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ABSTRACT
Supervised learning techniques construct predictive models by learning from a large number of training
examples, where each training example has a label indicating its ground-truth output.Though current
techniques have achieved great success, it is noteworthy that in many tasks it is difficult to get strong
supervision information like fully ground-truth labels due to the high cost of the data-labeling process.Thus,
it is desirable for machine-learning techniques to work with weak supervision.This article reviews some
research progress of weakly supervised learning, focusing on three typical types of weak supervision:
incomplete supervision, where only a subset of training data is given with labels; inexact supervision, where
the training data are given with only coarse-grained labels; and inaccurate supervision, where the given
labels are not always ground-truth.
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INTRODUCTION
Machine learning has achieved great success in var-
ious tasks, particularly in supervised learning tasks
such as classification and regression. Typically, pre-
dictive models are learned from a training data set
that contains a large amount of training examples,
each corresponding to an event/object. A training
example consists of two parts: a feature vector (or in-
stance) describing the event/object, and a label indi-
cating the ground-truth output. In classification, the
label indicates the class to which the training exam-
ple belongs; in regression, the label is a real-value
response corresponding to the example. Most suc-
cessful techniques, such as deep learning [1], require
ground-truth labels to be given for a big training data
set; in many tasks, however, it can be difficult to at-
tain strong supervision information due to the high
cost of the data-labeling process.Thus, it is desirable
for machine-learning techniques to be able to work
with weak supervision.

Typically, there are three types of weak super-
vision. The first is incomplete supervision, i.e. only
a (usually small) subset of training data is given
with labels while the other data remain unlabeled.
Such a situationoccurs in various tasks. For example,
in image categorization the ground-truth labels are
given by human annotators; it is easy to get a huge

number of images from the Internet, whereas only a
small subset of images can be annotated due to the
human cost. The second type is inexact supervision,
i.e. only coarse-grained labels are given. Consider
the image categorization task again. It is desirable to
have every object in the images annotated; however,
usually we only have image-level labels rather than
object-level labels.The third type is inaccurate super-
vision, i.e. the given labels are not always ground-
truth. Such a situation occurs, e.g. when the image
annotator is careless or weary, or some images are
difficult to categorize.

Weakly supervised learning is an umbrella term
covering a varietyof studies that attempt to construct
predictive models by learning with weak supervi-
sion. In this article, we will discuss some progress
in this line of research, focusing on learning with
incomplete, inexact and inaccurate supervision. We
will treat these types of weak supervision separately,
but it is worth mentioning that in real practice they
often occur simultaneously. For simplicity, in this
article we consider binary classification concern-
ing two exchangeable classes Y and N. Formally,
with strong supervision, the supervised learning task
is to learn f : X �→ Y from a training data set
D = {(x1, y1), . . . , (xm , ym)}, where X is the fea-
ture space, Y = {Y, N}, xi ∈ X , and yi ∈ Y . We
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Figure 1. Illustration of three typical types of weak supervision. Bars denote feature vectors; red/blue marks labels; ‘?’ implies that the label may be
inaccurate. Intermediate subgraphs depict some situations with mixed types of weak supervision.

assume that (xi , yi ) are generated according to an
unknown identical and independent distributionD;
in other words, (xi , yi ) are i.i.d. samples. Figure 1
provides an illustration of the three types of weak su-
pervision that we will discuss in this article.

INCOMPLETE SUPERVISION
Incomplete supervision concerns the situation in
which we are given a small amount of labeled data,
which is insufficient to train a good learner, while
abundant unlabeled data are available. Formally, the
task is to learn f : X �→ Y from a training data set
D = {(x1, y1), . . . , (xl , yl ), xl+1, . . . , xm}, where
there are l number of labeled training examples (i.e.
those given with yi) and u = m − l number of un-
labeled instances; the other conditions are the same
as in supervised learning with strong supervision, as
defined at the end of the introduction. For the con-
venience of discussion, we also call the l labeled ex-
amples ‘labeled data’ and the u unlabeled instances
‘unlabeled data’.

There are two major techniques for this purpose,
i.e. active learning [2] and semi-supervised learning
[3–5].

Active learning assumes that there is an ‘oracle’,
such as a human expert, that can be queried to get
ground-truth labels for selected unlabeled instances.

In contrast, semi-supervised learning attempts to au-
tomatically exploit unlabeled data in addition to la-
beled data to improve learning performance, where
no human intervention is assumed. There is a spe-
cial kind of semi-supervised learning called transduc-
tive learning; the main difference between this and
(pure) semi-supervised learning lies in their differ-
ent assumptions about test data, i.e. data to be pre-
dicted by the trained model. Transductive learning
holds a ‘closed-world’ assumption, i.e. the test data
are given in advance and the goal is to optimize
performance on the test data; in other words, the
unlabeled data are exactly test data. Pure semi-
supervised learning holds an ‘open-world’ assump-
tion, i.e. the test data are unknown and the unlabeled
data are not necessarily test data. Figure 2 intuitively
shows the difference between active learning, (pure)
semi-supervised learning and transductive learning.

With human intervention
Active learning [2] assumes that the ground-truth la-
bels of unlabeled instances can be queried from an
oracle. For simplicity, assume that the labeling cost
depends only on the number of queries. Thus, the
goal of active learning is to minimize the number of
queries such that the labeling cost for training a good
model can be minimized.
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Figure 2. Active learning, (pure) semi-supervised learning and transductive learning.

Given a small set of labeled data and abundant
unlabeled data, active learning attempts to select the
most valuable unlabeled instance to query.There are
twowidely used selection criteria, i.e. informativeness
and representativeness [6]. Informativenessmeasures
how well an unlabeled instance helps reduce the un-
certainty of a statistical model, whereas representa-
tiveness measures how well an instance helps repre-
sent the structure of input patterns.

Uncertainty sampling and query-by-committee are
representative approaches based on informative-
ness. The former trains a single learner and then
queries the unlabeled instance on which the learner
has the least confidence [7]. The latter generates
multiple learners and then queries the unlabeled in-
stance onwhich the learners disagree themost [8,9].
Approaches based on representativeness generally
aim to exploit the cluster structure of unlabeled data,
usually by a clustering method [10,11].

Themain weakness of informativeness-based ap-
proaches lies in the fact that they rely seriously on
labeled data for constructing the initial model to se-
lect the query instance, and the performance is often
unstable when there are only a few labeled examples
available. The main weakness of representativeness-
based approaches lies in the fact that the perfor-
mance heavily depends on the clustering results
dominated by unlabeled data, especially when there
are only a few labeled examples.Thus, several recent
active learning approaches try to leverage informa-
tiveness and representativeness [6,12].

There are many theoretical studies about active
learning. For example, it has been proven that for re-
alizable cases (where there exists a hypothesis per-
fectly separating the data in the hypothesis class),
exponential improvement in sample complexity can
be obtained by active learning [13,14]. For non-
realizable cases (where the data cannot be perfectly
separated by any hypothesis in the hypothesis class
because of noise) it has been shown that, without
assumptions about noise models, the lower bound
of active learning matches the upper bound of pas-
sive learning [15]; in other words, active learning
does not offer much help. By assuming a Tsybakov
noise model, it has been proven that exponential
improvement can be obtained for bounded noise
[16,17]; if some special data characteristics, such as
multi-view structure, can be exploited, exponential
improvement can even be achieved for unbounded
noise [18]. In other words, even for difficult cases,
active learning can still be helpful with delicate de-
sign.

Without human intervention
Semi-supervised learning [3–5] attempts to exploit
unlabeled data without querying human experts.
One might be curious about why data without la-
bels can help construct predictivemodels. For a sim-
ple explanation [19], assume that the data come
from a Gaussian mixture model with n mixture
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Figure 3. Illustration of the usefulness of unlabeled data.

components, i.e.

f (x|�) =
n∑

j=1

α j f (x|θ j ) , (1)

where αi is the mixture coefficient,
∑n

i=1 αi = 1,
and � = {θ i} are the model parameters. In this
case, label yi can be considered as a random vari-
able whose distribution P (yi |xi , g i ) is determined
by the mixture component gi and the feature vector
xi . According to the maximum a posteriori criterion,
we have the model

h(x) = argmax
c∈{Y,N}

n∑
j=1

P (yi = c |g i = j, xi )

×P (g i = j |xi ) , (2)

where

P (g i = j |xi ) = α j f (xi |θ j )∑n
k=1 αk f (xi |θk) . (3)

The objective is accomplished by estimating
the terms P (yi = c |g i = j, xi ) and P (g i = j |xi )
from the training data. It is evident that only the
first term requires label information.Thus, unlabeled
data can be used to help improve the estimate of the
second term, and hence improve the performance of
the learned model.

Figure 3 provides an intuitive explanation. If we
have tomake a prediction based on the only positive
and negative points, what we can do is just a random
guess because the test data point lies exactly in the
middle between the two labeled data points; if we
are allowed to observe some unlabeled data points
like the gray ones in the figure,we canpredict the test
data point as positive with high confidence. Here, al-
though the unlabeled data points do not explicitly
have label information, they implicitly convey some
information about data distribution that canbehelp-
ful for predictive modeling.

Actually, in semi-supervised learning there are
two basic assumptions, i.e. the cluster assumption and
the manifold assumption; both are about data distri-
bution. The former assumes that data have inherent
cluster structure, and thus, instances falling into the
same cluster have the same class label. The latter as-
sumes that data lie on a manifold, and thus, nearby
instances have similar predictions. The essence of

both assumptions lies in the belief that similar data
points should have similar outputs, whereas unla-
beled data can be helpful to disclose which data
points are similar.

There are four major categories of semi-
supervised learning approaches, i.e. generative
methods, graph-based methods, low-density sepa-
ration methods and disagreement-based methods.

Generative methods [19,20] assume that both
labeled and unlabeled data are generated from the
same inherent model. Thus, labels of unlabeled in-
stances can be treated as missing values of model
parameters, and estimatedby approaches such as the
EM (expectation–maximization) algorithm [21].
These methods differ by fitting data using different
generative models. To get good performance, one
usually needs domain knowledge to determine an
adequate generative model. There are also attempts
to combine the advantages of the generative and dis-
criminative approaches [22].

Graph-based methods [23–25] construct a
graph, where the nodes correspond to training
instances and the edges to the relation (usually
some kind of similarity or distance) between
instances, and then propagate label information
on the graph according to some criteria; e.g. labels
can be propagated inside different subgraphs
separated by a minimum cut [23]. Apparently, the
performance will heavily depend on how the graph
is constructed [26–28]. Note that for m data points
such approaches generally require about O(m2)
storage and almost O(m3) computational complex-
ity. Thus, they suffer seriously from scalability; in
addition, they are inherently transductive, because
it is difficult to accommodate new instances without
graph reconstruction.

Low-density separation methods enforce the
classification boundary to go across the less-dense
regions in input space. The most famous represen-
tatives are S3VMs (semi-supervised support vector
machines) [29–31]. Figure 4 demonstrates the dif-
ference between conventional supervised SVMs and
S3VMs. It is evident that S3VMs try to identify a clas-
sification boundary that goes across the less-dense
region while keeping the labeled data correctly clas-
sified. Such a goal can be accomplished by trying dif-
ferent label assignments for unlabeled data points in
different ways, leading to complicated optimization
problems.Thus,much effort in this line of research is
devoted to efficient approaches for the optimization.

Disagreement-based methods [5,32,33] gener-
ate multiple learners and let them collaborate to
exploit unlabeled data, where the disagreement
among the learners is crucial to allow the learning
process to continue. The most famous representa-
tive, co-training [32], works by training two learners
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Classification boundary of SVM

Classification boundary of S3VM

Figure 4. Illustration of different classification boundaries
of SVM which considers only labeled data (”+/−” points),
and S3VMwhich considers labeled and unlabeled data (gray
points).

from two different feature sets (or two views). In
each iteration, each learnerpicks itsmost confidently
predicted unlabeled instances, and assigns its pre-
dictions as pseudo-labels for the training of its peer
learner. Such approaches can be further enhanced
by combining the learners as an ensemble [34,35].
Note that disagreement-basedmethods offer a natu-
ralway to combine semi-supervised learningwith ac-
tive learning: in addition to letting the learners teach
each other, some unlabeled instances, on which the
learners are all unconfident or highly confident but
contradictory, can be selected to query.

It is worthmentioning that although the learning
performance is expected to be improved by exploit-
ing unlabeled data, in some cases the performance
may become worse after semi-supervised learning.
This issue has been raised and studied formany years
[36]; however, only recently has some solid progress
been reported [37].We now understand that the ex-
ploitation of unlabeled data naturally leads to more
than one model option, and inadequate choice may
lead to poor performance. The fundamental strat-
egy tomake semi-supervised learning ‘safer’ is to op-
timize the worst-case performance among the op-
tions, possibly by incorporating ensemble mecha-
nisms [35].

There are abundant theoretical studies about
semi-supervised learning [4], some even earlier than
the coinage of the term ‘semi-supervised learn-
ing’ [38]. In particular, a thorough study about
disagreement-based methods has recently been pre-
sented [39].

INEXACT SUPERVISION
Inexact supervision concerns the situation in which
some supervision information is given, but not as ex-

act as desired. A typical scenario iswhenonly coarse-
grained label information is available. For example,
in the problem of drug-activity prediction [40], the
goal is to build a model to predict whether a new
molecule is qualified to make a special drug or not,
by learning from a set of known molecules. One
molecule can have many low-energy shapes, and
whether the molecule can be used to make the drug
depends on whether the molecule has some special
shapes. Even for knownmolecules, however, human
experts only know whether the molecules are quali-
fied or not, instead of knowing which special shapes
are decisive.

Formally, the task is to learn f : X �→ Y from a
training data setD= {(X1, y1), . . . , (Xm, ym)}, where
Xi = {xi1, . . . , xi,mi } ⊆ X is called a bag, xi j ∈ X
(j ∈ {1, . . . , mi}) is an instance, mi is the number of
instances inXi, and yi ∈ Y = {Y, N}.Xi is a positive
bag, i.e. yi =Y, if there exists xi p that is positive, while
p ∈ {1, . . . , mi} is unknown. The goal is to predict
labels for unseen bags. This is called multi-instance
learning [40,41].

Many effective algorithms have been devel-
oped for multi-instance learning. Actually, almost
all supervised learning algorithms have their multi-
instance peers. Most algorithms attempt to adapt
single-instance supervised learning algorithms to
the multi-instance representation, mainly by shift-
ing their focus from the discrimination on instances
to the discrimination on bags [42]; some other al-
gorithms attempt to adapt the multi-instance rep-
resentation to single-instance algorithms through
representation transformation [43,44]. There is
also a categorization [45] that groups the algo-
rithms into an instance-space paradigm, where the
instance-level responses are aggregated; a bag-space
paradigm, where the bags are treated as a whole;
and an embedded-space paradigm, where learn-
ing is performed in an embedded feature space.
Note that the instances are usually regarded as
i.i.d. samples; however, [46] indicates that the in-
stances in multi-instance learning should not be
assumed to be independent although the bags
can be treated as i.i.d. samples, and based on
this insight, some effective algorithms have been
developed [47].

Multi-instance learning has been successfully ap-
plied to various tasks, such as image categoriza-
tion/retrieval/annotation [48–50], text categoriza-
tion [51,52], spamdetection [53],medical diagnosis
[54], face/object detection [55,56], object class dis-
covery [57], object tracking [58], etc. In these tasks
it is natural to regard a real object (such as an im-
age or text document) as a bag; however, in con-
trast to drug-activity prediction where there are nat-
ural formations of instances in a bag (i.e. shapes of
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Figure 5. Image bag generators. Suppose each image is of size 8× 8 and each blob is
of size 2 × 2. Single Blob (SB) will generate 16 instances for the image, by regarding
each patch consisting of four blobs as one instance, and sliding without overlap. Single
Blob with Neighbors (SBN) will generate nine instances for the image, by regarding the
patch consisting of 20 blobs as one instance, and sliding with overlap.

Suspicious point?

No

Yes

The point
is relabelled

Yes

The point is
removed from
the training set

Figure 6. Identifying and removing/relabeling suspicious points.

a molecule), the instances need to be generated for
each bag. A bag generator specifies how instances
are generated to constitute a bag. Typically, many
small patches can be extracted from an image as its
instances, whereas sections/paragraphs or even sen-
tences can be used as instances for text documents.
Although bag generators have a significant influence
on learning performance, only recently has an exten-
sive study about image bag generators been reported
[59]; this study discloses that some simple dense-
sampling bag generators perform better than com-
plicated ones. Figure 5 shows two simple yet effec-
tive image bag generators.

The original goal of multi-instance learning is to
predict labels for unseen bags; however, there are
studies trying to identify the key instance that enables
a positive bag to be positive [31,60]. This is quite

helpful in tasks such as locating regions of interest in
images without fine-grained labeled training data. It
is noteworthy that standard multi-instance learning
[40] assumes that each positive bag must contain a
key instance, whereas there are studies that assume
that there is no key instance and every instance con-
tributes to the bag label [61,62], or even assume that
there aremultiple concepts and a bag is positive only
when thebag contains instances satisfying every con-
cept [63]. More variants can be found in [41].

Early theoretical results [64–66] show thatmulti-
instance learning is hard for heterogeneous cases in
which each instance in the bag is classified by a dif-
ferent rule, while it is learnable forhomogeneous cases
in which all instances are classified by the same rule.
Fortunately, almost all practical multi-instance tasks
belong to the homogeneous class. These analyses
assume that instances in the bags are independent.
Analysis without assuming instance independence is
more challenging and appears much later, disclos-
ing that in the homogeneous class there are at least
some cases learnable for arbitrary distribution over
bags [67]. Nevertheless, in contrast to the flourish-
ing studies in algorithms and applications, theoret-
ical results on multi-instance learning are very rare
because the analysis is quite hard.

INACCURATE SUPERVISION
Inaccurate supervision concerns the situation in
which the supervision information is not always
ground-truth; in other words, some label informa-
tion may suffer from errors. The formulation is al-
most the same as what was shown at the end of the
introduction, except that the yi in the training data
set may be incorrect.

A typical scenario is learning with label noise
[68]. There are many theoretical studies [69–71],
among which most assume random classification
noise, i.e. labels are subject to randomnoise. In prac-
tice, a basic idea is to identify the potentially misla-
beled examples [72], and then try tomake some cor-
rection. For example, a data-editing approach [73]
constructs a relative neighborhood graph where
each node corresponds to a training example, and an
edge connecting two nodes with different labels is
called a cut edge. Then, a cut-edge weight statistic is
measured, with the intuition that an instance is sus-
picious if it is associated with many cut edges. The
suspicious instances can be either removed or rela-
beled, as illustrated in Fig. 6. It is worth mention-
ing that such approaches generally rely on consulting
neighborhood information, and thus, they are less
reliable in high-dimensional feature space because
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the identification of neighborhoods is usually less re-
liable when data are sparse.

An interesting recent scenario of inaccurate su-
pervision occurs with crowdsourcing [74], a popular
paradigm to outsource work to individuals. For ma-
chine learning, crowdsourcing is commonly used as
a cost-saving way to collect labels for training data.
Specifically, unlabeled instances are outsourced to
a large group of workers to label. A famous crowd-
sourcing system, AmazonMechanical Turk (AMT),
is a market where the user can submit a task, such
as annotating images of trees versus non-trees, to be
completed by workers in exchange for small mon-
etary payments. The workers usually come from a
large society and each of them is presented with
multiple tasks. They are usually independent and
relatively inexpensive, and will provide labels based
on their own judgments. Among the workers, some
may be more reliable than others; however, the user
usually does not know this in advance because the
identities of workers are protected. There may exist
‘spammers’ who assign almost random labels to the
tasks (e.g. robots pretend tobe ahuman for themon-
etary payment), or ‘adversaries’ who give incorrect
answers deliberately. Moreover, some tasks may be
too difficult for many workers. Thus, it is nontrivial
to maintain learning performance using the inaccu-
rate supervision information returned by the crowd.

Many studies attempt to infer ground-truth la-
bels from the crowd. The majority voting strategy,
with theoretical support in ensemble methods [35],
is widely used in practice with good performance
[75,76], and thus often used as a baseline. It is ex-
pected that if worker quality and task difficulty can
be modeled, better performance can be achieved,
typically by weighting different workers for different
tasks. For this purpose, some approaches try to con-
struct probabilistic models and then adopt the EM
algorithm for the estimation [77,78]. The minimax
entropy principle has also been used [35]. Spammer
elimination can be accommodated in probabilistic
models [79]. General theoretical conditions about
eliminating low-quality workers have been given re-
cently [80].

For machine learning the crowdsourcing step is
generally used to collect labels, whereas the perfor-
mance of the model learned with these data, rather
than the quality of labels themselves, is more im-
portant.There are many studies about learning from
weak teachers or crowd labels [81,82], which is
closely related to learning with label noise (intro-
duced at the beginning of this section); a distinction
lies in the fact that, for a crowdsourcing setting, one
canconvenientlydrawcrowd labels repeatedly for an
instance. Thus, in crowdsourcing learning it is cru-
cial to consider the cost-saving effect, and an upper

bound for the minimally sufficient number of crowd
labels, i.e. the minimal cost required for effective
crowdsourcing learning, is given [83]. Many studies
work on task assignment and budget allocation, try-
ing to balance between accuracy and label cost. For
this purpose, non-adaptive task assignment mecha-
nisms, which assign tasks offline [84,85], and adap-
tive mechanisms, which assign tasks online [86,87],
have both been studied with theoretical support.
Note that most studies adopt the Dawid–Skene
model [88], which assumes that the potential cost
for different tasks is the same, whereasmore compli-
cated cost settings are rarely explored.

Designing an effective crowdsourcing protocol is
also important. In [89], an unsureoption is provided,
such that workers are not forced to give a label when
they have low confidence; this option helps improve
the labeling reliability with theoretical support [90].
In [91], a ‘double or nothing’ incentive compatible
mechanism is proposed to ensure workers behave
honestly based on their self-confidence; this proto-
col is provable to avoid spammers from the crowd,
under the assumption that every worker wants to
maximize their expected payment.

CONCLUSION
Supervised learning techniques have achieved great
success when there is strong supervision informa-
tion like a large amount of training examples with
ground-truth labels. In real tasks, however, collect-
ing supervision information requires costs, and thus,
it is usually desirable to be able to do weakly super-
vised learning.

This article focuses on three typical types of weak
supervision: incomplete, inexact and inaccurate su-
pervision. Though they are discussed separately, in
practice they often occur simultaneously, as illus-
trated in Fig. 1, and there are some relevant studies
on such ‘mixed’ cases [52,92,93]. In addition, there
are some other types of weak supervision. For exam-
ple, time-delayed supervision, which is mainly tack-
led by reinforcement learning [94], can also be re-
garded as weak supervision. Note that due to the
page limit, this article actually serves more as a lit-
erature index rather than a comprehensive review.
Readers interested in somedetails are encouraged to
read the corresponding references. Note that more
andmore researchers have recently been attracted to
weakly supervised learning; e.g. partially supervised
learning focuses mostly on learning with incomplete
supervision [95], and there have been some other
discussions about weak supervision [96,97].

To simplify the discussion, this article focuses
on binary classification, although most discus-
sions can be extended to multi-class or regression
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learning with slight modifications. Note that more
complicated situations may occur with multi-class
tasks [98]. It will become even more complicated
if multi-label learning [99] is considered, where
each example can be associated with multiple
labels simultaneously. Take incomplete supervision
as an example: in addition to labeled/unlabeled
instances, multi-label tasks may encounter partially
labeled instances, i.e. a training instance is given
with ground-truth for a subset of its labels [100].
Even if only labeled/unlabeled data are considered,
there are more design options than the single-label
setting; e.g. for active learning, given a selected un-
labeled instance, in multi-label tasks it is possible to
query all labels of the instance [101], a specific label
of the instance [102], or relevance ordering of a pair
of labels for the instance [103]. Nevertheless, no
matter what kinds of data and tasks are concerned,
weakly supervised learning is becoming more and
more important.
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