
A brief introduction to OpenCV

Ivan Culjak, David Abram, Tomislav Pribanic, Hrvoje Dzapo, Mario Cifrek

Faculty of electrical engineering and computing, University of Zagreb, Zagreb, Croatia

ivan.culjak@fer.hr, david.abram@fer.hr, tomislav.pribanic@fer.hr, hrvoje.dzapo@fer.hr, mario.cifrek@fer.hr

Abstract - The purpose of this paper is to introduce and

quickly make a reader familiar with OpenCV (Open Source

Computer Vision) basics without having to go through the

lengthy reference manuals and books. OpenCV is an open

source library for image and video analysis, originally

introduced more than decade ago by Intel. Since then, a

number of programmers have contributed to the most

recent library developments. The latest major change took

place in 2009 (OpenCV 2) which includes main changes to

the C++ interface. Nowadays the library has >2500

optimized algorithms. It is extensively used around the

world, having >2.5M downloads and >40K people in the

user group. Regardless of whether one is a novice C++

programmer or a professional software developer, unaware

of OpenCV, the main library content should be interesting

for the graduate students and researchers in image

processing and computer vision areas. To master every

library element it is necessary to consult many books

available on the topic of OpenCV. However, reading such

more comprehensive material should be easier after

comprehending some basics about OpenCV from this paper.

I. INTRODUCTION

Computer Vision is the science of programming a
computer to process and ultimately understand images and
video, or simply saying making a computer see [1].
Solving even small parts of certain Computer Vision
challenges, creates exciting new possibilities in
technology, engineering and even entertainment. In order
to advance vision research and disseminate vision
knowledge, it is highly critical to have a library of
programming functions with the optimized and portable
code, and hopefully available for free. This was an
original goal of Intel team back in 1999 when OpenCV
(Open Source Computer Vision Library) was officially
launched. Since then, a number of programmers have
contributed to the most recent library developments. The
latest major change took place in 2009 (OpenCV 2) which
includes main changes to the C++ interface. The newest
library release can be found on the OpenCV official
website [2]. Nowadays the library has >2500 optimized
algorithms. It is extensively used around the world, having
>2.5M downloads and >40K people in the user group.
OpenCV can be used in academic and commercial
applications as well, under a BSD license [3]. To master
every OpenCV library element it is necessary to consult
many books available on the topic of OpenCV.
Nevertheless, reading such more comprehensive material
should be easier after comprehending a basic idea about
OpenCV from this paper. In fact to make it even more
convenient, the text presented here intentionally closely
follows one of the most recent OpenCV sources [4].

II. BASIC LIBRARY STRUCTURE AND FEATURES

OpenCV library (since version 2.2) is divided into
several modules, where each module can be understood,
in general, as being dedicated to one group of computer
vision problems. All the classes and functions are defined
within the name space cv. Therefore to access them we
can either precede the main function definition by the
declaration using namespace cv; or prefix OpenCV class
and function names by namespace specification cv::. The
main object is of class Mat. As implicated by the class
name it is essentially a matrix holding pixel values of
some image and, in addition, a number of attributes about
an image. In the simplest case an image can be created as
cv:: Mat image;, creating an image of size 0 by 0. Perhaps
the most important member variable of image object is
data where image.data member is actually a pointer to the
allocated memory block that contains the image data (in
this trivial case it would be image.data=0). Alternatively
during a creation of Mat object we can explicitly specify
an initial size and the type of each matrix element. This
type specifies, for example, signed 1-byte pixel image
values (CV_8U), or three channels for a color image
(CV_8UC3), or even 32-bit/64bit floating point numbers
(CV_32F).

Once an object of class mat is defined, a nice feature
about it (not present in the early versions of OpenCV) is
that a memory allocation/deallocation takes place
automatically. For instance, a memory automatically
allocated during the image read out into some object, will
be also automatically released once the corresponding
object goes out of scope.

Another important thing is that Mat class implements
the reference counting and shallow copy. Hence, when an
image is assigned to another one, the image data itself is
not copied and both images point to the same memory
block (this also applies to images passed by/returned by
value). However, since reference count is supported, a
memory allocated for image (pixel) data itself will be
released only when all of the references to the image are
destructed.

In the versions prior to OpenCV 2, C like functions
and structures were used (still can be though) and the
main structure was IplImage. Although there is a
convenient way to convert IplImage structure into
cv::Mat object, it is highly recommended to avoid this
deprecated data structure.

III. ACCESING PIXEL VALUES

The basic image content is made of picture elements
known as pixels. Consequently, an efficient pixel

2142 MIPRO 2012/SP

mailto:ivan.culjak@fer.hr
mailto:david.abram@fer.hr
mailto:tomislav.pribanic@fer.hr
mailto:hrvoje.dzapo@fer.hr
mailto:mario.cifrek@fer.hr

processing is of high importance since images can easily
have tens of thousands of pixels. Since a matrix is a basic
data structure in OpenCV, it seems reasonable that each
element of the matrix represents one pixel. However for a
gray level image, pixel values themselves are typically
unsigned 8bit values, whereas for a color image three
such 8bit unsigned values are used per pixel to describe
three primary colors, i.e. channels (Red, Green and Blue;
actually OpenCV uses BGR channel order). In more
general sense, OpenCV allows to create matrix of various
value types (as described earlier) and it is important to
note that certain operations (pixel processing) can be
applied only on the certain matrix types. Moreover,
certain image processing could be more effective if
appropriate color space is chosen [5].

In order to access each individual matrix element
essentially we just need to specify row and column, but
the way we actually do it can influence code mostly in
terms of performance efficiency and clarity. One of the
access method is to use method at(int x, int y). However,
in this case the type returned must be known at compile
time and, consequently, at method is implemented as a
template method. For example, accessing pixel on
coordinates (j, i) of some Mat object image and where
returned type is 8bit unsigned value, can be written as
image.at<uchar>(j, i). Note that at method does not
perform any type conversion and it is a programmer’s
responsibility that specified type matches the actual one
in the matrix. For color images a syntax is somewhat
more complex since in that case we actually retrieve a
vector of three 8bit values: image.at<Vec3b>(j,
i)[channel]. Channel determines one of the three color
channels.

Specifying a returned type as a template argument for
each call may be cumbersome. In case an image type is a
priory known we can use Mat_class which is a template
subclass of Mat class. Now we specify matrix type only
once at the object creation and later on we just use
operator() to access individual pixel values, e.g.
Mat_<uchar> im2=image; im2(101,303)=0;.

Accessing pixel elements with a pointer generally
provides a more efficient code, frequently at cost of more
cumbersome syntax. Fortunately, OpenCV offers ptr
method which simplifies a pointer arithmetic by directly
giving an address of an image row j, e.g. uchar*
data=image.ptr<uchar>(j);

We can also access pixel simply using traditional pure
low level pointer arithmetic. Considering that the image
data is contained into memory block of unsigned chars,
we can retrieve the address of the first element in this
block, i.e. uchar * data=image.data;. Now obtaining the
address of the pixel at row j, column i we should write
data=image.data+j*image.step+i*image.elemSize();
where elemSize returns number of bytes occupied by one
pixel, step is the actual number of bytes per one row.
Namely, for efficiency reasons the length of rows in bytes
is often not necessarily equal to the theoretically excepted
number equal to image width in pixels × number of bytes
occupied by one pixel. Rather the rows are padded with
few extra pixels in order to be multiples of 4 or 8.
Certainly these extra pixels are neither displayed nor

saved. On the other hand, in case the image is not padded
with extra pixels at the end of each row, it is interesting to
note that an image can be seen as one dimensional array
of Width×Height pixels. We can take advantage of this
continuity by scanning the image pixels within a single
loop, which in turn can yield a more efficient code
(particularly in cases when several smaller images are
scanned simultaneously in the same loop). Whether or not
image has been padded a convenient method isContinous
can tell us.

Looping over data collection in object oriented
programming is frequently done using iterators (a special
class which hides how iteration over each element is
specifically done for each data collection). Similarly as
the Standard Template Library (STL) has an iterator class
associated with each of its data collection classes,
OpenCV provides Mat iterator class, which is compatible
with standard iterators found in the C++ STL. Since
iterators scan pixels of certain type, we need to declare
iterator using template where we define a specific type to
be known at compile time, e.g. MatIterator_<Vec3b> it;
Nice thing about iterators is that no matter what
collection is scanned it follows always the same pattern.
We conclude that in principle, using iterators, similarly as
at method, has the main objective to make the code less
error-prone. However, working directly with pointer
provides usually more time efficient code.

To combine images using arithmetic operators,
OpenCV provides numerous functions which names by
themselves reveal their purpose, e.g. add, absdiff,
multiply, divide, bitwise_and etc. Note that in all cases
function saturate_cast is used to assure the results within
a defined pixel value domain. Optionally, we can include
a mask in a function call where a particular operation will
be executed only on pixels for which the mask value is
not null. In addition, input images have to have the same
size and type, only the output image will be re-allocated
if it does not match the input size. Alternatively, we can
use the usual C++ operators which are overloaded in
OpenCV. Occasionally, it is necessary to work only on
the particular image channel (plane). split function will
copy the three channels of a color image into three
distinct instances. A reverse action to combine a color
image from three 1-channel images is done via merge
function.

IV. MAIN ALGORITHMS AND METHODS

In the above we have briefly described some of the
main engine features used for OpenCV implemented
processing techniques and methods. Below we try to
mention several OpenCV image processing techniques
and algorithms which are known to be widely used too.

The concept of image histograms is well explored for
image analysis. A histogram is a table showing a number
of pixels having a given value in an image (occasionally a
set of images). Histogram entries are called bins.
OpenCV function which computes histogram is
calchist(). To enhance image contrast perhaps the first
idea would be to spread an original narrow range of
intensities on a full available range (i.e. linear stretch).
However, sometimes the real problem is that some

MIPRO 2012/SP 2143

intensities are used more frequently than others, which is
readily visible from the histogram intensities distribution.
Based on the idea that a good quality image should make
(almost) equal use of all available intensities, the concept
of histogram equalization is brought up, which tries to
make image histogram as flat as possible. This is a task of
OpenCV equalizeHist() function. Besides, the intensities
distribution can be understood as the probabilities that
some pixel will have a particular value. This constitutes a
base to detect specific image content using a histogram
back projection. This back projection replaces each pixel
value in an input image by its corresponding probability
read in the histogram, eventually yielding a probability
map. Furthermore, this probability map can be used to
detect an object on the image utilizing a mean shift
algorithm [6]. It is an iterative procedure which locates
the local maxima of a probability function by finding the
weighted centroid of the data point inside a predefined
window. The algorithm then moves the window center to
the centroid location and repeats the procedure until a
window center converges to a stable point. The mean
shift has been extensively used for visual tracking. In
addition, a more advanced version where the size and the
window orientation can change is implemented as well
under the name CamShift algorithm [7].

Morphological operations are operations where the
value of each pixel in the output image is based on a
comparison of the corresponding pixel in the input image
with its neighbors. By choosing the size and shape of the
neighborhood (i.e. a structuring element), we can
construct a morphological operation that is sensitive to
specific shapes in the input image. A structuring element
has an origin (usually at the center of the structuring
element) which is aligned with a given pixel. The most
fundamental morphological operators are erosion (the
output pixel value is the minimum value of all the pixels
in the input pixel's neighborhood) and dilation (the output
pixel value is the maximum value of all the pixels in the
input pixel's neighborhood). Morphological filters are
usually applied on the binary images. Assuming that
foreground (objects) is white and background is black, an
erosion operation will reduce the object size whereas a
dilatation will increase the object size. Combining
dilation followed by erosion, with the same structuring
element, defines a closing operation. The idea is to
connect together the object components erroneously
fragmented into smaller pieces (this would be a task of
dilatation step, while the subsequent erosion step is to
undo a previous dilatation effect for the very small
objects which are most likely noise and thus meant not to
be a part of any object). Similarly, combining erosion
followed by dilation, with the same structuring element,
defines an opening operation. Here, the idea is to remove
(erosion part) a small objects (all of the ones too small to
contain a structuring element) presumably introduced by
the image noise. Since this erosion also shrunk the valid
objects to undo this effect, opening operation also
assumes a subsequent dilatation. In fact, closing and
opening are usually applied in the sequence (e.g. during
object detection). Alternatively, the opening can be
applied before closing if priority is noise filtering, but
possibly at the price of eliminating some (smaller)
fragmented objects as well, before they have chance to be

defragmented. It should be also noted that applying the
same opening (closing) on an image several times has no
additional effect on the result acquired after its first
application. Morphological filters can be used to detect
lines and corners also ([8], [9]). In the first case, this
procedure essentially comes down to differencing dilated
and eroded image. In the second case, in addition to the
mentioned image differencing, an appropriate structuring
element has to be chosen such to emphasize only the
corner points and to leave straight edges unaffected.

Instead of observing distribution of image gray-level
intensities, we can study the frequency of intensity
variations. This point of view is referred as the frequency
domain and allows a processing pallet aimed at image
frequency filtering. A frequency domain analysis
decomposes an image into its frequency content from the
lowest to the highest frequencies. Such decomposition is
often undertaken using Fourier or Cosine transform.
Under the frequency analyses framework context a filter
is an operation that amplifies/removes certain bands of
frequency. OpenCV offers blur() function which
smoothes the image by replacing each pixel by the
average value computed over rectangle neighborhood.
Hence, blur() function is a low-pass filter. A considered
neighborhood in the form of mask is also called a kernel,
and mathematically this operation is named convolution.
More advanced function use allows filtering not only
with a rectangle window, but with some other shapes e.g.
Gaussian. Low-pass filtering is routinely used prior to
image down sampling by some factor N. Without it, i.e.
simply just discarding every N column and row would
cause effect known as aliasing. Visually it manifests as
jagged image distortions and it is caused by the fact that
image is simply too small to represent fine textures i.e.
high frequencies. This is why filtering out high
frequencies is necessary prior to down sampling itself.
Unfortunately, up sampling the down sampled image will
not recover exactly the original image. In any case, this
down/up sampling operations are often used to create
image pyramids, a data structure built for certain efficient
analyses, e.g. an object detection on smaller size image
first, followed by the refined search on the higher
resolution images. Median filter is another OpenCV
implemented filter option (medianblur()) aimed at
removing outlier noise (e.g. salt and paper type of noise)
where pixel values are replaced by the median of all
neighborhood considered pixels. We note that a median
filter although very helpful in preserving the sharpness of
edges, it also washes out the texture in uniform regions.

Sometimes the idea is to amplify high frequency
instead of attenuating it. This is the case when using
directional filters to perform edge detection where image
intensity gradient (composed of first order derivates in
two orthogonal directions) is computed. Alternatively, a
high pass linear filter can be based on the (sum of) second
order derivates, i.e. the Laplacian filter. Here, the edge is
determined by zero crossing of the Laplacian function,
were in principle we scan the Laplacian image and detect
the change of sign for two neighborhood pixels.
Thresholding the gradient magnitude and/or change of
Laplacian around zero, we conveniently acquire the
image edge map. However, choosing the right threshold

2144 MIPRO 2012/SP

for edge detection is not a trivial task and some more
advanced edge detectors actually use two thresholds, e.g.
Canny [10]. The Canny operator is generally based on
one of the gradient operators (e.g. Sobel). On such
gradient image we first apply separately low and high
threshold, producing low and high threshold edge map
respectively. The idea is to combine those two edge maps
in a way that from the low threshold edge map we keep
only those points with a continuous path linked to some
edge point on the high threshold edge map.
Consequently, the Canny edge detector should yield a
good compromise allowing good quality contours.

The Hough transform is another popular algorithm
implemented in OpenCV, aimed at detecting lines, but
extendable for some other image structures as well ([11],
[12]). The Hough transform usually takes as input edge
pixel map. The idea is to parameterize a particular image
structures with a certain number of parameters. In the
case of line N=2 parameters suffice. Next, N dimensional
accumulator is constructed where each entry represents
an image structure (line) with a particular set of
parameters. Considering one point of input image we
search all lines that pass through this point. The entries of
the accumulator corresponding to the found line
parameters are then incremented. Evidently when the
same line passes through many points, a corresponding
accumulator entry will be high and this line can be
considered as significant.

Assuming an image has a distinguishing points, it is
possible to detect them using interest point (also known
as keypoints or feature points) detectors. Corners are one
of the most common feature points. OpenCV offers an
implementation of Harris corner detector ([13], [14]). A
corner being the junction of two edges is a two-
dimensional feature. Based on that fact, Harris detector
looks at the rate of intensity change (characterized by a
covariance matrix) around some point and obtains the
maximal average intensity change for some direction.
Next, it checks if average intensity change in the
orthogonal direction is also high, then we have a corner.

A faster corner detector than Harris is offered in the
form of FAST (Features from Accelerated Segment Test)
algorithm [15]. It avoids a computation of image
derivates by examining a circle of pixels centered around
some candidate point. In more detail, if an arc of
contiguous pixel points (all having intensities
significantly different from the center point) of length
greater than 3/4 of the circle perimeter is found, then a
corner is declared.

Even more advanced keypoint detectors are designed
to be scale invariant. This is particularly advantageous if
we try to match the same feature from two images taken
at a different distance from the object. Evidently, using a
fixed size neighborhood for matching would be hard
since the scale change will prevent intensity patterns from
matching. OpenCV implemented the scale invariant
SURF (Speeded Up Robust Features) keypoint detector
[16]. SURF computes the image derivates on different
scales (image resolutions). Given some image point, at
one scale filter response will reach its maximum. If this
maximum is at least a minimum value supplied as an

algorithm input, a key point (i.e. a scale invariant feature)
is declared. SURF actually uses a Hessian matrix to
detect corners at image points with high local curvature,
and at different scales. Thus, a scale invariant feature is
declared when Hessian matrix determinant reaches its
local maximum at certain scale and given pixel location.
SURF approximates Gaussian kernels in order to speed
up a computation. In addition, OpenCV implements a
somewhat slower alternative, but considered more
accurate, SIFT (Scale invariant Feature Transform) which
uses Laplacian filer response instead of Hessian
determinant [17].

Feature detectors are usually used for feature
matching across different images and this normally
requires definition of featured descriptors as N
dimensional vectors that describe a feature point. The
goal is to make descriptors invariant to change in
lightening and to small perspective deformations.
OpenCV provides function to compute SURF feature
descriptors based on previously computed feature points.
It allows additionally comparing feature descriptors from
different images and finding eventually the best match for
some feature. In turn, matches can be used to solve many
task in 3D reconstruction, visual tracking, image
registration etc.

A digital camera is a device that captures a 3D scene
onto a 2D plane. Related to, it is a camera calibration
procedure which aims to find function parameters
describing a projection of 3D point onto 2D image plane
[18]. OpenCV offers functions which based on the so
called calibration images computes those parameters. In
turn, two or more calibrated cameras allow a
reconstruction of 3D point using only its correspondent
image coordinates. The relation between two cameras is
neatly captured through the concept of epipolar geometry
and fundamental matrix. It simplifies corresponding
image point search between two cameras, relating some
image point of one camera with the corresponding line on
the other camera, on which a corresponding image points
is somewhere too. Therefore, OpenCV computes the
fundamental matrix as well. Moreover, OpenCV supports
a robust two view feature matching based on the
fundamental matrix computation during a random sample
consensus strategy. Finally, there is a relation relating
two cameras views differing only by some rotation or
equivalently if we consider projection of 3D planar points
on cameras’ images. In that case image points of two
cameras are related by the so called homography matrix.
This matrix OpenCV computes simply from a set of
matched points between two cameras. Such homography
is particularly useful in creating, for instance, panoramic
images.

OpenCV offers advanced video analysis on video
sequences too. Besides basic operations such as
reading/viewing/writing video sequences, extracting
individual frames etc. a typical two tasks are the
foreground extraction and object tracking [19]. It is
essential to note though that in order for OpenCV to open
a specified video file, the corresponding codec must be
installed on the computer. Besides, there is a possibility
to read directly the video stream of a connected camera.

MIPRO 2012/SP 2145

A point tracking in the current frame is based on the
search around point’s position in the previous frame. In
general a point tracking algorithm is as follows. Firstly, a
certain number of features are detected in the initial
frame. It is assumed that an intensity of the feature point
has not changed from one frame to the next one, which
holds for some small displacements (u, v). Thus, it is
possible to derive a feature intensity expression in the
frame (t+1) as a function of an intensity in the current
frame t and assumed displacement (u, v). This leads to
famous Lukas-Kanade tracking algorithm [20]. It further
assumes that displacement of all points in the
neighborhood is the same which leads to over-determined
set of equations to compute (u, v). Once OpenCV finds
(calcOpticalFlowPyrLK()) output positions, normally we
keep for further tracking only those points which have
significantly moved by some amount of pixels. If by the
time, the actual number of tracked points significantly
decreases, it is recommended to add new feature points
Note that we normally do that only in the initial frame
and in the very next one we expect to find only points
which actually moved and are therefore worth of tracking
in the subsequent frames. When extracting a foreground
from a background it is useful to compute a background
dynamically (i.e. for each frame a background is updated)
rather than to work with the same background image
appearance throughout the process [21]. This can be
accomplished by computing a so-called running average.

V. EXPERIMENTS

We demonstrate the library performance on the passive

stereo matching. Stereo matching is the process of taking

two or more images and estimating a 3D model of the

scene by finding matching pixels in the images and

converting their 2D positions into 3D depths. In more

detail, for a given image location on the first (left) image

(xL, yL), stereo matching algorithms try to find a disparity

value d which will yield a correspondent image location

on the second (right) image (xR, yR) [1]. If camera pair

images are rectified [22], the following condition holds:

xR=xL, d=yR-yL. As a rule there are two approaches

available for the matching: area based and feature based

[23]. Area based algorithms are typically further

classified on the local and global optimization algorithms

[24]. OpenCV has an implementation of both local and

global approach, which theoretical details are beyond of

this paper scope. However, we do compare OpenCV

performance with the state of the art algorithms

implementations using the well known Middlebury

Stereo Evaluation test bed [25]. It is a globally

recognized site which has an image data base utilized for

the algorithm performance test in many, many published

work. One of the most popular test images are perhaps

Tsukuba, Venus, Cones and Teddy (see [25] for more

details). The ground truth values for the pixels disparities

are available also from [25]. Table I and Table II

represents, for the mentioned images, a percentage of

relative errors rates for the computed disparity where an

estimated disparity is considered correct if it is within a

ground truth disparity ±1. In terms of global methods

(Table I), OpenCV demonstrates somewhat worse results.

Still, we note two crucial things. Global methods are

known to assume a number of threshold parameters and

frequently require some experimenting before optimal

ones are found for a specific image. This is what was

basically done in referred work against which we

compared OpenCV. Therefore, a parameter set for one

image may perform quite badly for another. On the other

hand, we have here used OpenCV implementation using

its default parameters, i.e. the ones chosen automatically

as best ones from the code itself. We feel this is a fair

manner of testing since many practical users would like

to use OpenCV functions with as few experiments and

adjustments as possible. Thus, form this perspective we

can say that OpenCV performs quite well. In terms of

local methods (Table II) OpenCV implementation is side

by side with the best known methods, again without any a

priory manual parameter adjustment for some specific

image.

Table I Performance in terms of accuracy for top ranking methods, as
evaluated by Middlebury stereo site [25], which employ a significant

additional processing in the form of (global) optimization and/or color
segmentation.

Method Tskuba Venus Teddy Cones

ADCensus [26] 1.48 0.25 6.22 7.25

AdaptingBP [27] 1.37 0.21 7.06 7.92

CoopRegion [28] 1.16 0.21 8.31 7.18

DoubleBP [29] 1.29 0.45 8.30 8.78

OpenCV 6.79 5.01 14.84 9.57

Table II Performance in terms of accuracy for top ranking local

methods, as reported in [30], which use local approach.

Method Tskuba Venus Teddy Cones

Segment support [31] 2.28 1.21 10.99 5.42

Adaptive weight [32] 4.66 4.61 12.70 5.50

VariableWindows [33] 4.10 10.66 13.93 7.24

Reliability [34] 5.14 3.86 16.96 13.52

ShiftableWindows [35] 6.53 6.60 16.16 9.55

OpenCV 9.64 5.92 13.41 7.45

VI. CONCLUSION

The purpose of this paper is to quickly make a reader
familiar with OpenCV basics without having to go
through lengthy reference manuals and books. Given the
total number of OpenCV implemented algorithms
(~thousands) and possible challenges in Computer Vision
in general, it was normally beyond the scope of this paper
to go in depth about every possible OpenCV detail.
Actually, some more advanced topics, such as the use of
GPU accelerated codes, were not even mentioned.
However, the paper did present many basic and popular
Computer Vision algorithms, along with many key
references for an interested reader to pursue further
details. The shown content should raise the interest and
strengthen the awareness about OpenCV among the
graduate students and researchers in image processing
and computer vision areas as a whole, who may not to be

2146 MIPRO 2012/SP

aware of it yet and/or its practical users. It is important to
note that OpenCV is considered by many to be side by
side with many commercial image processing packages,
and yet it is an open source tool. Furthermore thanks to
the fact that OpenCV keeps evolving is an additional
guarantee that it will advance research in vision and
promote the development of rich, vision-based CPU-
intensive applications.

ACKNOWLEDGMENT

This work has been supported by the University of
Zagreb Development Fund as a part of the project
“Center for Computer Vision”.

REFERENCES

[1] R. Szeliski. Computer Vision: Algorithms and Applications.

Springer 2011.

[2] http://opencv.willowgarage.com/wiki/

[3] http://en.wikipedia.org/wiki/BSD_license

[4] R. Laganière. OpenCV 2 Computer Vision Application
Programming Cookbook. Packt Publishing 2011.

[5] E. Dubois. The Structure and Properties of Color Spaces and the
Representation of Color Images. Synthesis Lectures on Image,
Video, and Multimedia Processing. Morgan & Claypool, 2010.

[6] C. Dorin; P. Meer. Mean Shift: A Robust Approach Toward
Feature Space Analysis. IEEE Transactions on Pattern Analysis
and Machine Intelligence vol. 24 (5), pp. 603–619, 2002.

[7] G.R. Bradski, Computer video face tracking for use in a perceptual
user interface, 2nd Quarter, Intel Technology Journal, 1998.

[8] J.-F. Rivest, P. Soille, S. Beucher. Morphological gradients.
Journal of Electronic Imaging, vol. 2 (4),pp. 326-336, 1993.

[9] F.Y. Shih, C.-F. Chuang, V. Gaddipati. A modified regulated
morphological corner detector Pattern Recognition Letters, vol.
26(7), pp. 931-937, 2005.

[10] J. Canny. A computational approach to edge detection. IEEE
Transactions on Pattern Analysis and Image Understanding, vol.
18 (6), pp. 679-698, 1986.

[11] C. Galambos, J. Kittler, J. Matas. Gradient-based Progressive
Probabilistic Hough Transform. IEE Proc. of Vision, Image and
Signal Processing, vol. 148 (3), pp. 158–165, 2001.

[12] H.K. Yuen, J. Princen, J. Illingworth, J Kittler. Comparative Study
of Hough Transform Methods for Circle Finding. Image and
Vision Computing, vol. 8 (1), pp. 71-77, 1990.

[13] C. Harris, M.J. Stephens. A combined corner and edge detector.
Alvey Vision Conference, pp. 147–152, 1988.

[14] K. Mikolajczyk and C. Schmid. Scale and Affine invariant interest
point detectors, International Journal of Computer Vision. Vol.
60(1), pp. 63–86, 2004.

[15] E. Rosten, T. Drummond. Machine learning for high-speed corner
detection. European Conference on Computer Vision, pp. 430-
443, 2006.

[16] H. Bay, A. Ess, T. Tuytelaars, L. Van Gool. SURF: Speeded Up
Robust Features. Computer Vision and Image Understanding, vol.
110(3), pp. 346--359, 2008.

[17] D. Lowe. Distinctive Image Features from Scale Invariant
Features. International Journal of Computer Vision, vol. 60(2), pp.
91-110, 2004.

[18] T. Pribanic, P. Sturm, M. Cifrek. Calibration of 3D kinematic
systems using orthogonality constraints. Machine Vision and
Applications. vol. 18 (6), pp. 367-381, 2007.

[19] J. Shi and C. Tomasi. Good Features to Track. IEEE Conference
on Computer Vision and Pattern Recognition, pp. 593-600, 1994.

[20] B. Lucas, T. Kanade. An iterative image registration technique
with an application to stereo vision. Int. Joint Conference in
Artificial Intelligence, pp. 674-679, 1981.

[21] C. Stauffer, W.E.L. Grimson. Adaptive background mixture
models for real-time tracking. Conf. on Computer Vision and
Pattern Recognition, pp. 246-252, 1999.

[22] A. Fusiello, E. Trucco, A. Verri. A compact algorithm for
rectification of stereo pairs. Machine Vision and Applications
12(1): 16–22, 2000.

[23] X. Hu and N. Ahuja. Matching point features with ordered
geometric, rigidity, and disparity constraints. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 16(10):1041-1049,
2002.

[24] D. Scharstein and R. Szeliski. A Taxonomy and Evaluation of
Dense Two-Frame Stereo Correspondence Algorithms.
International Journal of Computer Vision, 47(1/2/3):7-42, 2002.

[25] http://vision.middlebury.edu/stereo/

[26] X. Mei, X. Sun, M. Zhou, S. Jiao, H. Wang, and X. Zhang. On
building an accurate stereo matching system on graphics
hardware. GPUCV 2011 (In conjunction with ICCV 2011).

[27] A. Klaus, M. Sormann and K. Karner. Segment-based stereo
matching using belief propagation and a self-adapting dissimilarity
measure. In 18th International Conference on Pattern Recognition,
pp. 15 – 18, 2006.

[28] Z. Wang and Z. Zheng. A region based stereo matching algorithm
using cooperative optimization. In IEEE Conference on Computer
Vision and Pattern Recognition, pp. 1-8, 2008.

[29] Q. Yang, L. Wang, R. Yang, H. Stewénius, and D. Nistér. Stereo
matching with color-weighted correlation, hierarchical belief
propagation and occlusion handling. IEEE Transactions on Pattern
Analysis and Machine Intelligence 31(3): 492-504, 2009.

[30] F. Tombari, S. Mattoccia, L. Di Stefano, E. Addimanda,
Classification and evaluation of cost aggregation methods for
stereo correspondence. IEEE International Conference on
Computer Vision and Pattern Recognition, pp. 24-26, 2008.

[31] F. Tombari, S. Mattoccia, and L. Di Stefano. Segmentation based
adaptive support for accurate stereo correspondence. In Proc.
Pacific-Rim Symposium on Image and Video Technology, 2007.

[32] K-J. Yoon and I.S. Kweon. Adaptive support-weight approach for
correspondence search. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28(4):650-656, 2006.

[33] O. Veksler. Fast variable window for stereo correspondence using
integral images. In Proc. Conf. Computer Vision and Pattern
Recognition, pp. 556–561, 2003.

[34] S. Kang, R. Szeliski, and J. Chai. Handling occlusions in dense
multi-view stereo. In Proc. Conf. Computer Vision and Pattern
Recognition, pp. 103–110, 2001

[35] A. F. Bobick and S. S. Intille. Large occlusion stereo. International
Journal of Computer Vision 33(3):181–200, 1999.

MIPRO 2012/SP 2147

http://vision.middlebury.edu/stereo/

