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Abstract: Our objective in this review article is to find out relevant information about methods
of determination of antioxidant activity of silver nanoparticles. There are many studies dealing
with mentioned problem and herein we summarize the knowledge about methods evaluating the
antioxidant activity of silver nanoparticles reported so far. Many authors declare better antioxidant
activity of silver nanoparticles compared to the extract used for synthesis of them. In this review,
we focused on methods of antioxidant activity determination in detail to find out novel and perspective
techniques to solve the general problems associated with the determination of antioxidant activity of
silver nanoparticles.
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1. Introduction

Nanoscience and nanotechnology have been introduced as interdisciplinary fields in biology,
chemistry, physics, and bioengineering. Nanoparticles, in general, are particles of size 1–100 nm
and are considered extremely small as the term “nano” means dwarf (from Greek νάννoς) in the
meaning of extremely small [1,2]. Unique chemical, physical, and biological properties lead to broad
range of applications in electronics, sensors, spectral analysis, catalysis, or pharmaceutical industry in
finding new ways of drug synthesis [3].

Antimicrobial properties are typical for silver and its compounds including silver nanoparticles
(AgNPs) [4]. In view of the mentioned fact, the AgNPs are studied as antibacterial agents to inhibit
resistant strains by multiple mechanisms of action, involving induction of oxidative stress, inhibition of
DNA replication, or interaction with enzymes and proteins [5,6]. On the other hand, silver nanoparticles
have a potential in the treatment of cancer [7,8] or degenerative Alzheimer’s disease because of their
antioxidant properties [9]. For example, well characterized PVP-coated AgNPs were used in A549 cells
(human lung cancer cells) to study reactive oxygen species production leading to programmed cell
death [10]. Another study published by Lee et al. [11] was focused on cytotoxic activity in normal
and cancer cell lines. They also showed significant cytotoxicity against A549 cells caused by green
synthesized AgNPs from water extract of Annemarrhena asphodeloides. These nanoparticles also involved
an increase in oxidative stress in A549 cells and inhibition of cell migration, but it is important to say
that AgNPs do not exhibit significant toxicity to normal cell lines (3T3-L1 pre adipocyte cell lines) [11].

Antioxidant properties are currently extensively studied for various materials, including the
natural ones, in order to identify new compounds from natural sources. The aim of this review is to
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provide a brief overview on antioxidant activity of silver nanoparticles, its measurement, and future
perspectives in relationship between AgNPs and antioxidant activity.

2. Antioxidant Activity

2.1. Oxidative Stress

Oxidative stress is a phenomenon that can be defined as a state when the equilibrium between
the antioxidative defense of cell and oxidants is disrupted by the effect of excess of the oxidants,
for example reactive oxygen or nitrogen species (ROS or RNS, respectively) and organic compounds
containing sulphur producing alkyl sulfanyl radicals (RS•). For example, transition metal ions at
their lower oxidation states are not oxidant species by themselves, but may provoke the formation of
ROS or RNS by reacting with hydrogen peroxide or molecular oxygen, thereby serve as prooxidants.
Of course, also the presence of the oxidants leads to oxidative modifications of biological system
on molecular level (unsaturated bonds of lipids, proteins, DNA, etc.,) causing damage and finally,
cellular death is accelerated [12]. This phenomenon occurs when oxidative substances are excessively
formed or accumulated and defense mechanisms have failed. Reactive oxygen species represent the
most important group of oxidants containing radicals (hydroxyl •OH, superoxide ion O•−2 ), as well as
non-radicals (hydrogen peroxide, organic peroxides) [13]. Superoxide and hydroxyl radical are
products of oxygen reduction by electrons (Figure 1) [14,15].

Figure 1. Some reactive oxygen and nitrogen compounds and relationships between them, redrawn
from Greguška [15].

From biological point of view, superoxide anion radical O•−2 is generated by the mitochondrial
respiratory chain and phagocytic NADPH oxidase (nicotinamide adenine dinucleotide phosphate
oxidase; NOX), so it is produced by respiration and component part of defense system [16]. It is
known that human body produces around 5 g of ROS per day. These are with dynamic balance with
the production of any oxygen forms essential for living and protection against the toxic influence
of ROS [17]. In addition, an excessive amount of reactive nitrogen species is formed during the
oxidative stress. The most common representative of RNS is nitroxide (NO•) produced by nitrogen
oxidation catalyzed by NO-synthase [18]. NO• is able to rapidly react with reactive oxygen species
(mainly with superoxide anion radical) and produce further reactive nitrogen compounds, for example
peroxynitrite or peroxynitrous acid which can be further transformed to NO2• or •OH (Figure 1).
These products may initiate new radical reactions leading to damage of biomolecules (nitrosylation of
DNA or proteins) [19].

The action of ROS and RNS leads to an oxidation of double bond of polyunsaturated fatty acids in
lipids (lipoproteins, membrane structures) and formation of aldehydes or peroxides and a result of these
processes is changing the membrane permeability [20,21]. The effect of oxidative stress on proteins
leads to changes of ion transport (mainly Ca2+ ions homeostasis), protein inactivation, and enzymatic
activity modification [22]. DNA is damaged by deoxyribose ring cleavage, base modification or chain
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breaks leading to mutations, translation errors or inhibition of proteosynthesis [23]. According to
the mentioned facts, there is a connection between oxidative stress and several diseases caused by
oxidative stress [24], e.g., Alzheimer’s disease [25], atherosclerosis [18], cardiovascular diseases [20],
cancer [26–28], but also psychic impairments, such as ADHD or schizophrenia [29,30].

Oxidative stress is induced by many generally known factors, including chemical, physical,
or biological ones, and silver nanoparticles are no exception. Several studies described the cytotoxic
effect of AgNPs through ROS generation [31–33]. On the other hand, the production of ROS, can be
decreased by pre-treatment of cells by NAC (N-acetylcysteine) as a systematic antioxidant [33].

It is necessary to note that oxidative stress has not only negative effects on human body, as free
radicals have an irreplaceable function in living organisms. Definitely, one of the most important
biological mechanism in which free radicals play an important role is the process of phagocytosis
including the defense against pathogenic microorganisms [34].

Regarding the cell damage at molecular level caused by oxidative stress, the cell produces some
intracellular or extracellular compounds serving as antioxidant defense systems.

2.2. Antioxidants

Antioxidants represent a form of opposition to oxidants. Antioxidants are natural or synthetic
substances that may prevent or delay damage of cell caused by oxidants (ROS, RNS, free radicals,
other unstable molecules) [12]. Halliwell and Gutteridge defined antioxidant as any substance that
delays, prevents, or removes oxidative damage to a target molecule [35]. In order for the substance to
be considered as an antioxidant, it must be active at low concentration (phenolic antioxidants often
loose activity at high concentration and act as prooxidant), its amount needs to be satisfactory high
to deactivate the target molecule, it must react with oxygen or nitrogen free radicals, and the final
product of the reaction should be less toxic than removed radical. There is no universal antioxidant, as
different antioxidants react with different reactive species by various mechanisms, at various locations
and protect specific molecular targets [35,36]. Generally, the antioxidant defense can become active
either by in vivo processes (synthesis of intracellular enzymes—superoxide dismutases, superoxide
reductases, peroxiredoxins, glutathione peroxidases, catalases, peptides—glutathione; or in the form
of extracellular antioxidant defenses—synthesis of transferrin, erythrocytes, albumin, urate, glucose;
low-molecular mass agents—bilirubin, α-keto acids, melatonin, lipoic acid, coenzyme Q, uric acid) or
by supplying missing substances in the form of a diet (vitamins—C, E, A, D, riboflavin, thiamine, niacin,
pyridoxine, carotenoids, flavonoids, polyphenols, amino acids, folic acid, phytoalexins, elements Se,
Fe, Zn, Mg) [35,37,38].

3. Antioxidant Activity Determination Methods

Determination of antioxidant activity (or capacity) of samples of various origin is based on
different methodologies and assays. The principle of antioxidant capacity lies in chemistry, from which
it was adapted to other scientific areas such as biology, medicine, nutrition [39,40]. In simple words,
the antioxidant capacity describes the ability of molecules to scavenge free radicals [41]. In Table 1,
we provide an overview of methods for antioxidant capacity evaluation and some of them are briefly
described [12,42–44].

3.1. Spectrometric Methods

In recent years, a broad range of spectrophotometric assays has been developed to measure
antioxidant capacity. These methods are based on the reaction of colored radical or complex with
the antioxidant molecule capable of donating a hydrogen atom. The appropriate standard (Trolox or
ascorbic acid) is applied for quantification of antioxidant capacity as trolox equivalent antioxidant
capacity (TEAC) or ascorbic acid equivalent antioxidant capacity (AEAC). In this part of our review
we would like to pay attention to some methods which apply either AEAC or TEAC.
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Table 1. Methods for antioxidant capacity evaluation.

Method Principle Final Product Determination

Spectrometric

DPPH Reaction with organic radical Colorimetry

ABTS Reaction with organic radical Colorimetry

DMPD Reaction with organic radical Colorimetry

FC Reaction with Mo6+ and W6+ Colorimetry

FRAP Reaction with Fe3+ Colorimetry

ORAC
Reaction with peroxyl radical initiated by

AAPH
Fluorescence loss

HORAC
Reaction with OH radicals generated by

Co2+ based Fenton-like systems
Fluorescence loss

TRAP
Reaction with luminol-derived radicals,

generated during the AAPH decomposition
Quench of chemiluminescence

Lipid peroxidation inhibitory assay Fenton-like system (Co2+ + H2O2) Colorimetry

PFRAP Potassium ferricyanide reduction Colorimetry

CUPRAC Cu2+ reduction to Cu1+ Colorimetry

Fluorimetry
Emission of light by a substance that has

absorbed the light or other electromagnetic
radiation of a different wavelength

Fluorescence
excitation/emission spectra

Electrochemical

Cyclic voltammetry
The potential of working electrode is

varying from initial to final value and back,
current intensity is recorded

Measurement of the intensity of
cathode or anode peak

Amperometry
The potential of working electrode is fixed

to a reference electrode

Measurement of the intensity
currently produced by oxidation or

reduction of a sample

Biamperometry
The reaction of an antioxidant with the

oxidized form of a reversible redox couple

Measurement of the current flow
between two identical

working electrodes

Chromatographic

High performance liquid
chromatography

Separation of compounds in a reaction
mixture at a stationary phase in a liquid

mobile phase
UV/Vis, MS or fluorescence detection

Biosensors
Enzyme-based biosensors measuring total

phenolic content
Electroanalytical evaluation

Nanotechnological methods
Reaction of noble metal (Au, Ag) salt with

antioxidant compound
Colorimetry

Among the most frequently used methods for determining antioxidant capacity are the ABTS
and DPPH assays. DPPH• (2,2-diphenyl-1-picrylhydrazyl) is a purple stable free radical reacting
with hydrogen donor (Scheme 1). The presence of delocalized spare electrons on the whole molecule
prevents dimerization and also gives the color to the molecule of DPPH with absorption maximum at
around the value of 520 nm in UV/Vis spectra. The DPPH• radical after reaction gives the reduced
form DPPH (hydrazine form), which results in the color change from purple to pale yellow. The level
of disappearance of purple color depends on the concentration of the antioxidant. The scavenging
capacity is usually determined in organic solvents, not in aqueous media [12,39,41,42,45,46].

It is a rapid, simple, and an inexpensive method for antioxidant capacity determination, but it
has some limitations. The first is that DPPH radical can interact with other radicals and the time
response curve is not linear with different ratio of antioxidant and DPPH [47]. Some problems may be
observed in quantitative analysis because of interference of absorbance with compounds present in
sample [48]. Finally, the DPPH method (as all the spectrometric methods) is unsuitable for emulsions
since it reflects the partitioning of antioxidants and is also unsuitable for samples containing proteins
which precipitate in alcohol [46].
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Scheme 1. Reaction of DPPH radical with hydrogen donor [46].

The ABTS (2,2′-azino-bis-3-ethylbenzthiazoline-6-sulphonic acid) method or the TEAC
(trolox equivalent antioxidant capacity) is based on generating a cation radical ABTS•+ formed
by emitting one electron from the nitrogen atom (Scheme 2). ABTS is usually first oxidized by
potassium persulphate [49], manganese dioxide [50], or AAPH (2,2′-azobis-(2-amidino-propane)
dihydrochloride) [51] which gives rise to the cation radical ABTS•+. It absorbs at 414, 645, 734,
and 815 nm and gives blue-green color. The preferred wavelength is 734 nm because the interference
with other absorbing components is minimized. The ABTS•+ reacts with antioxidant leading to the
decolorization of a solution in the range of 1–30 min [12,39,41,42].

Scheme 2. Generating of ABTS•+ and its reaction with an antioxidant [52].

The use of ABTS•+ radical has the advantage over the DPPH radical as it can be used in both
aqueous and organic media [48]. ABTS method is also useful in studying the effect of pH on the
antioxidant activity of various compounds [53]. However, the ABTS assay has some reservations in
the overall applications, such as specificity for reaction of different antioxidants, storage of the radical,
or processing method conditions [53].

DMPD radical scavenging assay is based on the conversion of transparent
N,N-dimethyl-p-phenylenediamine dihydrochloride (DMPD) into the colored radical DMPD•+ in the
presence of Fe ions or reactive species, such as hydroxyl radicals (Scheme 3). Antioxidants capable
of hydrogen atom transfer decolorize the solution, absorbance decrease at 505 nm [12]. The main
disadvantage of using this assay is that DMPD radical is soluble only in water, so there are limitations
in using it for hydrophobic antioxidants determination [54].
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Scheme 3. Reaction of N,N-dimethyl-p-phenylenediamine with hydroxyl radical [55].

The FC (Folin-Ciocalteau) assay was initially developed for proteins analysis [56], but later
this method was extended by Singleton [57] for the analysis of total phenolic compounds in
wine. From chemical point of view, this method is based on the oxidation of phenolic compounds.
Folin-Ciocalteau phenol reagent consists of a mixture of phosphomolybdic acid and phosphotungstic
acid, in which the molybdenum and tungsten are in the oxidation state 6+ and are reduced to the
oxidation state of 5+ during the reaction. This is accompanied by a color change from yellow original
color of the solution of Na2WO4/Na2MO4 to blue because of the formation of complexes with phenols
(Phenol-MoW11O40

4−). The absorbance is usually measured in the range from 750–765 nm [43,44].
This method is mostly used for the determination of total phenolic compounds in various samples
(food products, plants, plant extracts), but it can also react in alkaline conditions with non-phenolic
compounds, such as amino acids, aromatic amines, ascorbic acid, sulphur dioxide, Cu+ ions,
and others [43].

The FRAP (ferric reducing antioxidant power) assay is based on reduction of colorless
Fe3+-2,4,6-tripyridyl-s-triazine complex to the intensively blue Fe2+-2,4,6-tripyridyl-s-triazine complex
in acidic medium (Scheme 4). FRAP values are calculated from increasing absorbances measured at
593 nm [39,42,43]. The FRAP methods has several limitations. Compounds (even without antioxidant
properties) with redox potential lower than the redox potential of Fe3+/Fe2+ pair may reduce Fe3+

to Fe2+ and can increase the FRAP value to obtain false high results. But, on the other hand, not all
antioxidants reduce Fe3+ fast enough to measure [58]. Ferric reducing antioxidant power assay cannot
be used for antioxidant acting as radical quench (with transfer of hydrogen) and for compounds
absorbing at the wavelength of the determination, as the signals can interfere then [43,58,59].

Scheme 4. Reduction of Fe3+ (FRAP assay) [52].

Oxygen radical absorbance capacity assay (ORAC) is the method for measuring the scavenging
activity against peroxyl radicals. The generation of peroxyl radicals have to be induced by
AAPH (2,2′-azobis-(2-amidino-propane) dihydrochloride). The antioxidant activity is measured
by determining the loss of fluorescence and fluorescein is usually used as a probe [59,60]. This method
is popular mainly in the determination of antioxidant ability of foods and is limited by low reactivity
of fluorescein and with peroxyl radicals [61].
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HORAC (hydroxyl radical averting capacity) technique is based on the oxidation of fluorescein by
hydroxyl radicals which are generated using Fenton reagent. Formed antioxidant blocks produced
hydroxyl radicals [42,60].

Other method using the Fenton-like system to induce lipid peroxidation is lipid peroxidation
inhibitory assay by measuring the thiobarbituric acid reactive substances (TBARS) [12,42,60]. This assay
is based on the reaction of 2-thiobarbituric acid (TBA) with malondialdehyde (MDA) as one of the
products of unsaturated lipids oxidation (Scheme 5) [61]. This method is limited by the possibility of
MDA reaction with amino group to form Schiff base [62].

Scheme 5. Reaction of two molecules of 2-thiobarbituric acid with malondialdehyde [61].

Other radical probes, such as TRAP (total peroxyl radical trapping antioxidant parameter) monitoring
the reaction between peroxyl radicals and the sample quenched the chemiluminescence, CUPRAC (cupric
reducing antioxidant power) by which the reduction of Cu2+ is observed, Fremy’s salt (galvinoxyl radical),
aroxyl radical (2,6-di-tert-butyl-4(4′-methoxyphenyl)phenoxyl radical) [42,60,63,64].

3.2. Electrochemical Methods

Electrochemical properties of various compounds can also be used for evaluation of their reducing
and antioxidant properties. Electrochemical methods for the determination of total antioxidant capacity
are widely used because of their sensitivity, speed, and low cost [65]. Essential electrochemical
methods encompass cyclic voltammetry, amperometry, and biamperometry. Cyclic voltammetry
(CV) is a method based on the measurement of oxidation potential (E1/2) intensity of the sample [43].
The oxidation potential is usually scanned linearly in time from an initial to a final value and back as a
triangular waveform. Low values of oxidation potential reflect the tendency of molecule to donate an
electron and indicate significant antioxidant capacity [42,43,45,65]. There are some limitations of this
method because of the detection limit of 10−5 M and low resolution [65]. The amperometric technique
involves the measurement of the flowing current intensity between a working and a reference electrode
at a fixed value of potential generated by the oxidation-reduction reaction [42,65]. This method is
based on the reduction of DPPH• radical at a glassy carbon electrode [65–67]. Biamperometry uses two
identical polarized platinum electrodes with high sensitivity [42,65,68]. The potential difference (∆E)
between the electrodes is controlled and the measurement depends on the reaction of the analyzed
sample with redox couple [42,65].

3.3. Chromatographic Methods

Chromatography encompasses a group of broadly applicable methods in detection and separation
of various compounds present in the analyte, but can also be used for antioxidant capacity measurement.
The mostly preferred chromatographic methods are gas chromatography and high-performance
liquid chromatography.

High-performance liquid chromatography (HPLC) is used to separate, identify, and quantify the
individual components present in the analyte. This method is based on the affinity of analyte to a
stationary phase, which is usually non-polar (reverse phase), but also polar (normal-phase) and is
placed inside the column. The chosen composition of the mobile phase (eluent) depends on the used
stationary phase and interactions between analytes. The separation process depends on affinity of
analyte toward the stationary and mobile phases. The analyte flows through column in a liquid mobile
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phase to a detector (UV/Vis, DAD, MS, etc.,). HPLC is a valuable method for antioxidant capacity
determination. The antioxidant properties determination using HPLC system was applied by using
on-line post-column detection. First, the separation of sample is promoted and then is mixed with
radical solution (ABTS, DPPH). The solution is then directed to a detector and the obtained negative
peaks represent a reaction of sample with radical [69–71].

3.4. Biosensors Method

Biosensors represent analytical tools consisting of a biological recognition element (enzyme,
receptor, microorganism, antibody), coupled with a chemical or physical transducer (mass,
electrochemical, optical, or thermal) [72]. Potential applications of biosensors for antioxidant capacity
determination include monitoring of free radicals, such as nitric oxide (NO), superoxide radical (O−2 ),
glutathione (GSH), uric acid, ascorbic acid, or phenolic compounds [72,73].

3.5. Nanotechnological Methods

Nanotechnological techniques are usually based on colorimetric total antioxidant capacity assay.
The formation of nanoparticles from noble metals, such as gold and silver, by the reaction between
metallic salt (Au3+, Ag1+) and antioxidant leads to the possibility of determination of antioxidant
properties of studied samples [12]. When AgNPs are synthesized, the phenomenon of surface-plasmon
resonance (SPR) is evident [74,75]. Because of this, metallic nanoparticles (NPs) have interesting
attributes such as intensive color which can be detected in visible region of spectra [76]. Reducing
compounds are necessary for the formation of nanosuspension, so natural antioxidants are mostly
used for nanoparticles preparation and this fact gives the opportunities to detect physicochemical
properties including total antioxidant capacity [77]. NPs can be also used for scavenging activity
against ROS/RNS determination [77].

4. Silver Nanoparticles and Antioxidant Activity Properties

4.1. AgNPs Synthesis

Synthesis of Ag nanoparticles that are known mainly for their great antimicrobial activity can
be achieved through various methods [78]. In general, we can divide these methods into physical,
chemical, and biological. Some of these methods are simple and provide good control of nanoparticle
size by affecting the reaction process, but on the other hand, there are still problems with stabilization
of the obtained products and to achieve unimodal distribution in nano-region [79]. In Table 2 we show
the list of some AgNPs synthesis techniques and several of them are briefly described below.

Table 2. Selected techniques for AgNPs preparation.

Silver Nanoparticles Synthesis

Physical Methods Chemical Methods
Green Synthesis Methods

In Vitro Methods In Vivo Methods

Arc discharge
Ball milling

Evaporation–condensation
Pulsed laser ablation

Spray pyrolysis
Vapor and gas phase

Electrochemical
Microwave assisted

Photochemical
Reduction

Sonochemical

Using algae
Using biomolecules
Using essential oils

Using microorganisms
Using mushroom extracts

Using plant extracts

Using algae
Using microorganisms

Using plant
Using yeast

4.1.1. Physical Methods

Physical approaches for AgNPs synthesis include evaporation-condensation, which has some
disadvantages, such as high energy consumption, long time for achieving thermal stability [80,81].
For these reasons, various physical techniques were developed. Pluym et al. used conventional spray
pyrolysis [82], Lee and his colleagues synthesized nanoparticles thermal decomposition [83], or ball
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milling was successfully used by Baláž [84]. This methodology, also called mechanochemical synthesis
has recently attracted a significant attention of the research world [85–91]. Physical methods are useful
because of speed and not using toxic chemicals, but on the other hand disadvantages are also there
which are previously mentioned [80].

4.1.2. Chemical Methods

Chemical methods represent an easy way to prepare AgNPs in solution. The most common
technique for nanoparticles preparation is the reduction by reducing agents of organic or inorganic
character, for example sodium ascorbate, hydrogen, N,N-dimethyl formamide, or sodium borohydride.
The principle of AgNPs preparation is the reduction of Ag+ ion to metallic form Ag0 which is followed
by agglomeration into oligomeric clusters leading to the formation of metallic colloidal AgNPs [92].
To avoid the agglomeration of nanoparticles, it is necessary to use stabilizing agents, such as poly(vinyl
alcohol), poly(vinyl pyrrolidine), or polyethylene glycol [93–95].

4.1.3. Biological Methods

Biological synthesis of nanoparticles in general has become very popular because of its simplicity,
low cost, or environmental reasons. The reduction of metallic salt is performed by a natural material
including plants, plant extracts, microorganisms, or small biomolecules (amino acids, vitamins or
polysaccharides) [96–99]. According to the used methodology, biological methods can be divided into
in vivo and in vitro. In vivo methods use the whole cell for AgNPs biosynthesis, so nanoparticles are
synthesized intra- or extracellularly, while during the in vitro process, the reduction of Ag+ ions takes
places outside of a living organism (the most common are plant extracts containing the compounds with
antioxidant and reducing properties—polyphenols, flavonoids, terpenes, aldehydes, carbohydrates,
etc.,) [100–102]. In addition to plant extract, the extracts of edible mushrooms [103–105], extract of
microorganisms [106–109], tissue extract [110], algae extract [111] essential oils [112], and simple
biomolecules, such as glucose [113], starch [114], dextrin [115], pectin [99], or cellulose [116] can
be used.

The term in vivo describes the biological synthesis of AgNPs inside the living organism. The very
first article was published by Gardea-Torresdey et al. [117], who reported the synthesis of AgNPs by
living plant alfalfa (Medicago salvia). They observed that the alfalfa root is able to absorb silver from
agar medium to produce AgNPs. Microorganisms are also capable of producing nanoparticles. Some
microorganisms are resistant to metal, so they can survive and grow during the production of NPs,
so there is no barrier to use bacteria for AgNPs synthesis [118–120]. Fungi also represent a valuable
producer of silver nanoparticles because of their capability of metals bioaccumulation [121,122].

4.2. AgNPs Antioxidant Properties

Antioxidant capacities of various biological samples, pure chemicals, or isolated compounds are
well known. Beside the application of AgNPs in diverse areas, the large number of articles dealing
with antioxidant properties of silver nanoparticles have been published spreading in the recent decade.
In the Table 3 we have summarized the methods used for silver nanoparticles antioxidant capacity
determination together with the methods of preparation during recent years. As it can be seen,
the number of publications reporting on biosynthesis (especially using plant extract), has prevailed
over any other method of synthesizing AgNPs, which may be justified by simplicity, availability,
low cost of this approach (Table 3).
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Table 3. Methods of antioxidant capacity determination of prepared silver nanoparticles.

Method of Antioxidant
Capacity Measurement

Method of
AgNPs Synthesis

Reducing Agent Precursor Ref.

DPPH Biological

Plant extracts of Cratoxylum
formosum, Phoebe lanceolata,

Scurrula parasitica, Ceratostigma
minus, Mucuna birdwoodiana,
Myrsine africana and Lindera

strychnifolia

0.25 mM AgNO3 [123]

DPPH Biological
Walnut (Juglans regia) green

husk extract
6 mM AgNO3 [124]

DPPH Biological Plant extract of Costus afer 1 mM AgNO3 [127]

DPPH Biological
Plant extract of Indigofera

tinctoria
1 mM AgNO3 [128]

DPPH Biological
Red cabbage (Brassica oleracea
var. capitate f. rubra) extract

5 mM AgNO3 [125]

DPPH Biological
Plant extract of Clerodendrum

inerme
1 mM AgNO3 [130]

DPPH Biological
Plant extract of Rhododendron

dauricum
0.5–5 mM AgNO3 [131]

DPPH Biological
Plant extract of Ougeinia

oojeinensis
1 mM AgNO3 [132]

DPPH
FC method

Biological Plant extract of Bergenia ciliata 0.1% AgNO3 [133]

DPPH
FRAP

Biological Plant extract of Prosopis farcta 1 mM AgNO3 [134]

DPPH
ABTS
•OH

Superoxide anion
NO

Biological
Plant extract of Pongamia

pinnata
1 mM AgNO3 [135]

DPPH
ABTS

Biological
Plant extract of Tropaeolum

majus
1 mM AgNO3 [136]

DPPH
ABTS

Biological
Plant extract of Allium

ampeloprasum L.
1 mM AgNO3 [137]

DPPH
ABTS
NOx

Biological
Peels’ extract of Ipomoea batatas

(L.)
1 mM AgNO3 [138]

DPPH
ABTS

Biological
Plant extracts of Allium sativum,

Zingiber officinale, Capsicum
frutescens

0.1 M AgNO3 [139]

DPPH
ABTS
NOx

Biological
Plant extract of Taraxacum

officinale
1 mM AgNO3 [140]

DPPH
FRAP

Biological Plant extract of Teucrium polium 3 mM AgNO3 [141]

DPPH Biological
Plant extract of Pulicaria

vulgaris
1 mM AgNO3 [142]

DPPH Biological

Plant extract of Gynura
procumbens encapsulated with

fungal chitosan from
Cunninghamella elegans

1 mM AgNO3 [143]

DPPH
Reducing power
Superoxide anion

Biological
Plant extract of Aesculus

hippocastanum
5 mM AgNO3 [126]

DPPH
FC

Superoxide anion
Biological

Plant extract of Indian
belladonna

1 mM AgNO3 [144]
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Table 3. Cont.

Method of Antioxidant
Capacity Measurement

Method of
AgNPs Synthesis

Reducing Agent Precursor Ref.

DPPH
ABTS

Biological Plant extract of Melia azedarach 1 mM AgNO3 [129]

DPPH
ABTS
•OH

Superoxide anion
H2O2

Biological

Extract of garlic (Allium
sativum), green tea (Camellia
sinensis), turmeric (Curcuma

longa)

25 mM AgNO3 [145]

DPPH
ABTS

Biological
Plant extract of Psidium guajava

L.
1 mM AgNO3 [146]

DPPH
FRAP

Biological
Plant extract of Bauhinia

variegata
1 mM AgNO3 [147]

DPPH Biological
Plant extract of Achillea

millefolium
1 mM AgNO3 [148]

DPPH Biological
Plant extract of Datura

stramonium
1 mM AgNO3 [149]

DPPH
ABTS

Biological Corn (Zea mays) flour extract 1 mM AgNO3 [150]

Superoxide
H2O2
NO

DPPH
•OH

Biological Essential oil of Coleus aromaticus 0.214 mM AgNO3 [151]

DPPH
FC

Biological Macroalgae Ulva lactuca L. 5 mM AgNO3 [152]

DPPH Biological
Bacterial strain Trichoderma

atroviride
5 and 10 mM

AgNO3
[153]

DPPH
H2O2
NO

Biological
Exopolysaccharide from

probiotic Lactobacillus brevis
2 mM AgNO3 [154]

DPPH
H2O2
NO

Ferric reducing power
assay

Biological
Exopolysaccharide from

Streptomyces violaceus
3 mM AgNO3 [155]

DPPH Biological Ochrobactrum rhizosphaerae 9 mM AgNO3 [156]

DPPH
ABTS
MTT
FC

Biological Syzygium cumini fruit extract 0.5–5 mM AgNO3 [157]

DPPH Chemical Sodium citrate
45 mg AgNO3

Stabilized by PVP
or PVA

[158]

TAC
TBARS
PCARB

GSH

Chemical
EG

EG/PVP
AgNO3 [159]

DPPH
ABTS
H2O2

Chemical PABA-PVA
0.1 M

AgNO3NaOH
[160]

DPPH Chemical PLA/PEG 1 mM AgNO3 [149]

DPPH
ABTS

Chemical Phenolic compounds
AgNO3

Stabilized by PVP
NaOH

[161]

EG—ethylene glycol; EG/PVP—ethylene glycol/poly(vinyl pyrollidine); PABA-PVA—poly(3-aminophenyl boronic
acid- poly(vinyl alcohol); PLA/PEG—poly lactic acid/poly ethylene glycol.

From the Table 3 it is also clear that the most commonly used method of AgNPs antioxidant
capacity determination is DPPH assay. Authors usually compare the antioxidant capacity of extract
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with that of prepared silver nanoparticles. In general, contradictory results can be found in literature.
For example, Ahn et al. [123] determined antioxidant capacity of thirty plant extracts and AgNPs
prepared by using them with the conclusion that the scavenging activity using DPPH assay increased
with higher amounts of either extract or AgNPs. In general, the extracts showed better scavenging
activity than the AgNPs (Figure 2a). Authors explained this phenomenon by the role of phytochemicals.
An extract with high scavenging activity leads to the rapid formation of small AgNPs seeds, which grow
into larger nanoparticles with assistance of phytochemicals presented in the matrix [123]. A reduced
antioxidant capacity of AgNPs in comparison with extract was also observed by Demirbas [125].
They prepared silver nanoparticles by biological method using extract of red cabbage (Brassica oleracea

var. capitate f. rubra). The authors proposed that AgNPs were synthesized using antioxidant power of
red cabbage extract to reduce Ag+ ions, so AgNPs may promote superoxide radicals which would
consume antioxidant capacity of red cabbage [125]. Lower values of silver nanoparticles (prepared by
Aesculus hippocastanum) antioxidant capacity was also obtained by Küp [126] who used three different
method of scavenging activity determination—DPPH, total reducing power, and superoxide anion
radical scavenging assay. The results of DPPH and superoxide anion radical scavenging assays lead
to reduced antioxidant capacity of prepared nanoparticles in comparison to plant extract, but the
total reducing power of AgNPs indicated more reducing activity than plant extract. The relevant
explanation is missing, but authors rely on the fact that reducing power may serve as a major sign of
potential antioxidant activity because of the ability of reduction of the Fe3+ ferricyanide complex [126].

On the other hand, nanoparticles prepared by Zarrabi et al. [124] showed higher scavenging activity
of free radicals by DPPH method than walnut (Juglans regia) extract (Figure 2b). They speculated that
improved antioxidant properties of AgNPs are due to the simultaneous activity of polyphenols
as antioxidant agents and AgNPs as a catalyst [124]. Similar results were noticed by study
Elemike et al. [127], who prepared Ag nanoparticles by Costus afer. AgNPs showed greater antioxidant
capacity than the leaf extract and their activity was comparable to that of ascorbic acid [127]. The present
phytochemicals (flavonoids) and silver ions could serve as antioxidants through single electron
and hydrogen atom transfer [127]. Other theory was presented by Vijayan et al. [128], who indicate
that the increased antioxidant properties of nanoparticles compared to extract can be attributed to the
adsorption of bioactive compounds of leaf extract over spherically shaped nanoparticles. Analogically,
AgNPs prepared by extract of Melia azedarach exhibited higher antioxidant capacity according to
extract [129]. According to the authors, the antioxidant ability of AgNPs is caused by the presence of
phenolic compounds, terpenoids, and flavonoids in plants which allow nanoparticles to act as singlet
oxygen quenchers, hydrogen donors, and reducing agents [129].

An interesting study was published by Das and his co-workers, who studied the antioxidant properties
of two types of biosynthesized AgNPs by sweet potatoes Ipomoea batatas (L.) [138]. They compared three
assays—ABTS, DPPH, and NOx (nitrite/nitrate oxide) at variety of concentrations. The ABTS scavenging
activity proceeded in the range of 3.98–12.28%, for DPPH it was 26.30–46.53%, and for NOx the values
were 4.30–12.94%. The moderate scavenging effect might arise from the interference of several functional
groups presented in extract, which play an important role in the capping and stabilizing on AgNPs.
The scavenging activity against DPPH radical is higher than that against ABTS and NOx. Lower values
of antioxidant capacity against NOx were explained by the difference in the reaction mechanism [138].
Comparison of ABTS and DPPH assay was also published by Otunola [139]. In that study, AgNPs were
prepared by garlic (Allium sativum), ginger (Zingiber officinale), and cayenne pepper (Capsicum frutescens)
extracts. The AgNPs exhibited potential antioxidant properties against both radicals expressed as IC50

values. The highest activity against ABTS was evidenced for cayenne pepper (IC50 was 31.25 µg/mL),
whereas the highest value of IC50 (<3 1.25 µg/mL) against DPPH radicals was observed for garlic [139].
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Figure 2. DPPH scavenging activity of (a) AgNPs prepared by Chinese plants extract [123], copyright
permission by Elsevier; (b) AgNPs prepared by walnut green husk extract increasing in concentration
and time [124], copyright permission by Dovepress.

The DPPH and ABTS assays were also compared by measurements of antioxidant capacity of
AgNPs prepared by extract of Allium ampeloprasum L. [137]. The antioxidant capacity was determined
at different concentrations (100, 200, 300, 400 and 500 mM). The DPPH and ABTS radical scavenging
abilities were dose-dependent, which means that increasing scavenging activities against both radicals
with the increasing concentration of AgNPs were observed (for DPPH and ABTS the antioxidant activity
was in the range 62.2–82.4% and 64.5–96.8%, respectively). These results can be considered slightly
inadequate, because the authors did not compare the antioxidant capacity with that of standard, so it can
be only hypothesized that silver nanoparticles prepared by using the extract of Allium ampeloprasum L.
exhibit good antioxidant activity [137].

In addition to plant extract, bacterial strains are also used for AgNPs biosynthesis. As an example,
the study on the use of Trichoderma atroviride for this purpose can be mentioned [153]. The presented
work showed that AgNPs exhibited quite higher DPPH scavenging activity in a concentration-dependent
manner with IC50 of 45.6 µg/mL [153].

Biomolecules isolated from microorganisms, such as exopolysaccharides were also used for biosynthesis
of AgNPs [154,155]. Promising antioxidant properties were reported by Sivasankar et al. [155], who studied
antioxidant capacity of silver nanoparticles prepared by exopolysaccharides isolated from Streptomyces violaceus.
They focused on DPPH, NO, and H2O2 scavenging activities, total antioxidant activity, and ferric reducing
power assay using ferricyanide (Figure 3). The AgNPs showed the DPPH radical scavenging effect of 89.5% at
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concentration of 50 µg/mL, which was higher than in the case of ascorbic acid standard (49.6%). Analogically,
they found higher total antioxidant activity of AgNPs compared to the standard. Hydrogen peroxide
scavenging activity of the studied AgNPs (72.5 %) was also higher than standard (56.4%). The authors
explained the results based on the hypothesis that in the presence of H2O2 the dispersed nanoparticles may
induce the formation of reactive oxygen species and hydrogen peroxide inside a cell. Then AgNPs yield greater
amounts of hydrogen peroxide and induce inflammasome formation leading to the production of superoxide
and H2O2 in the mitochondria’s membrane [155]. Nitric oxide assay also showed a significant activity of
AgNPs (60.1%) being higher than that of L-ascorbic acid (41.2%). Ferric reducing power of AgNPs was lower
than that of ascorbic acid standard and was higher at lower concentrations of AgNPs. These findings make
the silver nanoparticles useful for neurodegenerative diseases, cancer, or AIDS treatment [155,162].

Figure 3. (A) DPPH assay, (B) total antioxidant activity, (C) H2O2 scavenging activity, (D) nitric oxide
scavenging activity, (E) ferric reducing power assay of S. violaceus MM72 exopolysaccharide-mediated
AgNPs with their respective standards. The data represent mean± SD of the three replicates (n= 3) [155],
copyright permission by Elsevier.

Similar results were published by Shahid et al. [154] who determined antioxidant properties of
silver nanoparticles prepared by exopolysaccharides from Lactobacillus brevis. The focus was on nitric
oxide, DPPH, and hydrogen peroxide radical scavenging activity. The authors observed excellent
nitric oxide scavenging activity of AgNPs in a concentration-dependent manner, but the activity was
in general lower than that of ascorbic acid standard. At concentration of 100 µg·mL−1 they determined
the activity to be 75.06 ± 0.4%, whereas for ascorbic acid, it was 91.1 ± 1.5%. Hydrogen peroxide
and DPPH scavenging activity of AgNPs was also compared with ascorbic acid. On the contrary to
NOx assay, the ability to scavenge both free radicals of silver nanoparticles was higher than that of the
standard used. Namely, for AgNPs with concentration of 100 µg·mL−1 the activity of H2O2 scavenging
was 70.1 ± 0.6% and in the case of DPPH assay it was 91.3 ± 0.7%. The ascorbic acid standard showed
55.0 ± 0.7% activity for hydrogen peroxide technique and 81.4 ± 1.2% for DPPH radical scavenging
activity [154].

The free radical scavenging activity of Teucrium polium extract, and of AgNPs produced chemically
and by green synthesis was studied by DPPH and FRAP assays in [163]. The results show that the
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activity of green synthesized silver NPs increased with higher concentration, while that of chemically
synthesized nanoparticles did not show a significant antioxidant activity. The antioxidant capacity of
green-synthesized AgNPs was similar to that of plant extract. The authors explained these results by a
suggestion that the presence of bioactive compounds on the surface of AgNPs is responsible for the
majority of antioxidant capacity and silver nanoparticles are not contributing much [163].

DPPH method was used to determine free radical scavenging activity of silver nanoparticles
prepared chemically (using sodium citrate served as reducing agent) and biologically (using extract of
Datura stramonium plant as a reducing agent) in [149]. The DPPH radical scavenging ability of green
and chemically prepared AgNPs was compared with that of plant extract. Better results were observed
for green-synthesized silver nanoparticles [149].

Mittal [157] and his co-workers published a study dealing with the synthesis of AgNPs using
Syzygium cumini extract. They observed that the reduction of silver ions and stabilization of prepared
AgNPs were mainly because of the action of flavonoids. The authors evaluated the antioxidant
properties by Folin-Ciocalteau’s assay for total phenolic and flavonoid content, DPPH, ABTS,
and MTT methods. The total phenolic content was lower (8.1 ± 0.1%) than the total flavonoid
content (81.2 ± 0.27%), so they concluded that the amount of flavonoids present in silver nanoparticles
was ten times higher which was in good agreement with the isolated flavonoids from extract. The DPPH
assay showed antioxidant capacity of 59% (in comparison to 87% detected by Trolox at the same
concentration). On the other hand, upon using ABTS method, they observed 63% scavenging activity
and when using MTT test, 61% scavenging activity at the same concentration (50 µg·mL−1) was
observed [157].

Various phenolic compounds including flavonoids (quercetin, rutin, hesperidin), benzoic acids
(gallic acid, protocatechuic acid sylicylic acid, benzoic acid), and cinnamic acids (caffeic acid,
ferulic acid, p-coumaric acid and trans-cinnamic acid) were used for silver nanoparticles synthesis
in [161]. The antioxidant capacities of structurally different phenolic compounds were evaluated.
The hydroxylation of aromatic ring played an important role in the reactivity to form silver NPs.
The higher degree of hydroxylation in chemical structures of phenolic compounds demonstrated the
higher radical scavenging capacity and higher tendency to reduce Ag+ to AgNPs [161].

(PABA-PVA) AgNPs were subjected to the ABTS, DPPH, and H2O2 radical scavenging activities
measurements in [160]. All tested nanoparticles have exhibited lower scavenging activity than ascorbic
acid standard. The highest free radical scavenging activity was determined against DPPH radical
followed by H2O2 and ABTS methods [160].

The expression of antioxidant activity only as a percentage of inhibition has little significance,
as antioxidant activity is strongly dependent on conditions, such as solvent and concentration of
radicals. In any case, it is better to express or compare the activity with a standard (ascorbic acid, trolox,
gallic acid, quercetin, etc.). When comparing the activity with the extract, the choice of concentration
seems to be a key factor influencing the result, as the antioxidant activity is concentration-dependent.
The resulting antioxidant activity of the nanoparticles significantly depends mainly on the reducing
substances in the extract bounded/capped to the surface of the nanoparticles.

For the basic study of antioxidant activity, the use of various in vitro methods is a suitable choice,
either with a mechanism of action such as hydrogen transfer or electron transfer. In these methods,
the mechanism of antioxidant action of silver nanoparticles can be ascribed to the fact that silver can
exist in two oxidation states (Ag+ and Ag2+) depending on the reaction conditions and the produced
AgNPs may be able to quench free radicals by donating or accepting electrons [164]. Nanoparticles
have been shown to have a more complicated mechanism of action in biological systems using in vivo
activity-based methods.

5. Conclusions

This brief review provided an overview on the antioxidant activity of silver nanoparticles and the
methods of its measurement. Generally, there are three methods for AgNPs synthesis—biological, physical,
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and chemical. Obviously, the most commonly used synthesis approach to AgNPs synthesis is the biological
one, which utilizes mainly plant extracts to reduce silver ion to form and stabilize the Ag0 nanoparticles.
This approach is becoming more popular because of the environmental and economic reasons.

The antioxidant properties of AgNPs are usually evaluated by DPPH and ABTS free radical
scavenging assays. As the most established nanoparticles are synthesized using plant extracts, the
antioxidant capacity of AgNPs is often compared with plant extract itself. The results are contradictory,
as some authors observed higher antioxidant capacity of AgNPs, whereas on the other hand, there
are also studies with the opposite results. Based on the large number of papers reporting both types
of results, it seems that both scenarios are possible. In general, the antioxidant properties of silver
nanoparticles depend on the chemical composition of the extract and it usually improves with the
increase of the AgNPs concentration. If the extract is rich in phenolic compounds and flavonoids, the
nanoparticles exhibit high scavenging activity.

This review has shown that there are many methods used for antioxidant capacity determination.
It is hard to conclude which method is the most suitable because of various composition of nanoparticles
synthesized by biological methods depending on the phytochemicals presented in plant extracts.
The antioxidant test models vary in different aspects. Therefore, the total antioxidant capacity cannot by
evaluated on the basis of a single antioxidant test model and it is also difficult to compare one method
with another. In the present state, the use of combination of different methods is always beneficial.
However, understanding the roles of various antioxidants and their activities is challenging. Because
of this, there is an enormous need to develop a uniform protocol for determining the antioxidant
capacity of nanoparticles to precisely assess their potential.
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