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The history of arterial wave mechanics is long and distin-

guished. The arterial pulse was familiar to Chinese, Indian,

Greek and Roman physicians who exploited it regularly in

the diagnosis of disease. For more than 3,000 years, pal-

pation of the radial pulse has been a central observation in

traditional Chinese medicine. One of the first and best

known books devoted to analysis of the arterial pulse is the

Mai Jing or Pulse Classic which was written by Wang

Shu-he in the late Han dynasty (circa 220 AD) [49]. Pulse

diagnosis in India probably has a similar span although it is

difficult to know because much of the teaching has been

oral, directly from master to student, rather than written.

The traditional texts show a detailed knowledge of the

arterial pulse, but provide little insight into the mechanics

of the pulse, which is hardly surprising since they were

developed millennia before the discipline of mechanics

was invented.

Galen (129–210 AD) wrote a book On Prognosis from

the Pulse [16] in which he describes 27 varieties of pulses

and their meaning. He reports experiments from which he

concludes correctly that the arteries are filled with blood,

not air or spirits as others had asserted. He also carried out

experiments that convinced him that the pulsative property

of the heart extends from the heart by the walls of the

arteries and concluded wrongly that they are filled by ‘that

pulsific force, because they expand like bellows, and do not

dilate because they are filled like skins’. In other words, he

felt that the arteries expanded pulling blood into them

rather than being expanded by the blood entering from the

heart.

William Harvey

Modern understanding of the cardiovascular system

undoubtedly starts with the work of William Harvey (1578–

1657) who published his discovery of the circulation of blood

in (Exercitatio Anatomica De Motu Cordis et Sanguinis in

Animalibus An Anatomical Disquisition On the Motion of the

Heart and Blood in Animals) [21]. Since this work appeared

before the invention of the microscope, it is certain that

Harvey never saw the capillaries but deduced that there must

be small vessels connecting the arteries and the veins. This

makes his discovery even more remarkable and a landmark

of deductive reasoning, based upon careful observations and

a very early application of the conservation of mass, in the

face of centuries of teachings to the contrary. Concerning the

arterial pulse, Harvey seems to agree with previous workers

that the pulse appears in all of the arteries simultaneously

supporting his assertion with a quote from Aristotle;

‘Aristotle, too, has said, ‘‘the blood of all animals palpitates

within their veins (meaning the arteries), and by the pulse is

sent everywhere simultaneously.’’’1
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1 It is interesting to note that Harvey’s second major work, De
Generatione (On the Generation of Animals) published in 1651, is

much less well known, possibly because one of his conclusions was

that copulation was not related to conception in animals.
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Giovanni Borelli

Giovanni Borelli (1608–1679) is seen by many as the

father of bioengineering because of his studies on muscles,

joints, the cardiovascular system, respiration, reproduction

and many other aspects of the body which were published

in De Motu Animalium (On Animal Motion) after his death

[4]. He studied the contraction of the heart and its inter-

action with the arteries. Interestingly, he clearly understood

the capacitive effect of the elastic arteries on smoothing the

flow of blood (now known as the Windkessel effect).

In Proposition XXXI he states: I do not hesitate to

claim that the blood circulates through the body of

the animal in a continuous and uninterrupted move-

ment. Although the heart does not pour blood into the

arteries during its diastoles, the blood does not stop

and remain completely immobile and stagnant in the

arteries, viscera, flesh and veins when the heart is at

rest. The blood keeps moving but with varying

velocity... This results from the fact that the arteries

themselves are constricted by contraction of their

circular fibres.

The Reverend Stephan Hales (1677–1746) was a self-

taught scientist who successfully combined his scientific

explorations with his ecclesiastical duties. In 1733, the

Royal Society published a series of papers that he had

presented before the society as Statical Essays: containing

Haemastaticks [20]. It is full of original observations about

the mechanics of the cardiovascular system including the

first measurements of in vivo blood pressure. In Experi-

ment 3, he discusses the velocity at which blood is ejected

from the heart of a 10-year-old mare and how it is altered

by the elasticity of the arteries:

...the velocity of the blood during each systole will be

thrice as much, viz. at the rate of 5204.7 feet, i.e. 0.98

of a mile in an hour or 86.7 feet in a minute [0.44 m/

s]. Now this velocity is only the velocity of the blood

at its first entering into the aorta, in the time of the

systole; in consequence of which the blood in the

arteries, being forcibly propelled forward, with an

accelerated impetus, thereby dilates the canal of the

arteries, which begin again to contract at the instant

the systole ceases: by which curious artifice of nat-

ure, the blood is carried on in the finer capillaries,

with an almost even tenor of velocity, in the same

manner as the spouting water of some fire-engines, is

contrived to flow with a more even velocity, not-

withstanding the alternate systoles and diastoles of

the rising and falling embolus or force; and this by

the means of a large inverted globe, wherein the

compressed air alternately dilating or contracting, in

conformity to the workings to and fro of the embolus,

and thereby impelling the water more equably than

the embolus alone would do, pushes it out in a more

nearly equal spout.

The origin of quantitative mechanics in the cardiovascular

system begins, as does so much of quantitative mechanics

in general, with Leonhard Euler (1707–1783). In 1755 he

submitted an essay Principia pro motu sanguinis per

arterias determinando (On the flow of blood in the arteries)

as an entry in a prize competition set by the Academy of

Sciences in Dijon [8]. In it he set out the one-dimensional

equations of conservation of mass and momentum in a

distensible tube. In his notation
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where s is the cross-sectional area, v is the average

velocity, p is pressure, g is the density of blood, t is time

and z is the axial distance.

Euler posited some rather unrealistic constitutive laws

(tube laws) for arteries and unsuccessfully tried to solve the

equations as he had done for rigid tubes by reducing them to

a single equation that could be solved by integration. He

concludes his letter with the plaintive comment; ‘In motu

igitur sanguinis explicando easdem offendimus insupera-

biles difficultates, quae nos impediunt omnia plane opera

Creatoris accuratius perscrutari; ubi perpetuo multo magis

summam sapientiam cum omnipotentia coniunctam admi-

rari ac venerari debemus, cum ne summum quidem ingenium

humanum vel levissimae vibrillae veram structuram perci-

pere atque explicare valeat.’2 Unfortunately, Euler’s letter

was lost for nearly a century, the surviving fragments being

discovered and published by the Euler Opera postuma pro-

ject in 1862. The conservation equations set out by Euler

were rediscovered, but only in their linearised form, by

Wilhelm Weber over a century later (see below).

Thomas Young

The next major event in the the history of haemodynamics

is the ’Croonian lecture on the functions of the heart and

the arteries’ delivered to the Royal Society in 1808 by

Thomas Young (1773–1829) [60]. In the lecture, he stated

the correct formula for the wave speed in an artery but gave

no derivation of it. In an associated paper, he does give a

derivation which is extremely hard to follow, being based

on an analogy to Newton’s derivation of the speed of sound

in a compressible gas, some incomprehensible algebra and

numerical guesses [59].

Fourier (1768–1830) did not contribute directly to the

mechanics of arteries, his most notable work involving the

physics of heat. In his treatise Theorie Analytique de la

Chaleur (The Analytical Theory of Heat) in 1822 [10], he

asserted that periodic functions can be expressed as the

superposition of an infinite series of sinusoidal functions

and this observation has had such an impact on arterial

haemodynamics that it deserves a mention here. In fact, his

assertion is not true for all periodic functions; the first

rigorous proof of Fourier’s theorem is due to Dirichlet [7]

who showed that it is true for piecewise regular functions

with a finite number of discontinuities and extrema (con-

ditions that are met by virtually all physiological signals).

The development by Jean Louis Poiseuille (1799–1869) of

his law of flow in tubes is the next landmark in arterial

mechanics. Although it is never observed in the arteries

because of the pulsatile nature of arterial flow and their

complex anatomy of curves and bifurcations, it has become

the benchmark against which all other flows in tubes are

compared; probably because of its simplicity. Despite its

shortcomings, it is cited by many medical and physiolog-

ical textbooks as the law that governs flow in the whole of

vasculature. Poiseuille, who trained as a physician, con-

ducted a very thorough investigation of flow in capillary

tubes motivated by his studies of the mesenteric micro-

circulation of the frog. In 1839, he deposited a sealed copy

of his experimental results with the French Academy of

Sciences and continued his experiments which were finally

approved for publication in 1846 [39]. Poiseuille claimed

from his experiments that the volume flow rate Q varied as

Q ¼ KPD4

L

where P is the pressure drop along the tube, D and L are the

diameter and length of the tube and K is a constant that

depends on the temperature and the fluid flowing in the

2 Very loosely translated: If God wanted us to understand flow in the

arteries, he would not have made the equations so difficult.
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tube. At nearly the same time Hagen (1797–1884), a

German hydraulic engineer, carried out similar experiments

on the flow of water in cylindrical tubes with diameters

2.55, 4.01 and 5.91 mm which he published in 1839 [18].

A least squares fit for the power of the dependency on

diameter from his experiments yielded the value -4.12 but

he thought that this may have been due to errors in his

experiments and suggested the law

P ¼ ALQþ BQ2

D4

where A and B are constants depending upon temperature.

Hagen appreciated that the Q2 term was associated with the

generation of kinetic energy in the fluid. At sufficiently low

values of Q, this relationship reduces to that given by

Poiseuille. Although the coefficient of viscosity, introduced

by Newton, was used in the study of tube flows by Navier

[34] (in which he derived an incorrect version of

Poiseuille’s law including an inverse dependence on D3,

the same law cited by Young in his Croonian lecture in

1808), neither Poiseuille nor Hagen incorporated viscosity

into their empirical formulae. The first derivation of

Poiseuille’s law (for horizontal tubes)

Q ¼ pPD4

128lL

where l is the coefficient of viscosity, is usually attributed

to Hagenbach [19] who generously suggested that the for-

mula be named after Poiseuille, although there are claims of

prior publication on behalf of Jacobson, Neumann, Helm-

holtz, Stephan and Mathieu [46]. To complicate attribution

even further, it seems that Stokes also derived Poiseuille’s

law from the Navier–Stokes equation as early as 1845 but

did not publish the work because he was unsure about the

validity of the no-slip condition at the tube walls [45].

The question of the speed of travel of waves in elastic

tubes was studied theoretically by Wilhelm Eduard Weber

(a noted physicist who is best known for his work on

electromagnetism) and experimentally by his brother

Ernst-Heinrich Weber (an equally noted physiologist who

is considered by many to be the founder of experimental

psychophysics) and published in 1866 [50, 51]. The theo-

retical results are based on an independently derivied

linearised form of Euler’s conservation equations and the

assumption of a constant distensibility of the tube dr = kdp

where dr is the increase in the radius and dp is the increase

in pressure. He derived the equation for the wave speed c

c ¼
ffiffiffiffiffiffiffiffi
R

2kq

s

where q is the density of the fluid, k is the radial disten-

sibility defined above and R is the radius of the tube. This is

the same relationship as proposed by Young nearly

50 years earlier, but it has the advantage of a rigorous, easy

to follow derivation.

Bernhard Riemann

Georg Friedrich Bernhard Riemann (1826–1866) did not

work on arterial mechanics or waves in elastic tubes, but he

did make an important contribution to the subject when he

published a general solution for hyperbolic systems of

partial differential equations in 1860 [41]. His solution was

inspired by a problem in gas dynamics but, like Fourier’s

theorem inspired by heat conduction, it has mathematical

implications that transcend its origins. Briefly, his work

provides a general solution for a whole class of linear and

nonlinear partial differential equations by observing that

along directions defined by the eigenvalues of the matrix of

coefficients of the differential terms, the partial differential

equations reduce to ordinary differential equations. With-

out knowing, he provided the solution to Euler’s equations

that Euler had sought in vain.

In 1877–1878, two more important works on the wave

speed in elastic tubes were published. Moens (1846–1891)

[32] published a very careful experimental paper on wave

speed in arteries and Korteweg (1848–1941) [23] published

a theoretical study of the wave speed. Korteweg’s analysis

showed that the wave speed was determined both by the

elasticity of the tube wall and the compressibility of the

fluid. In the case of blood (which is effectively incom-

pressible) and thin-walled tubes, this reduces to the

relationship generally known as the Moens–Korteweg

equation for the wave speed c

c ¼
ffiffiffiffiffiffiffiffiffi
Eh

2qR

s

where E is the Young’s modulus of the wall whose

thickness is h.

E.J. Marey (1830–1904) included a chapter on arterial

blood flow in his popular textbook of medicine Le circula-

tion du sang á l’état physiologique et dans des maladies (The

Circulation of Blood in the Physiological State and in
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Disease) [27]. He cites work by himself and others on the

measurement of arterial blood velocity, using Pitot tubes and

bristle flow meters. The velocity waveforms he presents look

surprisingly similar, given the relative crudity of the meth-

ods, to modern waveforms obtained using the latest

technology. He shows large reverse flow at the end of systole

in more distal arteries such as the femoral artery. For some

reason, this work was forgotten and there was heated debate

about the nature of flow in the femoral artery in the 1950s.

Otto Frank

Otto Frank (1865–1944) was one of the giants of quantita-

tive physiology. He worked primarily on the cardiovascular

system and his work has had a lasting effect on the practice

of cardiology. His first of many contributions to arterial

mechanics was the mathematical formulation of the

Windkessel effect in his paper of 1899 Die Grundform des

Arteriellen Pulses (The basis of arterial pulses) [11]. He

took his inspiration from the work of Stephan Hales,

expressing his qualitative arguments in mathematical

terms.3 He considered the arteries as a single compliant

compartment and used the conservation of mass to analyse

their change of volume during diastole.

dV

dt
¼ P

w
and

dP

dV
¼ c

where V is the volume of the arterial compartment, P is its

pressure, w is the resistance to flow in the microcirculation,

and c is a constant (confusingly to modern readers equal to

the inverse of the compliance). From these equations, he

obtains an exponentially falling pressure

P ¼ P0e�ct=w

where P0 is the pressure at the start of diastole. He then

considers the systolic part of the cardiac cycle and obtains a

differential equation in terms of the input to the arteries

from the heart i. Although this equation has a general

solution, he seems unaware of it and instead solves it for

the special cases i = constant and i ¼ A sinBt:

Frank’s next major contribution to arterial mechanics is

a series of three papers papers Der Puls in den Arterien

(The pulse in the arteries) in 1905 [12], Die Elastizität der

Blutgefässe (The elasticity of blood vessels) in 1920 [13]

and Die Theorie der Pulswellen (The theory of pulse

waves) in 1926 [14]. In the 1905 paper, he introduces the

theory of waves in arteries. In the 1920 paper, he correctly

derives the wave speed in terms of the elasticity

c ¼
ffiffiffi
j
q

r

where j ¼ dP
dAA is the inverse of the distensibility of the

vessel, A being the cross-sectional area of the vessel. In the

1926 paper, he considers the effect of viscosity, the motion

of the wall and the energy of the pulse wave before turning

to a number of examples of special cases. These examples

include the use of Fourier analysis and probably the first

treatment of the reflections of the pulse wave, including

the reflection and transmission coefficients due to a

bifurcation.

There is a fundamental conflict between the two theories

advanced by Frank, the Windkessel and the pulse wave

model for arterial mechanics. The Windkessel model

assumes that the entire arterial system acts like a single

compartment while the wave model predicts that infor-

mation travels through the arteries in the form of waves.

Frank was fully aware of this dichotomy and discussed it,

without resolving it, in his 1930 paper Schätzung des

Schlagvolumens des menschlichen Herzens auf Frund der

Wellen- und Windkesseltheorie (Estimation of the stroke

volume of the human heart based upon wave and Wind-

kessel theory) [15]. The failure of the Windkessel theory to

describe arterial pressure during systole led to it being

abandoned by cardiologists despite its success in describing

diastolic behaviour. As Milnor writes: ‘The great virtue of

the initial Windkessel model was its simplicity, and it still

has an explanatory value as a rough approximation that is

readily grasped. For almost all research purposes, how-

ever, a more detailed and realistic model that conforms to

the distribution of properties in the vascular tree is to be

preferred.’ [30]. The Windkessel-wave dilemma has been

revisited recently and is the subject of a paper in this

volume [48].

Many clinical cardiologists in the early twentieth century

contributed to our understanding of the form and function of

the cardiovascular system, but relatively few contributed

significantly to our understanding of arterial mechanics. An

outstanding exception is Sir James MacKenzie. In medi-

cine, he is best known for his pioneering work on cardiac

3 The term ‘Windkessel’ is German for ‘air chamber’, the inverted

globe containing air used in early fire-engine pumps, that was used as

an analogy of the elastic arteries by Hales. It is a measure of Frank’s

influence that the English speaking world still uses a German

expression for something first described in English.
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arrhythmias. However, his book The Study of the Pulse,

Arterial, Venous, and Hepatic, and of the Movements of the

Heart contains many insights into the measurement and the

understanding of pressure and flow in blood vessels [26].

Most significantly, he devised the ‘polygraph’ for the

simultaneous measurement of arterial and venous pressure

pulses and showed how these waveforms altered in response

to various types of cardiac disease.

The analysis of waves in elastic tubes, that is generally

associated by modern workers with Womersley (1907–

1958) [56], has a very long history that deserves a chapter

on its own. Much of the theory was derived by Gomelka

in 1883, including the effects of wall inertia on the wave

speed. Unfortunately he published his work in Russian in

the Proceedings of the Kazan University which was not

widely available to other workers [17]. The problem was

further developed by Lamb in his definitive book

Hydrodynamics (1879) who formulated the problem in

very general terms [45]. His formulation was used by

Witzig [55] in a PhD thesis in the University of Bern

where he obtained the general solution for the velocity

profiles as a function of vessel radius for rigid tubes. This

work was largely unnoticed and his results were redis-

covered independently by Morgan and Kiely [33] and

Womersley [58]. It was this work that was taken up by

McDonald and other researchers for application to arterial

mechanics [56–58].

These results rely essentially on the observation that the

Navier-Stokes equations are linear for parallel flow, in

modern notation ru is perpendicular to u for parallel flows

and so the nonlinear convective acceleration term in the

Navier–Stokes equation is zero because u � ru ¼ 0: The

resulting linear equations are then amenable to solution

using Fourier methods. In particular, flows with periodic

boundary conditions can be solved exactly in terms of the

fundamental frequency and all of its harmonics.

A work that deserves wider recognition is the 1940

paper by Apéria [2]. Its undeserved obscurity may be due

to its publication in Berlin during the Second World

War, which would have limited its dissemination. The

paper, entitled Haemodynamical Studies, deals very com-

prehensively with both the Windkessel model and the

’undulatory’ (wave) theory. He explores the basic

assumptions of both theories and their variants and reaches

interesting results both theoretically and practically. In one

brief passage entitled ’Poiseuille’s flow with pressures

changing in time’ he anticipates the later results of

Womersley in a prescient but, given the last sentence,

unprophetic way: ‘‘The solution for each Fourier term can

be got without any special difficulty with power-series with

regard to the variable radial distance from the axis r, and it

leads moreover for every u (= 0) to Bessel-functions with

complex arguments. Though the complete mathematical

treatment is here actually possible, it is of only minor

interest to the physiologist.’’

A very important thread in the tapestry of arterial

mechanics has been the application of electrical analogues

to the circulation, generally known as impedance methods.

This approach to arterial haemodynamics presumes that

there is a linear relationship between pressure and flow that

is given by an analogue of Ohms law ~P ¼ ~Z ~Q; where the

pressure ~P is analogous to the voltage, the flow rate ~Q is

analogous to the current and ~Z is the impedance. With this

analogy, complex RCL electrical networks can be formu-

lated to represent the resistance, capacitance and inertance

of the different parts of the vasculature.

According to Milnor [30], ‘‘the Fourier analysis

of pressure and flow waves ... had been suggested much

earlier by Frank (1926) [14], championed by Apéria (1940)

[2], and finally introduced into cardiovascular physiology

by Porje (1946) [40].’ Probably, the first transmission line

theory of the arteries was proposed by Landes [25] and

developed significantly by Taylor [47].

It is probably not a coincidence that the rapid growth in

the application of Fourier analysis to arterial mechanics

coincides with the development of the digital computer and

the publication of the fast Fourier transform [6] (actually a

rediscovery of an algorithm known to Gauss). This meant

that Fourier transforms that previously took hours to

compute could be calculated in seconds. The success of the

impedance method quickly lead to an explosion of work

using it: D. A. McDonald and his students (notably W. W.

Nichols); M. G. Taylor, who provided much of the theo-

retical basis, and his students (notably M. F. O’Rourke);

Noordergraaf [52] (also see his influential review [36]) and

his group (notably N. Westerhof,, who proposed the three-

element Windkessel model [53], and J. K. Li); Milnor [30]

and his students. It has been very successful and is now, by

far, the most common approach to arterial mechanics

[3, 31, 37, 54].

An alternative approach to the problem has been the

application of the method of characteristics based upon

the work of Riemann [41] to solve the nonlinear form of the

conservation equations derived by Euler [8]. The methods

were first developed in the field of gas dynamics where there

was intense development, both theoretically and experi-

mentally, during and after the Second World War because of

the emergence of high-speed flight. The first application of

the theory to arterial flows is probably the work of Lambert

who applied the theory to arteries using experimental

measurements of the radius of the artery as a function of

pressure [24]. The approach was developed by Skalak [42]

and most completely by Anliker and his colleagues who

mounted a systematic study of the different elements of the

vascular system with the goal of synthesising a complete

description of the arterial system using the method of
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characteristics [1, 22, 43, 44]. It is these works that inspired

the development of wave intensity analysis [38].

Afterword The author has worked for more than

20 years on the application of the method of characteristics

to the cardiovascular system. Although every effort has

been made to make this brief historical review as unbiased

as possible, it is inevitable that some of my prejudices have

coloured both the content and the comments contained

herein.

This brief sketch of the long and varied history of the

subject has been compiled mainly from secondary sources.

Wherever possible, I have consulted the original works but

my knowledge of Latin, French, German and Russian is

rudimentary at best and I have had to rely upon the com-

ments of others about the original sources for much of the

work. I have relied heavily upon Boulanger’s detailed and

deep study of the history of elastic tube waves for work

prior to 1900 [5]. My source for much of the discussion of

Poiseuille’s law comes from Sutera and Skalak’s excellent

essay [46]. Truesdell provides his usual sharp and learned

commentary about the work of Euler and his antecedents in

the introduction to the volume of the Leonhardi Euleri

Opera Omnia [9]. Frank’s earliest work on the mechanics

of the cardiovascular system has been translated and the

authors’ introduction provides several insights into his

extensive body of work on arterial mechanics. [11].

I have chosen to conclude this historical essay in 1960 as

that was the date of publication of the first edition of Blood

Flow in Arteries by McDonald (1917–1973) [28]. The first

edition of this book had limited circulation but a very large

influence. A greatly expanded second edition was published

after McDonald’s death, edited by his daughter, his col-

league W. R. Milnor and former student W. W. Nichols [29].

In my opinion, this book marks the beginning of the modern

era of arterial mechanics and, incidentally, it contains an

excellent historical review that has been most helpful in

compiling this short history. Subsequently this book has

been revised and expanded as McDonald’s Blood Flow in

Arteries, currently in its 5th edition [35]. As would be

expected from one of the fathers of the impedance method

and his students, this book uses the Fourier approach to

cardiovascular mechanics almost exclusively and its influ-

ence on the subject has been profound. In the context of this

special issue, however, it is relevant to quote from

McDonald’s introduction to the 2nd edition of his book:

The main developments since 1950 have been in

terms of treating the whole arterial system as being in

a steady-state oscillation produced by the regularly

repeated beat of the heart. This describes the pres-

sure pulse as a collection of sinusoidal waves of

frequencies determined by the harmonic, or Fourier,

series ...

The method of characteristics is also being intro-

duced as a method of improving our analysis of our

non-linear system but has not yet undergone any

severe experimental testing. Intellectually, these

investigations into non-linearity are greatly to be

commended. That they receive very little consider-

ation in this book is not because I regard them as

negligible but, quite apart from considerations of

space, because my emphasis throughout has been on

experimental findings. [29] p.12.

Note added in proof See [A] for a discussion of the contributions

of Johannes von Kries, a serious omission from this article. [A]

Tijsseling AS, Anderson A (2007) Johannes von Kries and the history

of water hammer. J Hydr Eng 133:1–8.
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17. Gromeka I (1883) Über die Geschwindigkeit der Fortplanzung

der Wellenbewegung der Flüssigkeit in elastischen Rohren.

Sammlung der Mitteilungen der physikalisch mathematischen

Gesellschaft zu Kazan

18. Hagen GHL (1839) Uber die Bewegung des Wassers in engen
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