. This, together with 13 

differences in mass spectrometry approaches likely underlies the moderate overlap. (f) 14 

RNA interactomes captured from different plant sources, including cell suspension cultures 15 

and leaves53, etiolated seedlings54 and leaf mesophyll protoplasts55. Given the 16 

heterogeneous sources, the three datasets agree reasonably well with each other. The 17 

lower RBP identification rates suggest UV crosslinking limitations, likely due to the 18 

presence of a cell wall and/or UV-absorbing pigments. (g) Pairwise comparisons of 19 

InParanoid clusters between human (Hs), mouse (Mm) and yeast (Sc). The intersections 20 

between these sets constitute emerging mammalian or eukaryotic ‘core’ interactomes. (h) 21 

UpSet plot showing the overlap between the human superset of RBPs and human 22 

orthologues from Mus musculus (Mm), Saccharomyces cerevisiae (Se), Drosophila 23 

melanogaster (Dm), Caenorhabditis elegans (Ce) and Arabidopsis thaliana (At). 24 

 25 
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Figure 3. System-wide, high resolution identification of RNA-binding domains. Each 1 

of the three methods uses UV irradiation of live cells to establish covalent bonds at direct 2 

contact sites between RNA and protein (indicated by a star). Following cell lysis, the 3 

approaches diverge with regard to proteolysis, purification strategy and detection by 4 

quantitative mass spectrometry (Q-MS). (a) Purification and direct detection of RNA-5 

crosslinked tryptic peptides42,88. Although simple in principle, this strategy is challenging 6 

due to the inefficiency of UV crosslinking and the heterogeneous mass contribution by the 7 

nucleic acid remnant, resulting in sub-stoichiometric amounts of peptides with hard-to-8 

predict additional mass. To overcome this, covalently linked protein-RNA complexes are 9 

purified on oligo(dT) beads, by performing the initial steps of RNA interactome capture37,43. 10 

After digestion with trypsin and RNases, peptides crosslinked to remnants of RNA are 11 

further enriched using a TiO2 matrix157, prior to analysis by Q-MS and a complex search, 12 

performed by a custom-designed software termed RNPxl, for peptide spectra with a defined 13 

mass shift caused by the nucleotide remnant. (b) Extrapolation of RNA-protein crosslink 14 

sites by RBDmap44. Again, RBPs are purified with poly(A)+ RNA as per RNA interactome 15 

capture37,43, but then digested with a protease that cleaves every 17 amino acids on 16 

average (LysC or ArgC), typically leaving peptides that still contain an internal trypsin 17 

cleavage site. RNA-linked peptides, termed RBDpep, are then recaptured on oligo(dT) 18 

beads, while those distant to the crosslink site are released into the supernatant. Both 19 

fractions are digested with trypsin and analysed by Q-MS. For RNA-bound material this 20 

leads to: i) a fragment with remnant RNA that will not be identified; and ii) a neighbouring 21 

fragment(s) with native mass (N-peptide). N-peptides that are enriched in the RNA-bound 22 

fraction are extended in silico to the next LysC/ArgC cleavage site to reconstitute the 23 

original RBDpep. (c) Proteomic identification of RNA-binding regions (RBR-ID)92. This 24 

approach directly exploits the mass shift of RNA-crosslinked peptides in conventional MS 25 
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analyses, by assigning RNA-binding activity to tryptic peptides (~9 amino acid length on 1 

average) with reproducibly reduced ion counts (peptide intensity) in UV-irradiated samples 2 

compared to non-irradiated controls. 3 

The three approaches have some common limitations. UV crosslinking relies on a 4 

favourable geometry, nucleotide and amino acid composition at protein-RNA interfaces. 5 

Protein-RNA interactions with the phosphate backbone, for example, are non-optimal in this 6 

regard, and will be missed. Mass-spectrometric analyses are also influenced by the 7 

abundance of the peptides and their amino acid sequence (influencing optimal peptide size 8 

generated derived from tryptic cleavage and optimal mass-to-charge ratio). The RNPxl 9 

workflow offers the unique advantage of single amino acid resolution, but at the expense of 10 

a limited sensitivity and the need for specialized proteomic analyses. RBDmap is less 11 

complex to implement and more sensitive, but at the price of a lower resolution (~17 amino 12 

acids). The conceptually very straightforward RBR-ID gives an intermediate resolution (~9 13 

amino acids), however, its high intra- and inter-experimental variability call for a sufficiently 14 

high number of technical and biological replicates to obtain high confidence results. 15 

 16 

Figure 4. Modes of RNA binding. (a) Schematic representation of a RBP harbouring a 17 

classic RBD (RRM) interacting specifically with a specific RNA sequence in the context of a 18 

stem-loop2. (b) Depiction of the eukaryotic initiation factor (eIF)4F, which is composed of 19 

the cap-binding protein eIF4E, eIF4G and the helicase eIF4A. This complex associates with 20 

capped RNA in a sequence-independent manner to enable global initiation of translation158. 21 

(c) The exon junction complex is deposited by its interaction with CWC22 ~20 nucleotides 22 

upstream the exon-exon junction immediately after intron removal102. (d) The disordered 23 

RGG-motif present in FMR1 protein co-folds with its target RNA forming a tight electrostatic 24 

and shape-complementarity driven interaction107. (e) The internal ribosome entry site 25 
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(IRES) of hepatitis C virus (HCV), interacts directly with the ribosome through a complex 1 

interaction mode that involves shape-complementarity116. (f) The lncRNA NEAT1 hijacks 2 

the RBPs NONO, PSC1 and SFPQ in paraspeckles117. (g) PKR binds to double-stranded 3 

(ds)RNA, derived from viral replication. RNA binding promotes protein dimerization and 4 

autophosphorylation, activating PKR. In its active form, PKR phosphorylates eIF2α to block 5 

protein synthesis in infected cells159. (h) Aconitase 1 (ACO1) associates with an iron-6 

sulphur cluster to catalyse the interconversion between citrate and isocitrate. Under low iron 7 

conditions, the iron-sulphur cluster is no longer synthesised and the apoprotein, iron 8 

regulatory protein 1 (IRP1), binds mRNAs encoding cellular factors involved in iron 9 

homeostasis, regulating their fate119. 10 

 11 

Figure 5. Examples of the biological roles of unorthodox RBPs. (a) Schematic 12 

representation of (a) TRIM25 hijacking by the subgenomic RNA of DENV to reduce β-13 

interferon (β-IFN) synthesis131. DENV genomic RNA degradation by XRN1 leads to the 14 

generation of a subgenomic RNA due to XRN1 stalling at a pseudoknot present at the 3’ 15 

region of this RNA. The subgenomic DENV RNA recruits TRIM25 but not RIGI, which 16 

requires the presence of tri-phosphate 5’ ends to interact, thus hijacking TRIM25 in RNPs 17 

lacking its molecular partner in the β-IFN pathway, RIGI. (b) Cdk-independent function of 18 

CCNA2 as an RNA-binding protein. CCNA2 directly binds to two evolutionarily conserved 19 

regions in the 3’UTR of Mre11 mRNA and can to promote Mre11 mRNA translation, 20 

potentially through an interaction with eIF4A2145. 21 

 22 

GLOSSARY 23 

Ribonucleoprotein (RNP): A complex formed between one or several RNAs and proteins. 24 
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RNA-binding domain (RBD): A subdomain within a protein that mediates direct interaction 1 

with RNA.  2 

RNA-recognition motif (RRM): One of the most common RBDs, consisting of ~90 amino 3 

acids that fold into two a-helices packed against a four-stranded b-sheet. Typically, the 4 

residues in the b-sheet interact with RNA. 5 

HnRNP K homology (KH) domain: Another common RBD, consisting of ~70 amino acids 6 

that fold into three a-helices packed against a three-stranded b-sheet. RNA binds to a 7 

hydrophobic cleft formed between two core a-helices and a GXXG loop that interconnects 8 

them. 9 

DEAD box protein: RNA helicases exhibiting two highly similar domains that resemble the 10 

bacterial recombinase A. ATP binds in a cleft between the two helicase domains, while 11 

RNA binds across both domains on the opposite side. The DEAD box is one of nine 12 

conserved sequence motifs in this class of proteins and contains the amino acid sequence 13 

Asp-Glu-Ala-Asp (DEAD). 14 

Epitranscriptome: A collective term for all chemically diverse RNA modifications that exist 15 

within a transcriptome. In analogy to the epigenome, the term further implies that many 16 

such modifications (e.g. methylation, pseudouridylation) are deliberately placed and serve 17 

regulatory roles.  18 

Maternal-to-zygotic transition (MZT): The phase in embryonic development during which 19 

control by maternally derived products ceases and the zygotic genome becomes activated. 20 

Processing (P-)bodies: Microscopically visible foci present in the cytoplasm of eukaryotic 21 

cells. P-bodies contain mRNAs and many components of mRNA silencing and turnover. 22 

Stress granules (SGs): Cytoplasmic aggregates of stalled translation initiation complexes 23 

in eukaryotic cells that are induced by different forms of cellular stress. 24 
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Liquid-liquid phase separations (LLPS): A (bio-)physical process whereby non-1 

membrane-bound compartments (e.g. SGs, P-bodies) are formed as phase-separated, 2 

liquid-like droplets within cells. 3 

Intrinsically disordered regions (IDRs): Features within a native protein that lack stable 4 

secondary or tertiary structure and thus appear unfolded. 5 

Long noncoding RNAs (lncRNAs): RNAs longer than 200 nucleotides without ascribed 6 

protein-coding potential. The arbitrary length criterium is used to distinguish lncRNAs from 7 

small noncoding RNA types, such as e.g. microRNAs or tRNAs. 8 

UV crosslinking: A method using ultraviolet light irradiation to covalently connect proteins 9 

and RNA when positioned in very close proximity (‘zero distance’) to each other. UV 10 

crosslinking can be applied in vitro or in living cells. 11 

Zinc finger domain: A protein domain involving cysteines (C) and histidines (H) that 12 

coordinates zinc cations. Zinc finger domains are classified based on the order and 13 

frequency of C and H, and can mediate interactions with DNA, RNA or proteins depending 14 

on the subclass.  15 

InParanoid analyses: Method for detecting orthologues and in-paralog clusters across 16 

different, often distant species. 17 

BioPlex PPI dataset: Comprehensive collection of protein-protein interaction networks 18 

generated by experimental approaches.  19 

Electrophoretic mobility shift assay (EMSA): A method to study protein interactions with 20 

nucleic acids in vitro. Cell extracts or purified proteins are incubated with radiolabelled (or 21 

fluorescently labelled) nucleic acids, and the resulting complexes are resolved through a 22 

native gel. If the nucleic acid is bound by a protein, the protein will retard its mobility through 23 

the gel compared to the unbound probe.  24 
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G-quadruplex: RNA structure involving two or more stacks formed by a planar array of four 1 

guanine bases (G). It requires the coordination of a monovalent cation of an appropriate 2 

radius, such as potassium.  3 

RNA aptamer: Relatively short and often highly folded short RNA molecule that was 4 

experimentally selected for specific, high affinity interactions with proteins or other 5 

molecules.  6 

RNase P complex: Ribonuclease complex for processing of precursor t-RNA 7 

Rossmann-fold (R-f): A protein domain characterised by the presence of up to seven 8 

mostly parallel b-strands combined with connecting α-helices. This domain is typically found 9 

in proteins that bind nucleotides, such as metabolic enzymes with di-nucleotide (NAD, 10 

NADP, FAD) binding activity.  11 

Uridylation: A biochemical reaction mediated by uridylyltransferases (e.g. TUTase) that 12 

involves the addition of multiple uridines to the 3’ end of RNA molecules. This modification 13 

is typically a signal for RNA degradation.  14 

 15 
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SUPPLEMENTARY INFORMATION 

  

Supplementary Figure 1. Comparison of RNA interactome capture data 

with in silico methods to identify RNA-binding proteins (RBPs). Venn 

diagrams showing overlaps of the human RNA interactome datasets with a 

curated list of RBPs1 (a) or with SONAR-identified RBPs2 (b). (c) Venn diagram 

showing the overlap between the Saccharomyces cerevisiae RNA interactome 

superset3-5 with the protein array-based, in vitro approach to identify RBPs6,7 

and SONAR-identified RBPs in yeast2. (d) Functional annotation of the mouse, 

human and yeast RBP supersets (all identified RBPs in mouse (Mm)8-12, human 

(H)4,13-17 and yeast (Sc) studies) 3-7,15. Domain classifications 2,14 were combined 

to annotate proteins with known RNA-binding domains. Current versions of GO 

terms include the RBPs of early interactomes13,14.  

 

Supplementary Table 1. Curated table of RBP supersets identified in Homo 

sapiens 4,13-17, Mus musculus)8,9,11,12, Saccharomyces cerevisiae3-5, Drosophila 

melanogaster18,19, Arabidopsis thaliana20-22 and Caenorhabditis elegans5 using 

RNA interactome capture. RNA-binding proteomes generated with RNA 

interactome capture are compiled in Table S1. Due to ambiguous or outdated 

identifier (ID) annotations, our reported protein numbers, which are based on 

updated annotations and curation, occasionally differ from those in the original 

publications. We used the most stringent cutoffs provided by the original 

publications. Also note that the current gene ontology (GO) term “RNA binding” 

already includes the initial RNA interactome studies13,14.   For human, mouse 

and yeast, ‘Metabolism’ has been annotated as ‘true’, when the respective RBP 

was listed under ‘metabolism’ in ‘Reactome’ (version 60). The ‘Enzyme’ 

annotation is ‘true’ when the protein is listed in in the six enzyme commission 

groups (EC 1-6) from the IntEnz database (release May 2017). “Metabolic 

enzyme” is “true” when the RBP fulfils our definition of metabolic enzyme. 

‘Metabolic enzyme’ is an ambiguous term to define, and different authors have 

applied different criteria. For the purpose of this review, we generated a working 

list by mapping RBPs to “Metabolism” in the Reactome database (version 60)23. 

The resulting proteins were manually curated by removing genes whose protein 

products are not classified in the six enzyme commission groups (EC 1-6) from 

the IntEnz database (release May 2017)24, but retaining the subunits of ATP 

synthase and the respiratory chain complexes on the list of metabolic enzymes.  
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