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A BRIEF HISTORY OF THE QUANTUM SOLITON WITH NEW 
RESULTS ON THE QUANTIZATION OF THE TODA LATTICE* 

BILL SUTHERLAND 

I. Brief History. When I first learned of this conference, and saw 
the wide range of interests represented by the participants, I was cer-
tain that finally a common definition of that most intriguing con-
cept—the soliton—would emerge. And I was anxious that this definition 
be broad enough to encompass solitons in both their classical and quan-
tum versions. For recent work had convinced me that the general tech-
nique known as Bethe's ansatz for solving diverse one-dimensional 
quantum problems in fact was nothing more nor less than the quantum 
soliton. 

However, from conversations with conference participants, I discov-
ered that many were not aware of this accumulated work on exactly 
soluble quantum systems. I even gained the impression that some feel 
quantum mechanics to be much harder than classical mechanics—an 
unnecessary complication. My own feeling, on the other hand, is that in 
many cases quantum mechanics clarifies matters. It forces one to imme-
diately face problems that would eventually have to be faced in the 
corresponding classical case, problems such as the counting of states, to 
determine how important solitons really are. 

Anyway, the history of the quantum soliton is all to the greater glory 
of the soliton concept. And quite a respectable history it is. I would 
date the beginning at 1931 with a paper of H. Bethe [1] on magnetism; 
that is a total span of 45 years. Quantum mechanics itself has not been 
around all that much longer! 

It now seems my hopes for a consensus on a definition of the soliton 
were premature, and things are still fermenting. Nevertheless, here is 
my contribution to the conference in the form of a brief history for 
general interest, and a more original work on the quantization of the 
Toda lattice. Perhaps next time there will be some consolidation, and 
we can then decide just how particular and how general a concept is 
the soliton. 

1. We begin this historical account with the classic paper of H. 
Bethe [1], which introduced first the many-body wave function crucial 
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to all later investigations. Bethe considered the one-dimensional version 
of a model for magnetism first introduced by Heisenberg. 

As such spin models often appear in the literature of manybody phys-
ics, the most prominent case being the Ising model, let us take a few 
lines to explain the notation and the physics. First, we imagine a lattice 
of IV sites, in most cases the line, square, or cubic lattice in 1, 2 or 3 
dimensions respectively. Then at each site we place a spin, which may 
either point up (^-component +1), or down (^-component —1). These 
two configurations at a site provide a basis for an individual spin, 

u p - ( I ) ; d o w n - ( J ) , 

and thus the total configuration of the system is a 2^ component vec-
tor. 

Various operations on a spin may be accomplished by additional op-
erators, such as o+ which changes a down spin into an up spin, o~ 

which changes an up spin into a down spin, or oz which measures the 
^-component of spin. An alternative set of operators, the Pauli Spin op-
erators a = (ox, ov, oz), is defined in equation (2) below. The addition of 
a subscript to an operator o gives the position of the site on which the 
particular spin is located on which the operator operates. 

Written in terms of Pauli spin operators a, the Heisenberg Ham-
iltonian is taken to be 

(1) H=± 2 5, • 5 i + r 

We impose periodic boundary conditions so that N + 1 = 1. The posi-
tive sign favor spins which point in opposite directions (anti-
ferromagnetism), while the negative sign favors aligned spins (ferromag-
netism). 

The rotational invariance of this system is obvious, and thus both the 
total spin and the total ^-component of spin are conserved. A conven 
ient representation for the Pauli spin operators is: 

a+ = (a* + ta")/2 = ( ° J ) 

(2) a- = (o* - ia»)/2 = ( J °Q ) 

" ( i - ï ) 
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The Hamiltonian then becomes 

(3) H=± s [°M+I + 2K-+°r+1 + °r<i)]-

One might now interpret the first term of the Hamiltonian as an inter-
action between the z-components of individual spins, while the second 
term is a "hopping' ' term which moves overturned spins about from 
one neighboring lattice site to another. 

Let us begin with a state in which all spins are aligned in the posi-
tive ^-direction; there is only one such state: 

* = • • • ( ; ) • ( ; ) • ( ; ) • -

This state is obviously an eigenstate, and 

(5) m0 = ± Aty0. 

For the case of ferromagnetism, this state would be one of a set of de-
generate ground states. 

Suppose we now overturn one spin on site /; this state we label (/). It 
is not an eigenstate. However, we can now consider an eigenstate \pt 

with components \p1 (/) in the basis of states (/). We then find for the ei-
genvalue equation 

/%(/) =±(N- 4)^(/) 

± 2\Ui + i) + Hi - i)] = ßMfl. 
This difference equation is easily solved by i//1(/) = em, and we find for 
the energy 

(7) E = ± [N - 4 - 4cosfc]. 

Imposing the periodic boundary condition, we find 

k = 27rn/N; n = 1, 2, • •-, N. 

Such a collective excitation in a magnet is traditionally called a spin 
wave, and it is these spin waves we wish to identify as examples of 
quantum solitons. 

We now arrive at the basic contribution of Bethe to the investigation 
of this system. For the antiferromagnet, Bethe proposed that if we con-
sider the subspace of M overturned spins, and choose basis vectors with 
the overturned spins located at x1 < x2 < - - • < xM9 then the 
coefficients of the wave function will be of the form 
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(8) W*i> •• •>%)= 2 A(P) exp [ i J xfa ] . 

The first sum over P is a sum over the M! permutations 
(PI, P2, • • •, PM) of the integers 1 to M. A(P) and ^ are to be chosen so 
as to satisfy H^ = Ei//. It is this basic form for the wave-function which 
we call "Bethe's ansatz." 

First, if the overturned spins are well separated so that no two are 
nearest neighbors, then the energy will simply be given by 

M 

(9) E = N - 4M + 4 2 eos kr 
j-i 

Second, if we consider now the situation when exactly two spins / 
and / + 1 are nearest neighbors at xj and xj+1 — Xj -f- 1, we find 

(This equation makes sense as a continuation of the particular form, 
Bethe's ansatz, of equation (8) in the variables *..) Let us try to satisfy 
this equation by considering pairs of terms of equation (8). Thus we 
consider two permutations P = (PI, • • •, P;, Pj + 1, • • •, PM) and 
> = (PI, • • -, Pj + 1, Pj, • -, PM). If kPj = fc and JcPi+1 = k\ we then 
have 
(11) 2[A{P)eik' + A(F)ei/c] = [A(P) + A(F)][1 + ei(fc+fc/)]. 
Or finally, 

(12) A(P)/A(F) = - + * „ =^p = -ei8«>k'\ 

Thus to summarize, coefficients for the exchange of two fc's (momenta) 
are related by the two-body S-matrix. For indeed, the right-hand side of 
equation (12) would be the same no matter what the total number of 
overturned spins. We simply state, without derivation, that the periodic 
boundary conditions will once again serve to determine the allowed 
values of the fc's. 

This discussion of course has not demonstrated the consistency of our 
whole procedure. In fact, it is consistent, and the proof relies in large 
part on hard work by the reader. This brief description should be aug-
mented by the original literature, and pencil and paper. 

We now wish at this point to emphasize the important physical con-
tent of Bethe's ansatz for the wave function. It is a scattering state, and 
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the incoming arrangment of k's is the permutation P = (kt> 

k2> • • • > kM). The M! terms of the wave function correspond to suc-
cessive rearrangements of the k's by two-body collisions. But it is al-
ways the same k's involved, i.e., there is no diffraction. We now remark 
that this is exactly the same situation found for the scattering of the 
solitons of the classical system. 

In fact, this single property of no diffraction—i.e., "what comes out 
is exactly what goes in"—is enough to demand that the asymptotic 
wave function, at least, is exactly of Bethe's form given in equation (8), 
where the coefficients are related by the two-body phase shift 8 as in 
equation (10). The energy of course will still be given by equation (9). 

What now follows in the rest of this first section is a fast catalogue 
of various quantum systems for which a wave function of Bethe's form 
provides a solution. As this is not a review we do not apportion credit 
for particular contributions; in most cases, the most general model rep-
resents the cumulative achievement of several clever investigations by 
various authors over a span of several years. We do include a most re-
cent reference to enable the interested reader to begin a backward en-
try into the literature. The excellent book by Lieb and Mattis [2] will 
provide a review of work up to 1966. 

2. Let us first consider the class of systems obtained by generalizing 
the original one-dimensional Heisenberg antiferromagnet. To date, the 
most general spin systems to be solved exactly are either of the form: 

Class A [3]; 

- 2 eieo+o_f + e~ieo_o+' 
n.n. L 

+ y <vV J - h 2 ff„ 

or, 

Class B [4]; 

(13B) H = - 2 [Aaxax' + Boyoy> + CozoJ}. 
n.n 

The quantities 0, A, h, A, B, C are all free constants, and the common 
ground of these problems is 6 = h = 0, A = B. The notation n.n. in-
dicates a summation over nearest neighbor pairs. 

We now ask: What exactly is meant by a "solution"? In most cases 
the exact solutions answer questions about the spectrum-ground state 
energy per particle, thermodynamics, excitations near the ground state, 

H = 

(13A) 
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existence and calculation of energy gaps, etc. In some cases one can 
vary the boundary conditions. In addition, Baxter has a very strong con-
jecture for the long-range-order in the ground state of class B. Finally, 
we remark that very likely the low-lying collective excitations also scat-
ter without diffraction. 

One further direction for the generalization of spin problems be-
comes apparent if we consider the Pauli spin matrices as generators of 
the continuous group SLT(2). Then a natural generalization of the Hei-
senberg magnets to groups SU(N) would be [5] 

N*-l 

(14) H = ± 2 2 FaFa'; 
n.n. a—1 

where Fa are the N2 — 1 generators of SU(N), and the quadratic form 
is chosen to be SU(N) invariant. This multi-component one-dimensional 
problem has a solution given by Be the's ansatz. 

And finally, the one-dimensional Hubbard model has been solved 
exactly by Bethe's ansatz [6]. This is a model for a two-component fer-
mion system with both nearest-neighbor "hopping" terms and an inter-
action between particles on the same lattice site. The other spin sys-
tems also have alternative interpretations as lattice gas problems. 

3. Based on these spin systems are certain two-dimensional lattice 
models for order-disorder transitions. The connection is not at all direct, 
nor are the models easily motivated in a few words. Yet certainly the 
unexpected behavior of the exact solutions of these models represents 
one of the most exciting recent developments in the theory of critical 
phenomena. 

Lattice models based on the first spin system, Class A, obey the so- > 
called ice rule (for a review, see [7]); while models based on the second 
class, B, are of the eight-vertex type [8]. Both models exhibit a range of 
unusual, i.e., non-Ising-like, behavior. We also mention as a point of 
general interest, that Baxter's method of solving the eight-vertex prob-
lem utilizes in a fundamental way the idea of an iso-spectral transfor-
mation. 

4. Bethe's ansatz has also been found useful, either exactly or asymp-
totically, for the wave functions of a variety of one-dimensional contin-
uum quantum systems. This line of development began with the exact 
treatment of the one-dimensional ô-function boson problem [9] with 
Hamiltonian 

N 

(15) H = - 2 32/a^2 + 2C 2 «(**- *,-)• 
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It was found that in the repulsive case, the wave function was given by 
Bethe's ansatz. Thus most questions regarding the spectrum can be 
rather completely answered. In particular, the low-lying excitations are 
found to be of two kinds, reminiscent of a particle-hole spectrum for 
fermions, or a particle-phonon spectrum for bosons. This two-branch 
form is quite characteristic of those systems for which Bethe's ansatz 
gives a solution. 

We here propose that for such a system, which in addition possesses 
a non-trivial classical limit, the particle branch of the excitation spec-
trum is to be identified with the soliton mode of the classical problem. 
Recent and direct evidence for this in the case of the Toda lattice will 
be presented in the second section of this talk. 

To proceed with subsequent generalizations, this original ô-function 
problem has been solved for mixtures of particles with various statistics, 
and for attractive interaction when the thermodynamic limit exists. 

Also, Bethe's ansatz provides an asymptotic solution to similar one-di-
mensional problems with two-body potentials of the following forms 
[10, 11, 12, 13] 

(16) V(r) = gir', = g/sin2 (m/L), = g/sinh2 (m/L). 

The final example in fact includes the Toda lattice as a limiting case, 
and will be discussed in detail in the second section of this talk. 

5. To summarize then: It has been found that for a very wide varie-
ty of physically motivated one-dimensional quantum systems, Bethe's 
ansatz provides us either exactly or asymptotically with a wave func-
tion. The essential content of Bethe's ansatz is that there is no diffrac-
tion—what comes out is what went in. This I would propose is the es-
sence of the soliton phenomena. 

II. New Results. In this second section we wish to present a method 
which allows the exact quantization of a class of one-dimensional sys-
tems; the class includes the limiting cases of the inverse square poten-
tial and the Toda lattice. Further, the method for the first time makes 
a connection between two very active areas of many-body physics: the 
exact solution of one-dimensional quantum systems by a wave function 
of the form known as Bethe's ansatz, and the investigation of soliton so-
lutions of various non-linear classical one-dimensional systems. For the 
Toda lattice in particular, we show that the particle and hole excita-
tions of the quantum problem reduce in the classical limit to solitons 
and cnoidal waves respectively. 

6. We wish to quantize a class of one-dimensional A7-particle systems 
governed by the Hamiltonian: 
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(17) H = - — 2 32/9^2 + g 2 [ sinh ( 3 & 
2m i=i ;<fc L \ a 

In particular, we shall be concerned with the thermodynamic limit 
N, L —> oo d = N/L finite; here L is the box size. 

The potential energy has the following limiting forms: 

(18) 
f — ö2g J , (ij - xk)~

2, \x, — acjfcl —• 0 

In the second expression, the x's are ordered: xt < x2 < • • • < xN. Thus 
the first limit of high density corresponds to the inverse square poten-
tial [10, 11, 12, 13] while the second limit of low density corresponds 
to the Toda lattice [14]. The inverse square problem has previously 
been quantized by the author. 

Before beginning the actual calculation, it is convenient to simplify 
the notation by a judicious choice of units. First, let us scale all lengths 
by a; that is, we set a — 1. Second, let us set the mass so that h2 — 2m. 

Finally, we define 2S(S + 1) = g, S ^ - 1 . 

7. As the starting point we take the results of a recent preprint of F. 
Calogero, C. Marchioro and O. Ragnisco [15]. In this work, it is shown 
that the problem we are considering has N conserved quantities. In the 
event that the particles are far apart, so that the potential energy is 
negligible, then as might be expected the N conserved quantities are 
simply the momenta of the isolated particles. 

But it is recognized that if the momenta of the isolated particles are 
uniquely specified, then they will be the same for any arrangement of 
particles. And in particular the momenta of isolated particles will sim-
ply be rearrangements of the incoming momenta ks (/ = 1, • • •, N). Thus 
the asymptotic wave function will be of the form 

(19) #c 1 ( • • - , * „ ) - 2 A(P) Jle^Pfj. 
P 3-1 

The symbol P represents one of the N\ permutations of the k's given by 
(PI, P2, • • -, PN). This wave function we recognize to be Bethe's ansatz 
[16], as discussed in the first section. 

r 
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Further, the coefficients A(P) must be simply given as products de-
pending only on the two-body phase shift S(k). For if one constructs 
wave packets arranged so that three particles are never simultaneously 
near, then the fc's will be rearranged in pairs, and the phase difference 
between corresponding coefficients will be 

A(--- k', k •••)/A(--- k, kf •••) 
(20) 

But if one obtained a different result as one allowed three packets to 
overlap, then this difference would be diffraction and would produce 
fc's different from the original k's or their permutations. And this, by 
the results of Calogero, et al., does not occur. 

Given the asymptotic wave function of the form of equations (3) and 
(4), one may immediately apply the results of the author [10, 11, 12, 
13] to obtain the complete thermodynamics, including at zero temper-
ature, and the excited states. This will be done in section 4; first we 
must derive the two-body phase shift 8(k). 

8. If one considers the problem with N = 2, it is convenient to work 
with center of mass coordinates. Let r = x2 — xt; then the Schrödinger 
equation becomes: 

(21) rfV S(S + W E 
( 2 1 ) dr> + sintfr ~ 2 *' 

We write k2 = E/2. Thus asymptotically 

(22) \p ^^ e~ikr — e~~iòi2k)+ikr. 

We further require that near the origin, 

(23) 1 ÇZ,r1+S-

This second condition restricts \p to a particular solution, and thus de-
termines 8(k). 

The differential equation is not particularly difficult, and one may 
readily find a solution in terms of hypergeometric functions; see Land-
au and Lifshitz [17], for example. Then by standard manipulations of 
appropriate asymptotic expressions, one finds 

(24) 8(k) = 2[arg T(l + S + Ik/2) - arg r (1 + ft/2)]. 

The symbol arg T is the argument of the gamma function. We shall 
use exclusively the derivative of 8(k), 8'(k). Note the following special 
cases: 
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a. S = integer, 

(25a) 8'(2k) = 2 ^ — 2 ; 

b. fc > S, inverse square potential, 

(25b) fi'(Jfc) = 2TTS «(fc); 

(the right hand side of the equation is Dirac's delta function); 
c. S, k —•> oo, classical limit, 

(25c) S'(2fc) = i l n ( l + (S//c)2). 

As a remark of interest, the S-matrix (e~i8{k)) generally has poles in 
the upper half complex Jc-plane, although in no case do they correspond 
to bound states. In particular, if S = 1, the phase shift is identical to 
that of the attractive delta-function potential, the only difference being 
the existence or non-existence of the bound state. Thus our potential is 
of the type first remarked upon by Bargmann [18]. And for S = 1, our 
results will then be the analytic continuation to negative coupling con-
stant of the corresponding results of the repulsive delta-function poten-
tial. 

9. Having determined the two-body phase shift, one may apply peri-
odic boundary conditions to the asymptotic wave-function, and hence 
derive N equations for the fc's: 

(26) eiw, = ( _ 1 y v + i e x p | i 2 ô ( fc - fc ' )} 

(compare with [19], [20]). Taking the logarithm of the above equation, 
one obtains: 

(27) k = 2j- I(k) + i | 8(k - k'). 

277 I(k) is equal to log ( ± 1), and serves as the quantum number for the 
states. 

Generally, in the thermodynamic limit, the k's will distribute them-
selves with a density p(fc). For instance, in the ground state, 

(28) i - =p(k)+ i - f_B
B8'(k-k')p(k')dk' 

with 
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(29) E0/L= f*BkMk)dk 

d = N/L = §*B p(k) dk. 

For excitations near the ground state, the dispersion curve of energy 
AE and momentum AK is given parametrically by 

(31) AK(Jfc) = 2TT fB
k p(k') dk', 

(32) AE(fc) = \e(k) - c(B)|. 

Here p is determined by (12), while c is determined by 

(33) - P + *8 = €(*)+ i - f_B
B8'(k-k')e(k')dk'. 

Here /x is the chemical potential which at zero temperature is given by 

(34) ju = dE0/dN 

The corresponding equations for finite temperature are given in [21]. 
The explicit evaluation will be presented in a subsequent paper. 

Note that the kernel of the integral equation, 1/27T S'(fc), is well-be-
haved. It is symmetric, and the eigenvalues lie within the range of the 
Fourier transform: 0 to S. However, a simple iteration will in general 
not converge if S > 1. 

10. We shall here be content with recovering the classical results for 
the Toda lattice. In the classical limit, expression (25c) applies, and for 
the Toda limit k —* 0 (low density). Hence the equation (28) for p(k) be-
comes 

(35) I =**)+ h Z^lttY <*)<* 

One sees that the first term on the right side of the equation is negli-
gible compared with the second for large k, and hence large B. Thus 
the integral equation reduces to 

(36) 1 = d In (2S) - X I In |* - K\p(k') dk 
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Upon taking the derivative of (20) with respect to k, one finds 

This is a finite Hilbert transform of a particularly simple kind, and the 
solution is given by 

(38) p(k) = 
(B2 _ £2)1/2 ' 

The constant C may be evaluated with the help of (30) as C = d/ir. 

Then, upon substituting (38) into (36), we find 

1 = d In (2S) - d In B + d In 2 
(39) or 

B = 4Se-1/d. 

The energy density is given by (29) as 

(40) E0/L = dB2/2. 

Elimination of B between (39) and (40), yields the energy per particle 

(41) E0/N = 8S2e~2/d = 4g e~2/d. 

From (18), this is the correct value for the Toda lattice. 

11. Next, we consider the excitations in the same limit of a classical 
Toda lattice. In the same way as before, (33) reduces to 

(42) 

- t ffB«V)dk']n\k-k\. 

Upon taking the derivative, we again have the finite Hilbert transform 

( 4 3 ) ft i j ; _ ^ . . 
v ;

 2TT J~B K -k 

The solution of this problem once again is rather simple, and we find 

(44) £(£)= - 4 ( B 2 - k2)1/2. 

Having thus determined p(fe) and c(fc) for \k\ < B, we employ equa-
tions (31) and (32) to determine the first branch of the dispersion curv 
as; 
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Type I: 

AK = 2d cos-1 (k/B) = 2d 0 
(45) 

AE = 4 (B2 - k2)1/2 = 4B|sin 9\ 

Equation (45) is taken as the definition of 6. The group velocity is giv-
en as 

«•> -^- - -= ¥-*•«»'• 
We must now determine p(fc) and c(fc) for |fc| > B. This is done by 

taking the basic equations (28) and (33), and using the above solutions 
within the integrals. Thus upon continuing k outside the region of in-
tegration \k\ < B, we find [21] 

(lc\ - 1 - rfln(2S) d CB ln|fc - K\ dk' 
P{)~ 2TT + 2TT2 J-B (B2-k2)1/2 

(47) 
= dlcosh"1 (k/B)\, \k\ > B 

and 

<k) = fc2_ M + ? j ; * d f c ^ 2 _ ( f c ? ) i /2 l n [ _ 2 s _ j 

(48) = \k\(k2 - B2)1/2 - B2\cosh-\k/B)\, \k\ > B. 

Again, upon using the solutions (47) and (48) in (31) and (32), we deter-
mine the second branch of the dispersion curve as a function of the pa-
rameter <j>, k = B cosh <j>, to be; 

Type II: 

AK = dB [d> cosh d> - sinh A] 
(49) 

AE = B2 |cosh <£ sinh <j> - <j>\. 

The group velocity is given as 

/50Ì <*(A£) Ä = 2ß sinh M 
V ; d(AK) d <j> 

We remark that if we were to restore the original units where h is 
explicit, we would find that AE of the second branch is finite in the 
classical limit fi —* 0. On the other hand, AE of the first branch is pro-
portional to fi, and thus vanishes as fi —* 0. For both types of excita-
tions, the group velocity is finite in the limit h —* 0. 
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12. We now compare our results with the results of Toda as summa-
rized in [14]. But two remarks are in order before we make this com-
parison. The first observation is that in comparing dispersion curves, 
the total momentum is not a particularly useful concept when treating 
classical one-dimensional systems. The reason is that the total system 
may recoil with a finite momentum, without changing either the total 
energy, or the particle velocities, appreciably. In contrast, for a quan-
tum system, we have instead only that the spectrum is periodic in the 
momentum with period 27rd. 

We avoid this ambiguity in the total momentum by instead com-
paring the energy and group velocity of the excitation. Thus the type I 
excitation obviously has the form of a phonon dispersion, including 
energy proportional to ft, and allowing for differences in units, fits 
Toda's equation (4.8.4). Thus we identify the type I excitation as a 
small amplitude cnoidal wave, or more simply a phonon. 

The second remark concerns the type II excitation. Since the energy 
is finite in the classical limit, we are obviously tempted to identify this 
branch with the solitons of the Toda lattice. However, since Toda does 
not give us the energy of the soliton, we must first make a short calcu-
lation. In Toda's expression for the energy given in equation (4.2.7), we 
substitute the expressions (4.6.6) and (4.6.7), and find 

E= 2 (1 + ß2sech2(<m - ßt) 
n 

(51) 
ß2 

+ S- [tanh (a(n + 1) - ßt) - tanh(an - ßt)]2} 
Zi 

As in Toda, ß — sinh a. After a few manipulations involving Jacobi 
theta functions, we find 

(52) E = ß2 coth a — sinh a cosh a. 

The velocity of a soliton is given in Toda as (4.6.9), 

/KQ\ o i s i n h <* 

(53) v = ß/a — . 
a 

Looking back to (49) and (50), we are very tempted to equate the pa-
rameters a and <f>. However, our energy differs by a term B2\<$>\. 

And now we finally come to the second remark: We have deter-
mined our excitations at a fixed N and L. However, in the calculation 
of Toda there is a net compression due to the presence of the soliton. 
Thus, in fact we should expect the two energies to differ by an amount 
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equal to the product of the pressure and the change of volume. The 
change of volume due to the soliton is given by Toda in equation 
(4.6.10) as 2a. We easily calculate the pressure as dEQ/dL using equa-
tion (25), and find p = B2. Thus, allowing for the difference in units, 
we find that the type II excitation is to be identified with the soliton of 
the classical Toda Lattice. 

13. To summarize: We have presented a method to quantize a vari-
ety of one-dimensional quantum systems. This method is based on the 
property of "no diffraction", which may be independently proven. The 
class of such systems includes the Toda lattice, and in this case, we are 
able to show that our calculated quantities reduce to the known clas-
sical results. In particular, an identification is made of the excitations 
with small amplitude cnoidal waves and solitons. 
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