
REVIEW

A brief guide to model selection, multimodel inference
and model averaging in behavioural ecology
using Akaike’s information criterion

Matthew R. E. Symonds & Adnan Moussalli

Received: 19 April 2010 /Revised: 19 July 2010 /Accepted: 29 July 2010 /Published online: 25 August 2010
# Springer-Verlag 2010

Abstract Akaike’s information criterion (AIC) is increas-
ingly being used in analyses in the field of ecology. This
measure allows one to compare and rank multiple
competing models and to estimate which of them best
approximates the “true” process underlying the biological
phenomenon under study. Behavioural ecologists have
been slow to adopt this statistical tool, perhaps because
of unfounded fears regarding the complexity of the
technique. Here, we provide, using recent examples from
the behavioural ecology literature, a simple introductory
guide to AIC: what it is, how and when to apply it and
what it achieves. We discuss multimodel inference using
AIC—a procedure which should be used where no one
model is strongly supported. Finally, we highlight a few
of the pitfalls and problems that can be encountered by
novice practitioners.
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Introduction

Increasingly, ecologists are applying novel model selection
methods to the analysis of their data. Of these novel methods,
information theory (IT) and in particular the use of Akaike’s
information criterion (AIC) is becoming widespread (Akaike
1973; Burnham and Anderson 2002; Garamszegi 2010).
Unfortunately, the literature describing AIC can be intimi-
dating to those who are not fluent with statistical phraseology.
This short introduction is intended for those behavioural
ecologists who are unfamiliar with the practicalities of AIC.

Considerable literature exists discussing the origin,
philosophy and application of AIC (e.g. Burnham and
Anderson 2001, 2004; Burnham et al. 2010), and criticism
of AIC is likewise prevalent (e.g. Guthery et al. 2005;
Richards 2005; Stephens et al. 2005; Link and Barker
2006). It is not our aim here to provide in-depth discussion
of the philosophical background to AIC, nor to advocate or
discourage use of the method. Such discussion can be
found in the other contributions to this special issue. Our
intention is simply to provide, for those intending to use the
method, a basic user’s guide to model selection and
multimodel inference using AIC. For a full background to
AIC, readers are referred to the key text by Burnham and
Anderson (2002). Additionally, Hilborn and Mangel
(1997), Johnson and Omland (2004), Mazerolle (2006),
Towner and Luttbeg (2007) and Stephens et al. (2007) have
provided some excellent overviews of techniques of model
selection for ecologists more generally.

Using AIC in behavioural ecology

Most behavioural ecologists use traditional statistics in-
volving null hypothesis significance testing (NHST), with

Communicated by L. Garamszegi

This contribution is part of the Special Issue “Model selection,
multimodel inference and information-theoretic approaches in
behavioural ecology” (see Garamszegi 2010).

M. R. E. Symonds (*)
Department of Zoology, University of Melbourne,
Melbourne, Victoria 3010, Australia
e-mail: symondsm@unimelb.edu.au

A. Moussalli
Sciences Department, Museum Victoria,
GPO Box 666E, Melbourne, Victoria 3001, Australia

Behav Ecol Sociobiol (2011) 65:13–21
DOI 10.1007/s00265-010-1037-6



assessment of significance through associated p values.
Mundry (2010) and Burnham et al. (2010) provide
discussion of the philosophical and inferential differences
between the NHST approach and IT-AIC approach. In
behavioural ecology, the scenario where using AIC is likely
to be proposed is when an analysis explores a range of
variables that may be associated with a particular trait or
behaviour. Such studies are often fundamentally explor-
ative, seeking to identify strong associations worthy of
further investigation and experimentation. For example,
Thorup et al. (2006) sought to identify the environmental
covariates associated with migration behaviour decisions in
ospreys on a particular day—covariates that included wind
speed and direction, precipitation, time of year and previous
migration history. Thus, the model involved is inherently
multivariate (i.e. has more than one possible predictor), and
accordingly, multiple models will need to be considered. A
traditional approach might seek to identify a ‘best model’
through forward or backward stepwise variate selection, a
procedure whose shortcomings are well documented
(Whittingham et al. 2006; but see Hegyi and Garamszegi
2010). Not least of these problems is that parameters can
appear as significant or non-significant, depending on what
other parameters are present in the model.

AIC compares multiple competing models (or working
hypotheses) all at once, asking “how certain are we that any
given model is the best approximating model?” In doing so,
model selection uncertainty can be quantified and
accounted for, and inference can be based on a set of
models in cases where no single model stands out as being
the best model. AIC therefore enables the user to make
biological inferences that are unconditional on a specific
model (as do other information criteria, such as the
Bayesian Information Criterion—see Johnson and Omland
2004). If there is any uncertainty over the model, then you
are implicitly in a multiple-model framework, whether you
admit it or not. AIC provides a means of expressing and
evaluating this explicitly.

Any model that we produce is, at best, only going to
be an approximation of the biological phenomenon being
studied. We can never actually know exactly what
determines every aspect of, say, migration behaviour in
ospreys. So many factors are involved that the truth
would be irreducibly complex. Any model we test will
thus only be an approximation of the truth. Burnham et
al. (2010) describe the fundamentals underlying the
formulation of AIC under information theory, but to
briefly encapsulate, AIC is a numerical value by which
to rank competing models in terms of information loss in
approximating the unknowable truth. Accordingly, AIC as
a value by itself is meaningless. It derives meaning from
comparison with the AIC values of other models with the
model having the lowest AIC value representing the ‘best

approximating model’. As we shall see, however, there is
often uncertainty regarding the identity of the best
approximating model.

Calculating AIC

Calculation of AIC is not difficult. Recent versions of most
statistical software packages provide AIC values for general
linear models (Table 1). AIC is calculated using the number
of fitted parameters, including the intercept, in the model
(k), and either the maximum likelihood estimate for the
model (L) or the residual sum of squares of the model
(RSS), two measures that are also easily derived from the
output of any statistics package. In the case of least-squares
regression analyses, the value of k must be increased by 1
to reflect the variance estimate as an extra model parameter.

AIC is calculated as

AIC ¼ �2 lnðLÞ þ 2k

if using likelihood or

AIC ¼ n ln
RSS

n

� �� �
þ 2k

if using residual sum of squares, where n is the sample
size.

For small sample sizes (roughly approximated as being
when n/k is less than 40 and k is the number of fitted
parameters in the most complex model), a modified version
of AIC (AICc) is recommended:

AICc ¼ AICþ 2k k þ 1ð Þ
n� k � 1

In practice, because AICc approximates AIC at large
sample sizes, it is often advised that AICc is used as default
(but see “Problems and pitfalls” later).

AIC is affected by overdispersion in the data, that is
when there is more variability in the data than would be
expected from the fitted model (i.e. the model is a poor fit).
Overdispersion is very common with count data, which are
typically modelled using Poisson regression. The causes of
overdispersion are numerous, and there are several ways of
dealing with it (see Richards 2008 for a recent primer). In
terms of AIC analyses, it is usually recommended that
QAIC is used:

QAIC ¼ �2 lnðLÞbc þ 2k

where bc is the variance inflation factor or overdispersion
coefficient that is sometimes generated by statistics pack-
ages (calculated as the χ2 goodness of fit of the most
complex model in the candidate set divided by its degrees
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of freedom). QAIC should be employed if bc is greater than
1, and, since the overdispersion coefficient is a parameter, k
should be increased by 1 (Burnham and Anderson 2001).
As with AIC, a version of QAIC for small sample sizes,
QAICc, can be employed:

QAICc ¼ QAIC þ 2k k þ 1ð Þ
n� k � 1

Whichever version of AIC is employed, it must be
consistent across models (i.e. do not mix AIC, AICc, QAIC
and QAICc). Hereafter, we shall use only the term AIC, but
our discussion applies to any of these iterations.

As mentioned above, the models are ranked by AIC,
with the best approximating model being the one with
the lowest (most negative) AIC value. AIC thus takes
into account how well the model fits the data (by using
likelihood or RSS), but models with greater numbers of
fitted parameters (k) will have higher AIC values, all
other things being equal. In other words, models with
fewer parameters will be favoured.

To illustrate with an example, we shall use an analysis
of song structures in dark-eyed juncos (Junco hyemalis)
originally analysed by Cardoso et al. (2007) with standard
NHST and stepwise approaches. Specifically, we focus on
syllable length and whether there are tradeoffs between
this and other aspects of song structure and complexity.
For example, longer syllables may require longer gaps (for

recovery) between utterances, or songs that might be more
complex in other regards (greater range of frequency, more
trills, etc.) might have shorter syllables. The data consist
of 188 different syllable types (n=188), with eight song
complexity variables being examined (see Table 2 for
details), plus intercept and variance as additional fitted
parameters in the model (k=10). As with any statistical
analysis, problems can arise using highly correlated traits
as independent predictor variables. In this case, an analysis
of the full model (i.e. the model with all eight variables
included) indicated substantial tolerance between varia-
bles, suggesting that all eight variables are sufficiently
independent (see also Cardoso et al. 2007). Nor was there
any indication of overdispersion in the data set. Since n/k
is less than 40, calculation of AICc is the most appropriate.
We calculated AICc values for every possible combination
of variables and intercept (what is known as an all-subset
approach). The results of this are shown in Table 2. This
all-subset approach to model selection is one that is likely
to be used by behavioural ecologists with observational
data and several putative predictor variables; however, it is
important to realise that this approach is fundamentally
explorative (i.e. more about hypothesis generating than
testing, providing a basis for subsequent work and data
collection where one more explicitly tests a specific number of
hypotheses). Such an approach can be seen as a form of
‘fishing expedition’, and Burnham and Anderson (2002,

Table 1 Major statistical packages and how they implement Akaike’s information criterion

Package Website Versions of AIC calculated Additional Notes

Genstat 12 www.vsni.co.uk/software/genstat/ AIC only—automatically calculated for
generalised linear models and for restricted
maximum likelihood (REML) for linear
mixed models

For generalised linear models, the model
variance is not taken into account in the
count of fitted parameters; for REML,
the variance parameters in the random
model are included in the parameter count

JMP 8 www.jmp.com AICc only—automatically calculated when
analysing in the stepwise regression menu

Stepwise regression menu also allows one to
compare AICc across all possible models,
calculate Akaike weights and perform
model averaging

Minitab 15 www.minitab.com None

SPSS 18 www.spss.com/statistics/18/ AIC and AICc—calculated in several
procedures (e.g. generalised linear models,
mixed models, time series analysis)

For generalised linear models, the model
variance is included in the parameter count

R http://www.r-project.org/ AIC only, in two commands: extractAIC
{stats} &AIC {stats}

For full details, see http://stat.ethz.ch/R-manual/R-
patched/library/stats/html/AIC.html

SAS 9.2 www.sas.com AIC and AICc supplied as part of the
‘Fit Statistics’ table in numerous procedures

For simple and generalised linear models, the
model variance is not taken into account in
the count of fitted parameters, but it is included
for the generalised linear mixed model procedure.
AICc is only provided under the generalised
linear and mixed model applications. Number
of parameters is explicitly stated in the output

Statistica 9 www.statsoft.com AIC only—calculated as part of regression output Provides an option to report AIC for all
possible models. Output shows how many
parameters are used

Systat 12 www.systat.com AIC and AICc supplied as part of output of
numerous procedures
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p. 147) call it “poor strategy”. However, we suspect that, in
behavioural ecology, there often exists insufficient
knowledge of the system under study such that explor-
ative methods like the all-subset approach present above
are the only way forward. Further, how one defines a
reduced candidate set of models is also a complex matter
(see Dochtermann and Jenkins 2010; Burnham et al.
2010). Finally, if the aim is to proceed beyond model
selection and produce a predictive model through multi-
model inference and model averaging, as we shall do here,
then the all-subset approach with full-model averaging
needs to be employed.

In the example, the best AIC model contains the same
five variables identified as significant predictors by
Cardoso et al. (2007) using backward stepwise selection:
frequency bandwidth, number of frequency inflections,
number of elements, length of rattles and length of gaps.
However, this should not be taken as tacit confirmation
that AIC automatically produces the same result as
stepwise selection. Additionally, making inference based
on the best approximating model alone may not be
desirable. One of the main purposes of calculating AIC
is to present a range of models and their relative AIC
scores. By comparing the different models, we can
measure how much better the best approximating model
is compared to the next best models. The simplest way of
doing this is to calculate the difference (Δi or ΔAICi)
between the AIC value of the best model and the AIC
value for each of the other models.

Δi is used to calculate two additional measures used to
assess the relative strengths of each candidate model

(Burnham and Anderson 2002, pp. 75–79). The first of
these is the evidence ratio (ER):

ER ¼ exp � 1
2 Δbest

� �
exp � 1

2 Δi

� �
which provides a measure of how much more likely the
best model is than model i (Δbest is the Δ value for the best
model=0). In Table 2, the first model is approximately 2.4
and 2.5 times more likely to be the best approximating
model than the second and third models, respectively The
evidence ratio can also be used to compare any two models
individually (simply replace Δbest in the equation with Δj,
the Δ value for model j).

The second, more commonly seen, measure is the
Akaike weight, wi. The Akaike weight for a given model,
i, is calculated from Δi values as:

wi ¼
exp � 1

2 Δi

� �PR
r¼1 exp � 1

2 Δr

� �
The Akaike weight is a value between 0 and 1, with

the sum of Akaike weights of all models in the
candidate set being 1, and can be considered as
analogous to the probability that a given model is the
best approximating model (although there are some who
disagree with this, e.g. Link and Barker 2006; Bolker
2008; Richards 2005). Thus, in Table 2, the best model
has a wi of 0.295—which can be interpreted as meaning
that there is 29.5% chance that it really is the best
approximating model describing the data given the

Table 2 95% confidence set of best-ranked regression models (the 24 models whose cumulative Akaike weight, acc wi, ≤0.95) examining effect
of song complexity variables on syllable length in the song of dark-eyed juncos

Candidate models k RSS AICc Δi wi acc wi ER

1 FB + NFI + NE + LR + LG 7 0.05155 −1527.294 0 0.295 0.295

2 FB + PF + NFI + NE + LR + LG 8 0.05143 −1525.557 1.737 0.124 0.418 2.38

3 FB + NFI + NE + L2V + LR + LG 8 0.05145 −1525.462 1.832 0.118 0.536 2.50

4 FB + NFI + NE + LH + LR + LG 8 0.05155 −1525.115 2.179 0.099 0.636 2.97

5 FB + PF + NFI + NE + L2V + LR + LG 9 0.05130 −1523.830 3.465 0.052 0.688 5.65

6 FB + PF + NFI + NE + LH + LR + LG 9 0.05143 −1523.354 3.940 0.041 0.729 7.17

7 FB + NFI + NE + LH + L2V + LR + LG 9 0.05145 −1523.255 4.039 0.039 0.768 7.53

8 FB + NFI + NE + LR 6 0.05344 −1522.681 4.613 0.029 0.797 10.04

9 FB + NE + LR + LG 6 0.05373 −1521.668 5.627 0.018 0.814 16.66

10 FB + PF + NFI + NE + LH + L2V + LR + LG 10 0.05130 −1521.598 5.696 0.017 0.832 17.25

…

23 FB + NFI + NE + LH + L2V + LR 8 0.05323 −1521.869 8.230 0.005 0.946 59.00

24 FB + NFI + NE + LH + L2V + LG 8 0.05329 −1521.670 8.429 0.004 0.950 73.75

Complete descriptions are provided in Cardoso et al. (2007). For definition of other terms, see text

FB frequency bandwidth, PF peak frequency, NFI number of frequency inflections, NE number of elements, LH length of harmonics, L2V length
of two voices, LR length of rattles, LG length of gaps
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candidate set of models considered. With this relatively
low weight, we cannot be certain that this model is the
best. That is to say, there exists model selection
uncertainty.

Model weights can also be used to estimate the
relative importance of variables under consideration.
This is done by summing the Akaike weights for each
model in which that variable appears. In our example,
the variable ‘peak frequency’ (PF) has an Akaike
weight=0.124+0.052+0.041+0.017+…. and so on
down the complete list of models. If a particular
predictor appears in all of the top models, then its
summed Akaike weight will tend towards 1. If that
predictor only appears in the very unlikely models, its
weight will tend towards 0. As with the Akaike model
weight (wi,), the predictor weight can be interpreted as
equivalent to the probability that that predictor is a
component of the best model. Similarly, these summed
weights can be used to rank the various predictors in terms
of importance (Burnham and Anderson 2002, p. 168). The
Akaike weights for the predictors in the junco example are
shown in Table 3. Reassuringly, the five variables
identified by Cardoso et al. (2007) and that feature in the
best AIC model all have high (>0.9) parameter weights,
considerably higher than the remaining three variables.

Rejecting models

In any set of models being compared, some will obviously
be ‘better’ (i.e. have lower AIC scores) than others, but can
we discount some models altogether? Clearly, the candidate
models, in the first place, should make biological sense, and
due to the relative nature of AIC, you should not be
comparing models that are all poor fits for the data (see
“Problems and pitfalls”). Thus, qualifying the utility or
worth of either the global model or the best AIC model in
terms of ‘goodness of fit’ is essential. There is still debate
about when a model can be considered uninformative (see
Richards et al. 2010; Burnham et al. 2010), but as a coarse
guide, models with Δi values less than 2 are considered to
be essentially as good as the best model, and models with
Δi up to 6 should probably not be discounted (Richards
2005). Above this, model rejection might be considered,
and certainly models with Δi values greater than 10 are
sufficiently poorer than the best AIC model as to be
considered implausible (Burnham and Anderson 2002).

A rather less procrustean approach is to produce a
‘confidence set’ or ‘credibility set’ of models that are the
most realistically likely to be the best approximating
model (Burnham and Anderson 2002). This is done by
ranking all the models from the best downwards and

Table 3 Model-averaged estimates for eight aspects of song complexity predicting syllable length in juncos

Int FB PF NFI NE LH L2V LR LG

1 0.011 (0.0056) 0.005 (0.0015) 0.006 (0.0022) 0.023 (0.0026) 0.205 (0.071) 1.066 (0.406)

2 0.021 (0.0156) 0.005 (0.0015) −1.8×10−6

(2.84×10−6)
0.006 (0.0022) 0.023 (0.0026) 0.204 (0.071) 1.064 (0.406)

3 0.011 (0.0056) 0.005 (0.0016) 0.006 (0.0022) 0.023 (0.0027) −0.098
(0.166)

0.193 (0.074) 1.041 (0.408)

4 0.011 (0.0056) 0.005 (0.0016) 0.006 (0.0022) 0.023 (0.0027) 0.010
(0.167)

0.205 (0.072) 1.067 (0.406)

5 0.023 (0.0158) 0.005 (0.0016) −2.1×10−6

(2.86×10−6)
0.007 (0.0023) 0.022 (0.0027) −0.116

(0.167)
0.189 (0.074) 1.034 (0.408)

6 0.021 (0.0156) 0.005 (0.0016) −1.9×10−6

(2.84×10−6)
0.006 (0.0023) 0.023 (0.0027) 0.010

(0.167)
0.203 (0.072) 1.064 (0.406)

7 0.011 (0.0057) 0.005 (0.0017) 0.006 (0.0023) 0.023 (0.0028) −0.001
(0.168)

−0.098
(0.167)

0.194 (0.075) 1.041 (0.408)

8 0.010 (0.0057) 0.004 (0.0015) 0.007 (0.0022) 0.025 (0.0025) 0.243 (0.071)

9 0.013 (0.0056) 0.006 (0.0015) 0.024 (0.0027) 0.173 (0.072) 1.160 (0.413)

10 0.023 (0.0158) 0.005 (0.0017) −2.2×10−6

(2.86×10−6)
0.007 (0.0023) 0.022 (0.0028) −0.002

(0.167)
−0.116
(0.168)

0.189 (0.075) 1.034 (0.408)

w 0.982 0.298 0.945 1 0.256 0.3 0.934 0.906bb 0.014 0.005 −2.0×10−6 0.006 0.023 0.020 −0.113 0.204 1.075eb 0.014 0.005 −5.9×10−7 0.006 0.023 0.005 −0.034 0.190 0.974bse bb� 	
0.0090 0.0015 2.5×10−6 0.0021 0.0025 0.142 0.155 0.070 0.389bse eb� 	
0.0090 0.0015 7.8×10−7 0.0020 0.0025 0.033 0.047 0.064 0.348

Typically, the standard model-averaging method would only consider those variates in the best AIC model. For comparison, however, estimates (bb
and eb, see text) from both model-averaging methods are shown for all covariates. Given that this example is based on an all-subset candidate set
and the best AIC model is not strongly weighted, full-model averaging would be the preferred approach. As in Table 2, parameter estimates (±SE)
from the top 10 models are shown, and weighted averages for estimates and error are displayed at the bottom of the table

FB frequency bandwidth, PF peak frequency, NFI number of frequency inflections, NE number of elements, LH length of harmonics, L2V length
of two voices, LR length of rattles, LG length of gaps, Int intercept, w variate weight
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proceeding down the list until the cumulative Akaike
weight exceeds 0.95, or whatever value you choose, and
then rejecting the rest. This produces a 95% confidence set
of models—in other words, we are 95% confident that one
of the models within this credibility set is the best
approximating model. In our example, there were 24
models constituting the 95% confidence set (Table 2). The
95% value is arbitrary and derives from the frequentist
approach but is the one most people are familiar with
when dealing with confidence.

One hazard of considering a lot of models, as typically
occurs in an all-subset context, is that the interpretation
of Δi can become problematic because models strongly
competing with the best AIC model (i.e. Δi<2) may differ
very little structurally, having merely one additional
parameter for instance. Little has been gained by making
the model more complex, with the likelihood of the
‘nested’ best AIC model and competing models being
essentially equivalent (Burnham and Anderson 2002, p.
131). Thus, models 2 to 7 in our example (Table 2) are
simply slightly more complex versions of model 1. In the
interests of parsimony, Richards (2008, see also Richards
et al. 2010 for further discussion) recommends post hoc
elimination from the candidate set models that are more
complicated versions of any model with a lower AIC
value. However, Richards’ technique has not been widely
employed, and as yet it is uncertain whether inference is
consistently improved by this approach.

Model selection uncertainty and multimodel inference

Occasionally, IT-AIC analyses present clear-cut results
where the Akaike weight of the best model is considerably
higher than the next best model. In situations where one can
clearly identify a best model (say it has an Akaike weight
of >0.9—Burnham and Anderson 2002), it is appropriate to
make inference based on that model alone. For example, in an
analysis of likelihood of clutch desertion by mallards with
experimentally manipulated broods, Ackerman and Eadie’s
(2003) best model, which included proportion of clutch
remaining and clutch age as predictors, had an Akaike
weight of 0.91, with the next best model having a relatively
paltry weight of 0.09 (the only other model considered had
negligible weight). Often, however, AIC analyses can
identify several, perhaps dozens, of ‘almost as good’ models.
If, for example, there are several models with Δi less than 2,
then they strongly compete for the position of being the best
approximating model. It is clear that in this case only
presenting the best model would be disingenuous. Presenting
all the models, or at least the confidence set of best models,
is essential. Likewise, presentation of the predictor weights
(see earlier) helps to measure the relative likelihood that each

predictor is part of the best model. Moreover, where model
selection uncertainty is evident, inference needs to be
multimodel-based, that is, model averaging should be
employed using the full set of models.

Model averaging

Model averaging produces parameter and error estimates
that are not conditional on any one model but instead derive
from weighted averages of these values across multiple
models. Model averaging in an AIC framework is still an
area that raises some thorny issues concerning both
methodology and indeed whether it improves inference at
all (see Richards 2005; Richards et al. 2010). When it
comes to actually doing the model averaging, there are two
subtly different approaches that can produce quite different
results. The first approach derives from what Burnham and
Anderson (2002) refer to as ‘natural averaging’, as it keeps
the averaged parameter estimate in the original scale. This
approach to model averaging is applied in cases where there
is strong, but not unequivocal (e.g. w>0.90), support for
the best AIC model, and parameters are averaged only for
those variates in the best AIC model (Buckland et al 1997).
The averaged parameter estimate is calculated as follows:

bb ¼
PR
i¼1

wi
bbiPR

i¼1
wi

where bbi is the estimate for the predictor in a given model
i, and wi is the Akaike weight of that model. In this
instance, bbi is averaged only over the models for which the
variate of interest appears. For instance, in the junco
example in Table 2, bbi and wi values for PF would only be
taken from models 2, 5, 6, 10 and so on. Unconditional
variance (an estimate of variance not conditional on a
single model) can then be calculated using the following
equation:

bvar bb� 	
¼

X
wi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibvar bbi� 	
þ bbi � bb� 	2

r" #2

where bvar bbi� 	
is the variance of the parameter estimate in

model i, and bbi and bb are as defined above (Buckland et al.
1997). Note that AIC weights for the subset of models
for which the variate of interest appears need to be
renormalized (i.e. summed up to 1) before calculating the
unconditional variance. For calculation of standard error,bse bb� 	

, one simply omits the overall squared term. Notice

that there are two components to this unconditional error:

18 Behav Ecol Sociobiol (2011) 65:13–21



error in parameter estimation bvar bbi� 	
, and the error due

to model selection uncertainty bbi � bb� 	2
. Consequently,

unconditional error estimates are typically greater than
when inference is based on a single model.

The second approach to model averaging, known as full-
model averaging (see Lukacs et al. 2009), should be
employed in cases where high model selection uncertainty
exists (i.e. the best AIC model is not strongly weighted);
thus, inference needs to be based on all models in the
candidate set. Such a situation typically arises in all-subset
modelling, as in our example. Here, the estimator is

denoted as eb; parameter estimates for all variates of the
global model are averaged, and all models are considered.
Models not containing the variates of interest simply
contribute zero to the calculation of the average. Hence,
the above formula simply reduces to:

eb ¼
XR
i¼1

wi
bbi

Consequently, bb shrinks towards zero by the amount
representing the degree by which the variate is uninformative

(i.e. eb ¼ bb 1� variate weightð Þ). The second approach es-
sentially produces a predictive formula for the global model
(in our example, all eight variables) with each averaged
parameter estimate being weighted so that variates with low
Akaike parameter weights will have little influence on
prediction. Note, in terms of predictions, this method in
parameter averaging yields identical results to weighted
averaging of model predictions. A simple analytical estimator
of the unconditional variance under full-model averaging
unfortunately remains elusive. Burnham and Anderson
(2002) do recommend an estimate worthy of further
investigation (see also Lukacs et al. 2009), namely:

bvar eb� 	
¼

X
wi bvar bbi� 	

þ bi � ebÞ2� ih
For illustrative purpose, Table 3 illustrates both

approaches for the junco data. The averaged parameter
estimates indicate that the five variates with high Akaike
weights and that feature in the best approximating model
are all positively related to syllable length. This indicates
that longer syllables require longer gaps between utterances
(suggesting an energetic tradeoff) but that there are no
tradeoffs between other aspects of song complexity—rather
syllable length reflects the frequency bandwidth, number of
frequency inflections, number of elements and length of
rattles produced by juncos. Note, in contrast to the five
important variables, model-averaged parameter estimates
for peak frequency, length of harmonics and length of two
voices are smaller than they are using the first model-
averaging approach, reflecting their low weight (see

Table 3). If the aim is to formulate how a particular
predictor relates to the response variable, then these
shrunken estimates may not be biologically realistic or
helpful. On the other hand, if the aim is prediction, then you
want poorly weighted variates to contribute less to the
prediction than strongly weighted variates.

Problems and pitfalls

Any statistical analysis in behavioural ecology is only
worthwhile if the variables chosen are biologicallymeaningful
(i.e. might reasonably be thought to be linked to the trait of
interest). Because AIC is a relative measure of how good a
model is among a candidate set of models given the data, it is
particularly prone to poor choices of model formulation. You
can have a set of essentially meaningless variables and yet the
analysis will still produce a best model. It is therefore
important to assess the goodness of fit (χ2, R2) of the model
that includes all the predictors under study. If this global
model is a good fit, then you can rest assured that the best
approximating model will be a good fit also. In the junco
example, the R2 of the global model is 0.49. In behavioural
ecology, with noisy data sets of observational data such as
this, this is an agreeably higher than average value and can
be interpreted as a ‘large’ effect (Møller and Jennions 2002).

Ideally, however, you should not be in a situation where
you are uncertain if any of your variables are informative or
not. Burnham and Anderson (2001, 2002, 2004) emphasise
the importance of justifying the inclusion of each parameter,
and each model within the candidate set. Justification for
selection of parameters, or models, is a separate topic (see
Burnham et al. 2010; Dochtermann and Jenkins 2010) but
should derive from prior biological knowledge or analysis (e.g.
experiments, field observations, previously published
analyses). For example, Symonds and Johnson (2008),
in predicting community composition in Australian birds,
used variables that had been identified as significant
environmental predictors of species richness in these
communities by Hawkins et al. (2005).

We earlier mentioned the importance of not using
correlated traits as independent predictor variables. Like-
wise, if the data do not conform to the assumptions of the
statistical procedures (e.g. using non-normally distributed
data in least-squares regressions), then calculation of AICc

and Akaike weights can become unreliable (Richards
2005). Additionally, AIC has not been well tested in
relation to more complex model formulations involving
random effects and non-linear or polynomial terms, so it is
still an open question as to whether AIC performs well
when comparing such models. For simplicity’s sake, our
discussion has focused on simple linear regression models,
primarily of observational data; however, AIC can also be
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applied to analyses of mechanistic models of behaviour and
controlled experiments (see, e.g. Lau and Glimcher 2005;
Luttbeg et al. 2009; Richards et al. 2010), where the
problems of data dredging are mitigated. A couple of good
examples of the use of AIC in an experimental framework
in behavioural ecology are provided in the review by
Garamszegi et al. (2009).

Although it is not our intention here to cover in
detail the criticisms of the IT-AIC approach, one aspect
that has been identified as a weakness is that, despite
explicitly taking into account the number of predictors,
AIC still tends to favour overly complex models (Kass
and Raftery 1995; Link and Barker 2006). This maybe
particularly true if none of the models are good fits for the
data. In terms of selecting a best approximating model,
this can lead to over-fitting. Recent simulation studies
also suggest that full-model averaging can help to reduce
the problems caused by the model selection bias towards
over-complex (and indeed under-complex) models
(Lukacs et al. 2009).

Researchers using AIC sometimes report p values for
their models in addition to AIC values and use this as a
basis for further inference. Reviewers have different levels
of tolerance for this practice, but ultimately there is
inconsistency in doing this because of the philosophical
difference (see Mundry 2010; Burnham et al. 2010)
between the two approaches. Nevertheless, we believe
that in certain cases there is a benefit in reporting results
from both the NHST- and AIC-based approaches in that it
provides comparison. However, the onus is very much on
the authors to argue which approach inference should be
based on. Where model selection uncertainty is clearly
apparent, we believe that it would become evident that
multimodel inference using AIC provides the greater
capacity for sound inference.

Although we have suggested taking AIC values from the
output of statistic packages, it pays to check exactly how
the package has calculated them (in Table 1, we provide
some indications). The appropriate version of AIC for an
analysis may not necessarily be the one given by the
package. For example, it may provide only the raw AIC
values, and not AICc, which is recommended for analyses
with smaller sample sizes.

On a final practical note, another common mistake is
to use different data sets for the different models that are
being compared. This may sound obvious but can easily
and absent-mindedly occur if there are missing data for
some parameters (M. Symonds, personal experience). In
such cases, AIC cannot be compared between models. The
safest approach to address this issue is to delete incom-
plete records. Unfortunately, this can result in reduced
power of the analysis (and loss of a lot of hard work).
There are ways around this problem, recently outlined by

Nakagawa and Freckleton (2008, 2010), including model-
based augmentation and multiple imputation methods.
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