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Abstract - The purpose of this paper is to introduce and 

quickly make a reader familiar with OpenCV (Open Source 

Computer Vision) basics without having to go through the 

lengthy reference manuals and books. OpenCV is an open 

source library for image and video analysis, originally 

introduced more than decade ago by Intel. Since then, a 

number of programmers have contributed to the most 

recent library developments. The latest major change took 

place in 2009 (OpenCV 2) which includes main changes to 

the C++ interface. Nowadays the library has >2500 

optimized algorithms. It is extensively used around the 

world, having >2.5M downloads and >40K people in the 

user group. Regardless of whether one is a novice C++ 

programmer or a professional software developer, unaware 

of OpenCV, the main library content should be interesting 

for the graduate students and researchers in image 

processing and computer vision areas. To master every 

library element it is necessary to consult many books 

available on the topic of OpenCV. However, reading such 

more comprehensive material should be easier after 

comprehending some basics about OpenCV from this paper. 

I. INTRODUCTION 

Computer Vision is the science of programming a 
computer to process and ultimately understand images and 
video, or simply saying making a computer see [1]. 
Solving even small parts of certain Computer Vision 
challenges, creates exciting new possibilities in 
technology, engineering and even entertainment. In order 
to advance vision research and disseminate vision 
knowledge, it is highly critical to have a library of 
programming functions with the optimized and portable 
code, and hopefully available for free. This was an 
original goal of Intel team back in 1999 when OpenCV 
(Open Source Computer Vision Library) was officially 
launched. Since then, a number of programmers have 
contributed to the most recent library developments. The 
latest major change took place in 2009 (OpenCV 2) which 
includes main changes to the C++ interface. The newest 
library release can be found on the OpenCV official 
website [2]. Nowadays the library has >2500 optimized 
algorithms. It is extensively used around the world, having 
>2.5M downloads and >40K people in the user group. 
OpenCV can be used in academic and commercial 
applications as well, under a BSD license [3]. To master 
every OpenCV library element it is necessary to consult 
many books available on the topic of OpenCV. 
Nevertheless, reading such more comprehensive material 
should be easier after comprehending a basic idea about 
OpenCV from this paper. In fact to make it even more 
convenient, the text presented here intentionally closely 
follows one of the most recent OpenCV sources [4].  

II. BASIC LIBRARY STRUCTURE AND FEATURES 

OpenCV library (since version 2.2) is divided into 
several modules, where each module can be understood, 
in general, as being dedicated to one group of computer 
vision problems. All the classes and functions are defined 
within the name space cv. Therefore to access them we 
can either precede the main function definition by the 
declaration using namespace cv; or prefix OpenCV class 
and function names by namespace specification cv::. The 
main object is of class Mat. As implicated by the class 
name it is essentially a matrix holding pixel values of 
some image and, in addition, a number of attributes about 
an image. In the simplest case an image can be created as 
cv:: Mat image;, creating an image of size 0 by 0. Perhaps 
the most important member variable of image object is 
data where image.data member is actually a pointer to the 
allocated memory block that contains the image data (in 
this trivial case it would be image.data=0). Alternatively 
during a creation of Mat object we can explicitly specify 
an initial size and the type of each matrix element. This 
type specifies, for example, signed 1-byte pixel image 
values (CV_8U), or three channels for a color image 
(CV_8UC3), or even 32-bit/64bit floating point numbers 
(CV_32F).  

Once an object of class mat is defined, a nice feature 
about it (not present in the early versions of OpenCV) is 
that a memory allocation/deallocation takes place 
automatically. For instance, a memory automatically 
allocated during the image read out into some object, will 
be also automatically released once the corresponding 
object goes out of scope.  

Another important thing is that Mat class implements 
the reference counting and shallow copy. Hence, when an 
image is assigned to another one, the image data itself is 
not copied and both images point to the same memory 
block (this also applies to images passed by/returned by 
value). However, since reference count is supported, a 
memory allocated for image (pixel) data itself will be 
released only when all of the references to the image are 
destructed.  

In the versions prior to OpenCV 2, C like functions 
and structures were used (still can be though) and the 
main structure was IplImage. Although there is a 
convenient way to convert IplImage structure into 
cv::Mat object, it is highly recommended to avoid this 
deprecated data structure. 

III. ACCESING PIXEL VALUES 

The basic image content is made of picture elements 
known as pixels. Consequently, an efficient pixel 
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processing is of high importance since images can easily 
have tens of thousands of pixels. Since a matrix is a basic 
data structure in OpenCV, it seems reasonable that each 
element of the matrix represents one pixel. However for a 
gray level image, pixel values themselves are typically 
unsigned 8bit values, whereas for a color image three 
such 8bit unsigned values are used per pixel to describe 
three primary colors, i.e. channels (Red, Green and Blue; 
actually OpenCV uses BGR channel order). In more 
general sense, OpenCV allows to create matrix of various 
value types (as described earlier) and it is important to 
note that certain operations (pixel processing) can be 
applied only on the certain matrix types. Moreover, 
certain image processing could be more effective if 
appropriate color space is chosen [5].  

In order to access each individual matrix element 
essentially we just need to specify row and column, but 
the way we actually do it can influence code mostly in 
terms of performance efficiency and clarity. One of the 
access method is to use method at(int x, int y). However, 
in this case the type returned must be known at compile 
time and, consequently, at method is implemented as a 
template method. For example, accessing pixel on 
coordinates (j, i) of some Mat object image and where 
returned type is 8bit unsigned value, can be written as 
image.at<uchar>(j, i). Note that at method does not 
perform any type conversion and it is a programmer’s 
responsibility that specified type matches the actual one 
in the matrix. For color images a syntax is somewhat 
more complex since in that case we actually retrieve a 
vector of three 8bit values: image.at<Vec3b>(j, 
i)[channel]. Channel determines one of the three color 
channels.  

Specifying a returned type as a template argument for 
each call may be cumbersome. In case an image type is a 
priory known we can use Mat_class which is a template 
subclass of Mat class. Now we specify matrix type only 
once at the object creation and later on we just use 
operator() to access individual pixel values, e.g. 
Mat_<uchar> im2=image; im2(101,303)=0;.  

Accessing pixel elements with a pointer generally 
provides a more efficient code, frequently at cost of more 
cumbersome syntax. Fortunately, OpenCV offers ptr 
method which simplifies a pointer arithmetic by directly 
giving an address of an image row j, e.g. uchar* 
data=image.ptr<uchar>(j);  

We can also access pixel simply using traditional pure 
low level pointer arithmetic. Considering that the image 
data is contained into memory block of unsigned chars, 
we can retrieve the address of the first element in this 
block, i.e. uchar * data=image.data;. Now obtaining the 
address of the pixel at row j, column i we should write 
data=image.data+j*image.step+i*image.elemSize(); 
where elemSize returns number of bytes occupied by one 
pixel, step is the actual number of bytes per one row. 
Namely, for efficiency reasons the length of rows in bytes 
is often not necessarily equal to the theoretically excepted 
number equal to image width in pixels × number of bytes 
occupied by one pixel. Rather the rows are padded with 
few extra pixels in order to be multiples of 4 or 8. 
Certainly these extra pixels are neither displayed nor 

saved. On the other hand, in case the image is not padded 
with extra pixels at the end of each row, it is interesting to 
note that an image can be seen as one dimensional array 
of Width×Height pixels. We can take advantage of this 
continuity by scanning the image pixels within a single 
loop, which in turn can yield a more efficient code 
(particularly in cases when several smaller images are 
scanned simultaneously in the same loop). Whether or not 
image has been padded a convenient method isContinous 
can tell us. 

Looping over data collection in object oriented 
programming is frequently done using iterators (a special 
class which hides how iteration over each element is 
specifically done for each data collection). Similarly as 
the Standard Template Library (STL) has an iterator class 
associated with each of its data collection classes, 
OpenCV provides Mat iterator class, which is compatible 
with standard iterators found in the C++ STL. Since 
iterators scan pixels of certain type, we need to declare 
iterator using template where we define a specific type to 
be known at compile time, e.g. MatIterator_<Vec3b> it; 
Nice thing about iterators is that no matter what 
collection is scanned it follows always the same pattern. 
We conclude that in principle, using iterators, similarly as 
at method, has the main objective to make the code less 
error-prone. However, working directly with pointer 
provides usually more time efficient code. 

To combine images using arithmetic operators, 
OpenCV provides numerous functions which names by 
themselves reveal their purpose, e.g. add, absdiff, 
multiply, divide, bitwise_and etc. Note that in all cases 
function saturate_cast is used to assure the results within 
a defined pixel value domain. Optionally, we can include 
a mask in a function call where a particular operation will 
be executed only on pixels for which the mask value is 
not null. In addition, input images have to have the same 
size and type, only the output image will be re-allocated 
if it does not match the input size. Alternatively, we can 
use the usual C++ operators which are overloaded in 
OpenCV. Occasionally, it is necessary to work only on 
the particular image channel (plane). split function will 
copy the three channels of a color image into three 
distinct instances. A reverse action to combine a color 
image from three 1-channel images is done via merge 
function.  

IV. MAIN ALGORITHMS AND METHODS 

In the above we have briefly described some of the 
main engine features used for OpenCV implemented 
processing techniques and methods. Below we try to 
mention several OpenCV image processing techniques 
and algorithms which are known to be widely used too. 

The concept of image histograms is well explored for 
image analysis. A histogram is a table showing a number 
of pixels having a given value in an image (occasionally a 
set of images). Histogram entries are called bins. 
OpenCV function which computes histogram is 
calchist(). To enhance image contrast perhaps the first 
idea would be to spread an original narrow range of 
intensities on a full available range (i.e. linear stretch). 
However, sometimes the real problem is that some 
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intensities are used more frequently than others, which is 
readily visible from the histogram intensities distribution. 
Based on the idea that a good quality image should make 
(almost) equal use of all available intensities, the concept 
of histogram equalization is brought up, which tries to 
make image histogram as flat as possible. This is a task of 
OpenCV equalizeHist() function. Besides, the intensities 
distribution can be understood as the probabilities that 
some pixel will have a particular value. This constitutes a 
base to detect specific image content using a histogram 
back projection. This back projection replaces each pixel 
value in an input image by its corresponding probability 
read in the histogram, eventually yielding a probability 
map. Furthermore, this probability map can be used to 
detect an object on the image utilizing a mean shift 
algorithm [6]. It is an iterative procedure which locates 
the local maxima of a probability function by finding the 
weighted centroid of the data point inside a predefined 
window. The algorithm then moves the window center to 
the centroid location and repeats the procedure until a 
window center converges to a stable point. The mean 
shift has been extensively used for visual tracking. In 
addition, a more advanced version where the size and the 
window orientation can change is implemented as well 
under the name CamShift algorithm [7]. 

Morphological operations are operations where the 
value of each pixel in the output image is based on a 
comparison of the corresponding pixel in the input image 
with its neighbors. By choosing the size and shape of the 
neighborhood (i.e. a structuring element), we can 
construct a morphological operation that is sensitive to 
specific shapes in the input image. A structuring element 
has an origin (usually at the center of the structuring 
element) which is aligned with a given pixel. The most 
fundamental morphological operators are erosion (the 
output pixel value is the minimum value of all the pixels 
in the input pixel's neighborhood) and dilation (the output 
pixel value is the maximum value of all the pixels in the 
input pixel's neighborhood). Morphological filters are 
usually applied on the binary images. Assuming that 
foreground (objects) is white and background is black, an 
erosion operation will reduce the object size whereas a 
dilatation will increase the object size. Combining 
dilation followed by erosion, with the same structuring 
element, defines a closing operation. The idea is to 
connect together the object components erroneously 
fragmented into smaller pieces (this would be a task of 
dilatation step, while the subsequent erosion step is to 
undo a previous dilatation effect for the very small 
objects which are most likely noise and thus meant not to 
be a part of any object). Similarly, combining erosion 
followed by dilation, with the same structuring element, 
defines an opening operation. Here, the idea is to remove 
(erosion part) a small objects (all of the ones too small to 
contain a structuring element) presumably introduced by 
the image noise. Since this erosion also shrunk the valid 
objects to undo this effect, opening operation also 
assumes a subsequent dilatation. In fact, closing and 
opening are usually applied in the sequence (e.g. during 
object detection). Alternatively, the opening can be 
applied before closing if priority is noise filtering, but 
possibly at the price of eliminating some (smaller) 
fragmented objects as well, before they have chance to be 

defragmented. It should be also noted that applying the 
same opening (closing) on an image several times has no 
additional effect on the result acquired after its first 
application. Morphological filters can be used to detect 
lines and corners also ([8], [9]). In the first case, this 
procedure essentially comes down to differencing dilated 
and eroded image. In the second case, in addition to the 
mentioned image differencing, an appropriate structuring 
element has to be chosen such to emphasize only the 
corner points and to leave straight edges unaffected. 

Instead of observing distribution of image gray-level 
intensities, we can study the frequency of intensity 
variations. This point of view is referred as the frequency 
domain and allows a processing pallet aimed at image 
frequency filtering. A frequency domain analysis 
decomposes an image into its frequency content from the 
lowest to the highest frequencies. Such decomposition is 
often undertaken using Fourier or Cosine transform. 
Under the frequency analyses framework context a filter 
is an operation that amplifies/removes certain bands of 
frequency. OpenCV offers blur() function which 
smoothes the image by replacing each pixel by the 
average value computed over rectangle neighborhood. 
Hence, blur() function is a low-pass filter. A considered 
neighborhood in the form of mask is also called a kernel, 
and mathematically this operation is named convolution. 
More advanced function use allows filtering not only 
with a rectangle window, but with some other shapes e.g. 
Gaussian. Low-pass filtering is routinely used prior to 
image down sampling by some factor N. Without it, i.e. 
simply just discarding every N column and row would 
cause effect known as aliasing. Visually it manifests as 
jagged image distortions and it is caused by the fact that 
image is simply too small to represent fine textures i.e. 
high frequencies. This is why filtering out high 
frequencies is necessary prior to down sampling itself. 
Unfortunately, up sampling the down sampled image will 
not recover exactly the original image. In any case, this 
down/up sampling operations are often used to create 
image pyramids, a data structure built for certain efficient 
analyses, e.g. an object detection on smaller size image 
first, followed by the refined search on the higher 
resolution images. Median filter is another OpenCV 
implemented filter option (medianblur()) aimed at 
removing outlier noise (e.g. salt and paper type of noise) 
where pixel values are replaced by the median of all 
neighborhood considered pixels. We note that a median 
filter although very helpful in preserving the sharpness of 
edges, it also washes out the texture in uniform regions.  

Sometimes the idea is to amplify high frequency 
instead of attenuating it. This is the case when using 
directional filters to perform edge detection where image 
intensity gradient (composed of first order derivates in 
two orthogonal directions) is computed. Alternatively, a 
high pass linear filter can be based on the (sum of) second 
order derivates, i.e. the Laplacian filter. Here, the edge is 
determined by zero crossing of the Laplacian function, 
were in principle we scan the Laplacian image and detect 
the change of sign for two neighborhood pixels.  
Thresholding the gradient magnitude and/or change of 
Laplacian around zero, we conveniently acquire the 
image edge map. However, choosing the right threshold 
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for edge detection is not a trivial task and some more 
advanced edge detectors actually use two thresholds, e.g. 
Canny [10]. The Canny operator is generally based on 
one of the gradient operators (e.g. Sobel). On such 
gradient image we first apply separately low and high 
threshold, producing low and high threshold edge map 
respectively. The idea is to combine those two edge maps 
in a way that from the low threshold edge map we keep 
only those points with a continuous path linked to some 
edge point on the high threshold edge map. 
Consequently, the Canny edge detector should yield a 
good compromise allowing good quality contours.  

The Hough transform is another popular algorithm 
implemented in OpenCV, aimed at detecting lines, but 
extendable for some other image structures as well ([11], 
[12]). The Hough transform usually takes as input edge 
pixel map. The idea is to parameterize a particular image 
structures with a certain number of parameters. In the 
case of line N=2 parameters suffice. Next, N dimensional 
accumulator is constructed where each entry represents 
an image structure (line) with a particular set of 
parameters. Considering one point of input image we 
search all lines that pass through this point. The entries of 
the accumulator corresponding to the found line 
parameters are then incremented. Evidently when the 
same line passes through many points, a corresponding 
accumulator entry will be high and this line can be 
considered as significant.  

Assuming an image has a distinguishing points, it is 
possible to detect them using interest point (also known 
as keypoints or feature points) detectors. Corners are one 
of the most common feature points. OpenCV offers an 
implementation of Harris corner detector ([13], [14]). A 
corner being the junction of two edges is a two-
dimensional feature. Based on that fact, Harris detector 
looks at the rate of intensity change (characterized by a 
covariance matrix) around some point and obtains the 
maximal average intensity change for some direction. 
Next, it checks if average intensity change in the 
orthogonal direction is also high, then we have a corner.  

A faster corner detector than Harris is offered in the 
form of FAST (Features from Accelerated Segment Test) 
algorithm [15]. It avoids a computation of image 
derivates by examining a circle of pixels centered around 
some candidate point. In more detail, if an arc of 
contiguous pixel points (all having intensities 
significantly different from the center point) of length 
greater than 3/4 of the circle perimeter is found, then a 
corner is declared.  

Even more advanced keypoint detectors are designed 
to be scale invariant. This is particularly advantageous if 
we try to match the same feature from two images taken 
at a different distance from the object. Evidently, using a 
fixed size neighborhood for matching would be hard 
since the scale change will prevent intensity patterns from 
matching. OpenCV implemented the scale invariant 
SURF (Speeded Up Robust Features) keypoint detector 
[16]. SURF computes the image derivates on different 
scales (image resolutions). Given some image point, at 
one scale filter response will reach its maximum. If this 
maximum is at least a minimum value supplied as an 

algorithm input, a key point (i.e. a scale invariant feature) 
is declared. SURF actually uses a Hessian matrix to 
detect corners at image points with high local curvature, 
and at different scales. Thus, a scale invariant feature is 
declared when Hessian matrix determinant reaches its 
local maximum at certain scale and given pixel location. 
SURF approximates Gaussian kernels in order to speed 
up a computation. In addition, OpenCV implements a 
somewhat slower alternative, but considered more 
accurate, SIFT (Scale invariant Feature Transform) which 
uses Laplacian filer response instead of Hessian 
determinant [17].  

Feature detectors are usually used for feature 
matching across different images and this normally 
requires definition of featured descriptors as N 
dimensional vectors that describe a feature point. The 
goal is to make descriptors invariant to change in 
lightening and to small perspective deformations. 
OpenCV provides function to compute SURF feature 
descriptors based on previously computed feature points. 
It allows additionally comparing feature descriptors from 
different images and finding eventually the best match for 
some feature. In turn, matches can be used to solve many 
task in 3D reconstruction, visual tracking, image 
registration etc.  

A digital camera is a device that captures a 3D scene 
onto a 2D plane. Related to, it is a camera calibration 
procedure which aims to find function parameters 
describing a projection of 3D point onto 2D image plane 
[18]. OpenCV offers functions which based on the so 
called calibration images computes those parameters. In 
turn, two or more calibrated cameras allow a 
reconstruction of 3D point using only its correspondent 
image coordinates. The relation between two cameras is 
neatly captured through the concept of epipolar geometry 
and fundamental matrix. It simplifies corresponding 
image point search between two cameras, relating some 
image point of one camera with the corresponding line on 
the other camera, on which a corresponding image points 
is somewhere too. Therefore, OpenCV computes the 
fundamental matrix as well. Moreover, OpenCV supports 
a robust two view feature matching based on the 
fundamental matrix computation during a random sample 
consensus strategy. Finally, there is a relation relating 
two cameras views differing only by some rotation or 
equivalently if we consider projection of 3D planar points 
on cameras’ images. In that case image points of two 
cameras are related by the so called homography matrix. 
This matrix OpenCV computes simply from a set of 
matched points between two cameras. Such homography 
is particularly useful in creating, for instance, panoramic 
images.  

OpenCV offers advanced video analysis on video 
sequences too. Besides basic operations such as 
reading/viewing/writing video sequences, extracting 
individual frames etc. a typical two tasks are the 
foreground extraction and object tracking [19]. It is 
essential to note though that in order for OpenCV to open 
a specified video file, the corresponding codec must be 
installed on the computer. Besides, there is a possibility 
to read directly the video stream of a connected camera.  
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A point tracking in the current frame is based on the 
search around point’s position in the previous frame. In 
general a point tracking algorithm is as follows. Firstly, a 
certain number of features are detected in the initial 
frame. It is assumed that an intensity of the feature point 
has not changed from one frame to the next one, which 
holds for some small displacements (u, v). Thus, it is 
possible to derive a feature intensity expression in the 
frame (t+1) as a function of an intensity in the current 
frame t and assumed displacement (u, v). This leads to 
famous Lukas-Kanade tracking algorithm [20]. It further 
assumes that displacement of all points in the 
neighborhood is the same which leads to over-determined 
set of equations to compute (u, v). Once OpenCV finds 
(calcOpticalFlowPyrLK()) output positions, normally we 
keep for further tracking only those points which have 
significantly moved by some amount of pixels. If by the 
time, the actual number of tracked points significantly 
decreases, it is recommended to add new feature points 
Note that we normally do that only in the initial frame 
and in the very next one we expect to find only points 
which actually moved and are therefore worth of tracking 
in the subsequent frames. When extracting a foreground 
from a background it is useful to compute a background 
dynamically (i.e. for each frame a background is updated) 
rather than to work with the same background image 
appearance throughout the process [21]. This can be 
accomplished by computing a so-called running average.  

V. EXPERIMENTS 

We demonstrate the library performance on the passive 

stereo matching. Stereo matching is the process of taking 

two or more images and estimating a 3D model of the 

scene by finding matching pixels in the images and 

converting their 2D positions into 3D depths. In more 

detail, for a given image location on the first (left) image 

(xL, yL), stereo matching algorithms try to find a disparity 

value d which will yield a correspondent image location 

on the second (right) image (xR, yR) [1]. If camera pair 

images are rectified [22], the following condition holds: 

xR=xL, d=yR-yL. As a rule there are two approaches 

available for the matching: area based and feature based 

[23]. Area based algorithms are typically further 

classified on the local and global optimization algorithms 

[24]. OpenCV has an implementation of both local and 

global approach, which theoretical details are beyond of 

this paper scope. However, we do compare OpenCV 

performance with the state of the art algorithms 

implementations using the well known Middlebury 

Stereo Evaluation test bed [25]. It is a globally 

recognized site which has an image data base utilized for 

the algorithm performance test in many, many published 

work. One of the most popular test images are perhaps 

Tsukuba, Venus, Cones and Teddy (see [25] for more 

details). The ground truth values for the pixels disparities 

are available also from [25]. Table I and Table II 

represents, for the mentioned images, a percentage of 

relative errors rates for the computed disparity where an 

estimated disparity is considered correct if it is within a 

ground truth disparity ±1. In terms of global methods 

(Table I), OpenCV demonstrates somewhat worse results. 

Still, we note two crucial things. Global methods are 

known to assume a number of threshold parameters and 

frequently require some experimenting before optimal 

ones are found for a specific image. This is what was 

basically done in referred work against which we 

compared OpenCV. Therefore, a parameter set for one 

image may perform quite badly for another. On the other 

hand, we have here used OpenCV implementation using 

its default parameters, i.e. the ones chosen automatically 

as best ones from the code itself. We feel this is a fair 

manner of testing since many practical users would like 

to use OpenCV functions with as few experiments and 

adjustments as possible. Thus, form this perspective we 

can say that OpenCV performs quite well. In terms of 

local methods (Table II) OpenCV implementation is side 

by side with the best known methods, again without any a 

priory manual parameter adjustment for some specific 

image. 

 
Table I Performance in terms of accuracy for top ranking methods, as 
evaluated by Middlebury stereo site [25], which employ a significant 

additional processing in the form of (global) optimization and/or color 
segmentation. 

Method Tskuba Venus Teddy Cones 

ADCensus [26] 1.48 0.25 6.22 7.25 

AdaptingBP [27]  1.37  0.21  7.06  7.92 

CoopRegion [28] 1.16  0.21  8.31  7.18 

DoubleBP [29] 1.29 0.45 8.30 8.78 

OpenCV 6.79 5.01 14.84 9.57 

 
Table II Performance in terms of accuracy for top ranking local 

methods, as reported in [30], which use local approach. 

Method Tskuba Venus Teddy Cones 

Segment support [31] 2.28 1.21 10.99 5.42 

Adaptive weight [32] 4.66 4.61 12.70 5.50 

VariableWindows [33] 4.10 10.66 13.93 7.24 

Reliability [34] 5.14 3.86 16.96 13.52 

ShiftableWindows [35] 6.53 6.60 16.16 9.55 

OpenCV 9.64 5.92 13.41 7.45 

 

VI. CONCLUSION 

The purpose of this paper is to quickly make a reader 
familiar with OpenCV basics without having to go 
through lengthy reference manuals and books. Given the 
total number of OpenCV implemented algorithms 
(~thousands) and possible challenges in Computer Vision 
in general, it was normally beyond the scope of this paper 
to go in depth about every possible OpenCV detail. 
Actually, some more advanced topics, such as the use of 
GPU accelerated codes, were not even mentioned. 
However, the paper did present many basic and popular 
Computer Vision algorithms, along with many key 
references for an interested reader to pursue further 
details. The shown content should raise the interest and 
strengthen the awareness about OpenCV among the 
graduate students and researchers in image processing 
and computer vision areas as a whole, who may not to be 
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aware of it yet and/or its practical users. It is important to 
note that OpenCV is considered by many to be side by 
side with many commercial image processing packages, 
and yet it is an open source tool. Furthermore thanks to 
the fact that OpenCV keeps evolving is an additional 
guarantee that it will advance research in vision and 
promote the development of rich, vision-based CPU-
intensive applications.  
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