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A BRIEF PROOF OF A MAXIMAL RANK THEOREM FOR
GENERIC DOUBLE POINTS IN PROJECTIVE SPACE

KAREN A. CHANDLER

To A. V. Geramita

Abstract. We give a simple proof of the following theorem of J. Alexander
and A. Hirschowitz: Given a general set of points in projective space, the
homogeneous ideal of polynomials that are singular at these points has the
expected dimension in each degree of 4 and higher, except in 3 cases.

1. Introduction

Given a general collection of d points in PnK (K an infinite field), consider the
codimension in the space H0(OPn(m)) of homogeneous polynomials of degree m
of those that are singular at each of the d points. Since specifying that such a
polynomial together with its first derivatives vanish at d points amounts to the
imposition of (n + 1)d linear constraints on its

(
n+m
m

)
coefficients, the expected

codimension is min
(
(n+ 1)d,

(
n+m
m

))
.

The interpolation problem may be rephrased in terms of double points. A dou-
ble point is the scheme defined by the square of the ideal sheaf of a point. Hence a
homogeneous polynomial is singular at a point precisely if it vanishes at the double
point supported there. Then if X is a collection of d double points in Pn given by
I2, where I is the ideal sheaf of a set of simple points, the following statements are
equivalent:
• The vector space of homogeneous polynomials of degree m that are singular

at the d points has the expected codimension.
• X has the generic Hilbert function in degree m,

hPn(X,m) = min
(

(n+ 1)d,
(
n+m

m

))
.

• The natural map H0(OPn(m)) → H0(OX ⊗OPn(m)) has maximal rank (i.e.
it is either surjective or injective).
• H1(I2 ⊗OPn(m)) = 0 or H0(I2 ⊗OPn(m)) = 0.
• X imposes independent conditions on the linear system |OPn(m)| of m-ics in
Pn or else X lies on no hypersurface of degree m.

The question of when a general collection of double points in projective space
has the generic Hilbert function was solved completely by J. Alexander and
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1908 KAREN A. CHANDLER

A. Hirschowitz in a series of papers ([H], [A], [AH1], [AH2], [AH3]), which comprise
the following:

Theorem 1. Let I be the ideal sheaf of a general collection of d points in Pn. If
m ≥ 3 then

dimH0(OPn(m))− dimH0(I2 ⊗OPn(m)) = min
(

(n+ 1)d,
(
n+m

m

))
except in the four following cases: n = 2, d = 5, m = 4; n = 3, d = 9, m = 4;
n = 4, d = 7, m = 3; and n = 4, d = 14, m = 4.

In their proof, the first observation is that by semicontinuity it suffices to show
that there exist collections of points in each Pn having the stated property. The
basic technique in constructing such subsets is the méthode d’Horace. The main
idea of this method is to specialize as many points as is convenient to a fixed hyper-
plane Pn−1 ⊂ Pn and apply induction on dimension and degree. More specifically,
if X ⊂ Pn is a collection of double points (some of which are supported in the
hyperplane), then the residual scheme X̃ of X with respect to Pn−1 consists of
the reduced points lying in Pn−1 together with the remaining double points (not
supported in Pn−1). The restriction exact sequence

0→ IX̃(−1)→ IX → IX∩Pn−1,Pn−1 → 0

yields the basic Castelnuovo inequality

hPn(X,m) ≥ hPn(X̃,m− 1) + hPn−1(X ∩ Pn−1,m).

Thus, if one can specialize just enough double points of X to the hyperplane
that, by suitable induction on dimension and degree, X̃ and X ∩Pn−1 impose inde-
pendent conditions on |OPn(m− 1)| and |OPn−1(m)|, respectively, then X imposes
independent conditions on |OPn(m)|. Likewise if neither X̃ nor X ∩ Pn−1 lies on
a hypersurface of degree m − 1 or m, respectively, then X lies on no hypersurface
of degree m. The problem that impedes this procedure is that since the degree of
the scheme X ∩Pn−1 is necessarily a multiple of n, it may be impossible to arrange
that the degrees of X̃ and X ∩ Pn−1 are both less than or both greater than the
dimensions of H0(OPn(m− 1)) and H0(OPn−1(m)), respectively.

The méthode différentielle of [AH1] gives a way around this numerical obstacle.
The idea is the following: Suppose that integers u, ε satisfy nu <

(
n+m−1

m

)
<

n(u + ε). Choose a collection X ⊂ Pn of double points of which exactly u have
support on a hyperplane, Pn−1, along with a set Ψ of ε points on Pn−1. Then
induction on dimension should allow the conclusions thatX∩Pn−1 ism-independent
and that Pn−1 has no hypersurface of degree m containing the union of X ∩ Pn−1

with the ε double points supported on Ψ. However, the latter scheme cannot
impose independent conditions on |OPn−1(m)| since its degree is too large. Instead,
the system of degree m hypersurfaces through (X∩Pn−1)∪Ψ will have a nontrivial
base locus supported on Ψ, a scheme Υ containing Ψ and contained in the union
of double points on Ψ. The differential lemma [AH1] reveals by a deformation
argument that hPn(X̃∪Υ,m−1) may then be used to compute the Hilbert function
of the union of X with a general collection of ε double points of Pn.

In [AH4], the differential lemma is used to give a simpler argument proving
the result of Theorem 1 in the cases with degree m ≥ 5. The approach is to
choose ε = 1 each time, that is, to concentrate the base locus at just one point.
Then the “enhanced residual scheme” consists of double points, simple points in the
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MAXIMAL RANK FOR DOUBLE POINTS 1909

hyperplane, and a scheme Υ supported at a point. Since the scheme Υ depends on
the choice of reduced points on Pn−1, the latter collection of points plays a sinister
role. Thus the induction hypotheses involve some subtlety, since it is necessary for
the induction on degree to guarantee that the scheme X̃∪Υ be (m−1)-independent.

In this paper we give a yet simpler proof of maximal rank for degrees m ≥ 4,
using a special case of the lemme différentiel. There are two features that make the
argument proceed smoothly. First is that we use a liberal strategy for specializing
points, taking whichever ε is dictated by the numerics. Indeed, we specialize so
many extra points that each of their contributions to the base locus is all of its
neighbourhood with respect to Pn−1. Then since the base locus scheme does not
depend on the set of reduced points (X ∩Pn−1)red, those points are set free. This is
where the second novel ingredient in the proof appears: an easy lemma (lemma 3)
for adding a collection of reduced points from a hyperplane to a given scheme while
preserving maximal rank.

As a result, we obtain a very tidy induction argument (lemma 7) in which the
induction hypothesis is precisely the statement of interest, that double points in
Pn impose the expected number of conditions on the linear system of hypersurfaces
of degree m. By induction on dimension, we may specialize some double points
to Pn−1 to obtain an m-independent scheme there. According to the differential
lemma, we then must verify that the union of double points, neighbourhoods of
the hyperplane and points in the hyperplane is (m − 1)-independent. First, the
union of double points and neighbourhoods is (m−1)-independent by induction on
degree. Then we use lemma 3 to show that we may add points from the hyperplane
to obtain an (m − 1)-independent scheme. This is achieved by showing that the
double points do not lie on an (m− 2)-ic, again by induction on degree. Thus, for
each degree and dimension we deduce the desired statement for double points from
three cases of it, each in lower dimension or lower degree.

Here is an outline of the paper. We start in section 3 with the trivial but useful
lemma 3 that allows us to unite reduced points from a hyperplane with an m-
independent scheme and maintain m-independence. Then in section 4 we exhibit
in lemma 5 the special case of the lemme différentiel that is both easy to prove and
convenient to apply. The main induction step (lemma 7) is given in section 5. In
section 6 we give initial cases of cubics (m = 3) that suffice in advancing to higher
degrees. Finally, in section 7, we carry out the induction step.

2. Main Result and Notation

Let X be a subscheme of Pn = PnK. We denote by IX its ideal sheaf and IX its
homogeneous ideal. We write hPn(X, ·) for the Hilbert function of X , namely,

hPn(X,m) = dimH0(OPn(m))− dimH0(IX ⊗OPn(m)).

If X is a zero-dimensional subscheme of Pn of degree d, we will say that X im-
poses independent conditions on m-ics (or is m-independent) if hPn(X,m)
= d. (Analogously, if D is a linear system we may refer to X as being D-indepen-
dent.)

When X ⊆ Pn and H = Pn−1 ⊂ Pn is a hyperplane we will define the resid-
ual of X with respect to H to be the scheme X̃ given by IX : OPn(−H). The
Hilbert functions of the schemes X, X̃, and X ∩H are related by Castelnuovo’s
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1910 KAREN A. CHANDLER

inequality:

hPn(X,m) ≥ hPn(X̃,m− 1) + hPn−1(X ∩ Pn−1,m).

If X is a nonsingular, reduced subscheme of a nonsingular variety V , we will
denote by X2|V its first infinitesimal neighbourhood in V , i.e. the scheme defined
by the square of the ideal sheaf of X in OV . We will abbreviate X2|V by X2 when
the ambient variety V is understood.

For n,m, d ∈ N we abbreviate by AHn,m(d) the statement:

AHn,m(d) : There is a collection of d points Γ ⊂ Pn so that

hPn(Γ2,m) = min
(

(n+ 1)d,
(
n+m

m

))
.

We shall prove

Theorem 2. Let n,m, d ∈ N and m ≥ 1. Then AHn,m(d) holds provided that:

• m ≥ 5,
• m = 4 and n ≥ 5,
• m = 4, n ≤ 4 and d 6= b 1

n+1

(
n+4

4

)
c,

• m = 3 and (n+ 1)d ≥
(
n+3

3

)
+
(
n
2

)
or (n+ 1)d ≤

(
n+3

3

)
−
(
n
2

)
, or

• m = 2 and d ≥ n+ 1.

3. A preliminary lemma

In this section we give a criterion for adding a collection of reduced points in
a hyperplane to an m-independent scheme and still obtaining an m-independent
scheme.

Lemma 3. Fix Pn−1 ⊂ Pn. Let X ⊂ Pn be a subscheme. Then there is a collec-
tion Φ ⊂ Pn−1 of u points so that

hPn(X ∪ Φ,m) = hPn(X,m) + u

if and only if

hPn(X,m) + u ≤ hPn(X̃,m− 1) +
(
n+m− 1

m

)
.

Proof. In the homogeneous coordinate ring of Pn, let L be a linear form defining
Pn−1, and take the ideals IX , IX∪Pn−1 of X , X ∪ Pn−1. Then

IX∪Pn−1 : (L) = (IX ∩ (L)) : (L) = IX : (L),

so X and X ∪Pn−1 have the same residual X̃ with respect to Pn−1. The restriction
exact sequence for X ∪ Pn−1 then gives

hPn(X ∪ Pn−1,m) = hPn(X̃,m− 1) +
(
n+m− 1

m

)
,

from which the result follows immediately.
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4. A Horace lemma

In lemma 5 we present the special case of the lemme d’Horace différentiel re-
quired in the main argument. (See [AH1] for the original, and see [AH5] for a
generalization to points of higher multiplicities.) The lemma gives an improvement
on the basic Castelnuovo inequality in computing the Hilbert function of a sub-
scheme X ⊂ Pn that meets a hyperplane Pn−1. Namely, the Hilbert function of
the union of X with general double points is obtained from that of the union of X̃
with neighbourhoods of the hyperplane, using specialization together with analysis
of curvilinear subschemes. Key to the argument is the following observation, which
is proved in [C1] and is also implicit in [CTV]:

Lemma 4 ([C1], Corollary 2.4). Let Λ be a closed subscheme of a collection of
double points in Pn and let D be a linear system on Pn. Then Λ imposes independent
conditions on D if and only if every curvilinear subscheme of Λ is D-independent.

Proof. Suppose that Λ is supported at a single point p ∈ Pn. Suppose that every
curvilinear subscheme of Λ is D-independent. If deg Λ ≤ 2 we are done. Otherwise,
by induction on degree it suffices to produce a subscheme Λ′ ⊂ Λ of degree deg Λ′ =
deg Λ−1 and a section of D vanishing on Λ′ but not Λ. Let us choose a (curvilinear)
subscheme ξ ⊂ Λ of degree 2. By hypothesis, we may choose a section s of D
vanishing on p but not ξ. Then we take as Λ′ the intersection of Λ with the zero
locus of s.

Now if Λ is supported at points p1, . . . , pd, then we may apply the previous
argument to the system D′ ⊂ D defined by vanishing on Λ ∩ {p1, . . . , pd−1}2, and
induct on d.

Lemma 5. Choose a hyperplane Pn−1 ⊂ Pn. Let X ⊂ Pn, and X̃ its residual with
respect to Pn−1. Let a = hPn(X̃,m− 1) and b = hPn−1(X ∩ Pn−1,m). Assume that
hPn(X,m) = a+ b. Suppose that ε is a nonnegative integer so that

a+ nε =
(
n+ m− 1
m− 1

)
and that q1, . . . , qε ∈ Pn−1 satisfy

hPn(X̃ ∪ {q1, . . . , qε}2|Pn−1,m− 1) = a+ nε.

Then there are points p1, . . . , pε ∈ Pn − Pn−1 such that

hPn(X ∪ {p1, . . . , pε}2,m) = min
(
a+ b+ (n+ 1)ε,

(
n+m

m

))
.

Proof. Let δ = min
(
ε,
(
n+m−1

m

)
− b
)
. We may assume that

hPn−1(X ∩ Pn−1 ∪ {q1, . . . , qδ},m) = b+ δ.

Choose general p1, . . . , pε ∈ Pn together with a flat family degenerating pi to qi
and Hi to Pn−1, where Hi is a hyperplane containing pi for i = 1, . . . , ε. Let

Λ = {p1, . . . , pδ}2 ∪ {pδ+1}2|Hδ+1 ∪ . . . ∪ {pε}2|Hε .

Let ξ′ be any curvilinear subscheme of Λ of degree 2ε. Write ξ′ as a disjoint union
ξ′ = ζ′ ∪ γ′, where ζ′ ∩ p2

i |Hi ⊆ {pi} for i = 1, . . . , ε; in particular, ζ′ ∩ {pi} = ∅
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1912 KAREN A. CHANDLER

if i > δ. Let ζ, γ be the limits of ζ′, γ′ on {q1, . . . , qε}. So γ ⊆ {q1, . . . , qε}2|Pn−1

and ζ ∩ Pn−1 ⊆ {q1, . . . , qδ}. By semicontinuity we have

hPn(X ∪ ζ′ ∪ γ′,m) ≥ hPn(X ∪ ζ ∪ γ′,m)

≥ hPn(X̃ ∪ ζ̃ ∪ γ′,m− 1) + hPn−1((X ∪ ζ) ∩ Pn−1},m)

≥ hPn(X̃ ∪ ζ̃ ∪ γ,m− 1) + b+ deg(ζ ∩ Pn−1)

= a+ b+ deg ζ̃ + deg ζ ∩ Pn−1 + deg γ.
= a+ b+ 2ε.

Hence by lemma 4 we have

h(X ∪ Λ,m) = a+ b+ nε+ δ = min
(
a+ b+ (n+ 1)ε,

(
n+m

m

))
.

5. Main induction argument

In lemma 7 we present the main induction argument for deducing AHn,m(d) by
induction on n and m (n = dimension, m = degree, d = number of points).

Given n,m, d, we specify in definition 1 the number u = un,m(d) of points to
specialize to a hyperplane and the number ε = εn,m(d) used in applying lemma 5.
Then AHn,m(d) reduces to AHn−1,m(u) together with the assertion that in Pn the
general union of d − u − ε double points, ε neighbourhoods of Pn−1 and u points
of Pn−1 impose the expected number of conditions in degree m− 1. For the latter,
AHn,m−1(d− u) implies that the union of double points and neighbourhoods is as
expected in degree (m−1). Then lemma 3 is applied to AHn,m−2(d−u− ε) to add
the u simple points. Hence AHn,m(d) is obtained from three instances of AH , one
in lower dimension and two in lower degree.

Definition 1. Let n,m, d ∈ N. Let u = un,m(d), ε = εn,m(d) be the integers given
as follows: Suppose that there is a u ≤ d so that either

nu ≤
(
n+m− 1

m

)
and (n+ 1)(d− u) + u ≤

(
n+m− 1
m− 1

)
or

nu ≥
(
n+m− 1

m

)
and (n+ 1)(d− u) + u ≥

(
n+m− 1
m− 1

)
.

Then fix the minimal such u and set ε = 0. Otherwise, perform division with
remainder to write

nu+ ε = (n+ 1)d−
(
n+m− 1
m− 1

)
, 0 ≤ ε ≤ n− 1.

Lemma 6 (Numerics). Let n ≥ 2, m ≥ 4, d ≥ 0. Then

un,m(d) + nεn,m(d) ≤
(
n+m− 2
m− 1

)
.

Proof. Set ε = εn,m(d), u = un,m(d).
For n = 2, u+ nε ≤ 2 + m

2 ≤ m.
Now suppose n ≥ 3.
The cases m = 4, n = 3, 4 may be checked by hand, observing that ε = 0

throughout.
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In general, we have ε ≤ n− 1 and

u ≤
⌈

1
n

(
n+m− 1

m

)⌉
<

1
n

(
n+m− 1

m

)
+ 1,

so that

u+ nε <
1
n

(
n+m− 1

m

)
+ 1 + n(n− 1).

Let

P (n,m) =
(
n+m− 2
m− 1

)
− 1
n

(
n+m− 1

m

)
− 1− n(n− 1).

Then

P (n, 4) =
1
8

(n− 5)(n2 − n+ 2),

so P (n, 4) ≥ 0 for n ≥ 5.
We have P (3, 5) > 0, P (4, 5) > 0,

P (n,m)− P (n,m− 1) =
(
n+m− 3
m− 1

)
nm− n−m+ 2

nm
> 0,

and hence P (n,m) > 0 for m ≥ 5 as well.

Lemma 7 (Main Induction Argument). Let n,m, d be given, with m ≥ 4. Let u =
un,m(d), ε = εn,m(d) be the integers given by Definition 1.

Suppose that AHn−1,m(u), AHn,m−1(d − u) and AHn,m−2(d − u − ε) all hold.
Then so does AHn,m(d).

Proof. Let us focus on the hypothesis that ε > 0 or (n + 1)d ≥
(
n+m
m

)
, since the

remaining (easier) case follows the same path.
According to AHn,m−1(d − u) we may choose a set Ψ of ε points of Pn along

with a collection Σ ⊂ Pn of d− u− ε points so that

hPn(Σ2 ∪Ψ2,m− 1) = min
(

(n+ 1)(d− u),
(
n+m− 1
m− 1

))
.

Fix a hyperplane Pn−1 containing Ψ.
If ε > 0, then by Definition 1 we have

(n+ 1)(d− u− ε) + u+ nε =
(
n+m− 1
m− 1

)
and u ≥ n, so

(n+ 1)(d− u) ≤
(
n+m− 1
m− 1

)
.

Hence Σ2 ∪Ψ2 is (m− 1)-independent, and therefore

hPn(Σ2 ∪Ψ2|Pn−1 ,m− 1) = (n+ 1)(d− u− ε) + nε.

Next, by lemma 6 we have

(n+ 1)(d− u− ε) ≥
(
n+m− 2
m− 2

)
,
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so AHn,m−2(d−u−ε) ensures that Σ2 lies on no (m−2)-ic. We deduce by lemma 3
that there is a collection Φ ⊂ Pn−1 of u points so that

hPn(Σ2 ∪ Φ ∪Ψ2|Pn−1,m− 1) =
(
n+m− 1
m− 1

)
.

Then by AHn−1,m(u) (together with a suitable choice of Φ) we have

hPn−1(Φ2 ∪Ψ,m) = min
(
nu+ ε,

(
n+m− 1

m

))
.

Applying lemma 5 (or Castelnuovo’s inequality) to the scheme X = Σ2 ∪Φ2, we
see that there is a set Ψ1 ⊂ Pn of ε points so that

hPn(Σ2 ∪ Φ2 ∪Ψ1
2,m) = min

(
(n+ 1)d,

(
n+m

m

))
.

6. Degrees two and three

Here we collect the results from degrees two and three required in higher de-
grees. The main result, given in lemma 9, is that a collection of d double points
imposes the expected number of conditions on cubics if its degree is not “too close”
to dimH0(OPn(3)). With this allowance (which the higher degree cases happily
provide) the proof proceeds using only the basic Castelnuovo inequality.

If Γ is a reduced subscheme of Pn we write Sec Γ for the union of the lines joining
pairs of points of Γ.

Lemma 8. Let n ≥ 0. Fix a flag of projective spaces Pn ⊂ Pn+1. Let s, b be
nonnegative integers so that s+b ≤ n+1. Suppose that Γ ⊂ Pn+1−Pn and Σ ⊂ Pn
are collections of s and b points, respectively, so that Γ ∪ Σ is in linearly general
position. Then

hPn(Sec Γ ∩ Pn ∪ Σ2, 2) =
(
s

2

)
+ (n+ 1)b−

(
b

2

)
.

In particular, AHn,2(d) holds when d ≥ n+ 1.

Proof. For n = 0 the result holds trivially, so we may assume that n ≥ 1.
The case b = 0 follows from an elementary argument that appears in, e.g. [C1].
Suppose, then, that b ≥ 1. Let M = span Σ. It is easy (by Bézout considerations,

e.g.) to see that any quadric that vanishes on Σ2 must also vanish on M2. Hence

hPn(Σ2, 2) = hPn(M2, 2) =
(
n+ 2

2

)
−
(
n+ 2− b

2

)
= (n+ 1)b−

(
b

2

)
.

Set S = Sec Γ∩Pn−1. Choose a hyperplane Pn−1 ⊂ Pn containing S and so that
M 6⊂ Pn−1. Then by induction on n we have

hPn(S ∪ Σ2, 2) = hPn(S ∪M2, 2)

≥ hPn(M2, 1) + hPn−1(S ∪ (M ∩ Pn−1)2, 2)

= n+ 1 +
(
s

2

)
+ n(b− 1)−

(
b− 1

2

)
=
(
s

2

)
+ (n+ 1)b−

(
b

2

)
,

and therefore equality holds throughout.
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Lemma 9. Let s, d be nonnegative integers. Assume that s ≤ n+2
2 and either(

s

2

)
+ (n+ 1)d ≤

(
n+ 3

3

)
−
(
n

2

)
or (

s

2

)
+ (n+ 1)d ≥

(
n+ 3

3

)
+
(
n

2

)
.

Then there are collections of points Γ ⊂ Pn+1 and Ψ ⊂ Pn of degrees s and d,
respectively, so that

hPn(Sec Γ ∩ Pn ∪Ψ2, 3) = min
((

s

2

)
+ (n+ 1)d,

(
n+ 3

3

))
.

In particular (taking s = 0), AHn,3(d) is satisfied in each of the cases listed in
Theorem 2.

Proof. We first observe that if Ψ ⊂ Pn is a collection of points, then any cubic that
vanishes on Ψ2 must vanish on Sec Ψ also. Indeed, any such cubic vanishes 4 times
on each line between a pair of points of Ψ, so by Bézout’s theorem it must vanish
identically on each such line. Thus we have

hPn(Ψ2, 3) = hPn(Ψ2 ∪ Sec Ψ, 3).

Now assume that the result holds in dimension n− 1 (observing the case n = 1
to start). Let s, d be given, and define

f(b) =
(
s

2

)
+ nb−

(
b

2

)
+ d

and

g(b) =
(
b

2

)
+ n(d− b).

We shall focus on the hypothesis(
s

2

)
+ (n+ 1)d ≤

(
n+ 3

3

)
−
(
n

2

)
;

the proof in the other situation is its mirror image.
We show that there is an integer b ≤ d with 1 ≤ b ≤ n+1

2 so that

f(b) ≤
(
n+ 2

2

)
and g(b) ≤

(
n+ 2

3

)
−
(
n− 1

2

)
.

Clearly it suffices to verify this when d has the extreme value

d =
⌊

1
n+ 1

((
n+ 3

3

)
−
(
n

2

)
−
(
s

2

))⌋
.

Then (after a little calculation) we see that f(1) <
(
n+2

2

)
, d > n+1

2 ,

g

(⌊
n+ 1

2

⌋)
≤
(
n+ 2

3

)
−
(
n− 1

2

)
,

and hence there is a b, 1 ≤ b ≤ n+1
2 < d, that is minimal to satisfy the property

g(b) ≤
(
n+2

3

)
−
(
n−1

2

)
. If b = 1 we are done. Otherwise, minimality reveals that

g(b) + n− b+ 1 = g(b− 1) ≥
(
n+ 2

3

)
−
(
n− 1

2

)
+ 1,
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and hence

f(b) ≤
(
n+ 3

3

)
−
(
n

2

)
− g(b) ≤

(
n+ 2

2

)
− b+ 1 ≤

(
n+ 2

2

)
.

(For the case
(
s
2

)
+ (n + 1)d ≥

(
n+3

3

)
+
(
n
2

)
, one may compute: f(0) <

(
n+2

2

)
,

f(bn+1
2 c) ≥

(
n+2

2

)
, choose b minimal so that f(b) ≥

(
n+2

2

)
, and then proceed just

as below.)
By the induction hypothesis we may choose a general set of d−b points Φ ⊂ Pn−1

and a set Σ ⊂ Pn of b points so that

hPn−1(Sec Σ ∩ Pn−1 ∪ Φ2, 3) =
(
b

2

)
+ n(d− b).

Further, by lemma 8 together with lemma 3 we may arrange that there is a set of s
points Γ ⊂ Pn+1 so that

hPn(Sec Γ ∩ Pn ∪ Σ2 ∪ Φ, 2) =
(
s

2

)
+ (n+ 1)b−

(
b

2

)
+ d− b.

Applying Castelnuovo’s inequality to X = Sec Γ ∩ Pn ∪ Σ2 ∪ Sec Σ ∪ Φ2, we
conclude that

hPn(Sec Γ ∩ Pn ∪ Σ2 ∪ Φ2, 3) =
(
s

2

)
+ (n+ 1)d.

7. Conclusion of the proof of Theorem 2

We carry out the induction procedure of lemma 7 to complete the proof of
Theorem 2, from the initial cases of degrees 2 and 3 (in Section 6) and those of
dimension 1 (standard one-variable interpolation).

Let n ≥ 2, m ≥ 4, and d be given as in Theorem 2. (Here n is the dimension, m
the degree, and d the number of points.) We use lemma 7 to verify AHn,m(d).

We may assume without loss of generality that d satisfies

(n+ 1)(d− 1) <
(
n+m

m

)
< (n+ 1)(d+ 1)

except when m = 4 and n ≤ 4, where we assume that d =
⌊

1
n

(
n+4

4

)⌋
± 1. (That is,

AHn,m(d) holds if there is a set of d double points of Pn that either is contained in
an m-independent scheme or contains a scheme that lies on no m-ics.)

Let u = un,m(d), ε = εn,m(d) be the specialisation numbers given by Definition 1.
Then we must verify that AHn−1,m(u), AHn,m−1(d− u), and AHn,m−2(d− u− ε)
are all valid.

For m ≥ 6 and n ≥ 6 these are automatic. But for lower dimension and lower
degree some extra checking of the numbers d−u and d−u− ε is required to assure
that AHn,m−1(d−u) and AHn,m−2(d−u−ε) are known. The only case that cannot
be deduced from lemma 7 is that of n = 5, m = 4, and d = 21. Indeed, we have
u = 14, ε = 0, and the premise AH4,4(14) (we shall soon see) is not achieved. We
must therefore deal with AH5,4(21) ad hoc.

We divide the proof by degree m ≥ 6, m = 5, and m = 4, followed by the special
case in P5.
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Degrees 6 and higher. Assume that the degree m is at least 6.
Then AHn−1,m(u) holds by induction on n, as does AHn,m−1(d−u) by induction

on m. Likewise AHn,m−2(d− u− ε) is known with the possible exception of m = 6
and n ≤ 4. For these we observe that d− u− ε >

⌊
1
n

(
n+4

4

)⌋
:

n 2 2 3 4
d 9 10 21 42
u 3 4 9 21
ε 0 0 1 0

Thus, AHn,m(d) holds subject to the lower degree cases of Theorem 2, according
to lemma 7.

Degree 5. Consider the case m = 5. We have AHn−1,5(u) by induction on n, and
we have AHn,4(d− u), except perhaps when n ≤ 4. We check these:

n 2 3 4 4
d 7 14 25 26
u 3 7 14 14
ε 0 0 0 0

Next, a calculation reveals that

(n+ 1)(d− u− ε) ≥
(
n+ 3

3

)
+
(
n

2

)
,

so that AHn,3(d − u − ε) holds throughout. Hence, by lemma 7, we will ob-
tain AHn,5(d) upon verification of the degree 4 cases of Theorem 2.

Degree 4. For m = 4 we must verify the following:
(a) AHn,2(d− u− ε), for which it suffices (by lemma 8) that d− u− ε ≥ n+ 1,
(b) AHn,3(d− u), which (by lemma 9) holds provided that

(n+ 1)(d− u) ≤
(
n+ 3

3

)
−
(
n

2

)
.

(c) AHn−1,4(u) which we obtain by induction on n unless n ≤ 5 and
u = b 1

n+1

(
n+4

4

)
c.

By lemma 7, we are left with performing some computations together with special
checking in low dimensions.

Computations. By inspection, the fraction 1
n+1

(
n+4

4

)
= (n+4)(n+3)(n+2)

24 can be
written in the form integer

4 , and it is an integer if n is even. Thus, for n ≥ 5 our
numerical hypotheses yield the inequalities

(n+ 3)(n+ 2)
8

− 3
4
≤ d− u ≤ (n+ 3)(n+ 2)

8
+

3
4
,

and ε = 0 if n is odd.
For n ≥ 11, a little calculation yields

d− u− 2n ≥ n(n− 11)
8

≥ 0
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and

(n+ 1)(d− u) ≤ (n+ 1)
(n+ 3)(n+ 2) + 6

8
≤
(
n+ 3

3

)
−
(
n

2

)
,

so we have verified conditions (a) and (b) for n ≥ 11.
We list the remaining cases (except for dimension 5 which is handled separately):

n 2 2 3 3 4 4 6 7 7 8 9 9 10
d 4 6 8 10 13 15 30 41 42 55 71 72 91
u 1 3 4 6 8 10 21 30 30 41 55 55 71
ε 0 0 0 0 0 0 0 0 0 2 0 0 5

Evidently, we have d − u − ε ≥ n + 1, and (n + 1)(d − u) ≤
(
n+3

3

)
−
(
n
2

)
,

so that AHn,2(d− u− ε) and AHn,3(d− u) both hold by lemma 8 and lemma 9.
Hence we have verified the cases n ≤ 4 and n ≥ 6 (subject to the case n = 5).

Exceptional cases. We remark that if (n, d) = (2, 5), (3, 9), or (4, 14), a gen-
eral collection of d double points lies on a unique quartic in Pn, although we have
(n+1)d ≥

(
n+4

4

)
. Since d =

(
n+2

2

)
−1 in each case, there is a quadratic form Q van-

ishing on d general reduced points, so Q2 vanishes on the double points. Uniqueness
is easy to check for n = 2 and n = 3; the case n = 4 is in [C3].

Dimension 5. Our final step is to construct a collection of 21 double points in P5

imposing 126 =
(

5+4
4

)
conditions on quartics.

(The argument is quite similar to that of [AH1]. Since, unfortunately, the nu-
merics prohibit the use of lemma 5, we perform a minor variation.)

The idea is as follows. Using the uniqueness of a quartic through 9 general
points of P3, we find a set Φ ∪ {p, q} of 15 points of P4 whose double does not lie
on a quartic but yields a base locus scheme Υ supported on {p, q}. We arrange, in
particular, that the scheme Υ does not depend on all of the points of Φ. Then we
may find a set Σ ⊂ P4 of 6 points so that Σ2 ∪ Φ ∪ Υ is 4-independent. Arguing
along the lines of lemma 5, we produce two points p′, q′ of P5 so that there is no
quartic that is double on Σ ∪ Φ ∪ {p′, q′}.

Choose P3 ⊂ P4 ⊂ P5.
In P3, choose a general collection Φ3 ∪ {p, q} of 10 points. We have

hP3(Φ2
3 ∪ {p}, 4) = 33 and hP3(Φ2

3 ∪ {p}2, 4) = 34 = 4 · 9− 2;

hence there is a unique plane S so that {p}2|S is in the base locus of the system of
quartics through Φ2

3 ∪ {p}. Further, hP3(Φ2
3 ∪ {p}2 ∪ {q}, 4) = 35.

Next, by lemma 8 and lemma 3 we may choose a set Φ4 ⊂ P4 of 5 points satisfying

hP4(Φ2
4 ∪ Φ3 ∪ {p} ∪ {q}, 3) = 5 · 5 + 10 = 35.

Hence

hP4(Φ2
4 ∪ Φ2

3 ∪ {p, q}2, 4) = 70;

in particular, for any subscheme Λ ⊂ {p, q}2 having Λ ∩ (p2|S ∪ q2|P3) ⊆ {p, q} we
have

hP4(Φ2
4 ∪Φ2

3 ∪ Λ, 4) = 5 · 13 + deg Λ.

Let Φ = Φ3 ∪ Φ4 and Υ = p2|S ∪ q2|P3 .
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We seek a collection Σ ⊂ P5 of 6 points to satisfy hP5(Σ2 ∪ Φ ∪ Υ, 3) = 56.
Namely, take Σ ⊂ P5 − P4 in linearly general position. By lemma 8 we have

hP5(Σ2 ∪ Φ3 ∪ {p, q}2|P3 , 3) ≥ hP5(Σ2, 2) + hP4(Sec Σ ∩ P4, 2) + hP3(Φ3 ∪ {p, q}2, 3)
= 52;

hence hP5(Σ2 ∪ Φ3 ∪Υ, 3) = 51. Since Υ depends only on Φ3, we may assume (by
lemma 3 and lemma 8) that Φ4 is sufficiently general to ensure that

hP5(Σ2 ∪ Φ ∪Υ, 3) = 56.

Choose general points p′, q′ ∈ P5 together with a flat family degenerating p′ to p,
q′ to q, and a subscheme Υ′ ⊂ {p, q}2 to Υ with respect to the linear system under
consideration. We shall show that Σ2 ∪ Φ2 ∪ {p′, q′}2 does not lie on a quartic of
P5.

Suppose ξ′ ⊂ {p′, q′}2 is any curvilinear subscheme. Write ξ′ = γ′ ∪ ζ′, where
γ′ ⊂ Υ′ and ζ′ ∩Υ′ ⊆ {p′, q′}. Let ξ, ζ, γ be the corresponding flat limits at {p, q}.

Then by semicontinuity we have

hP5(Σ2 ∪ Φ2 ∪ ξ′, 4) ≥ hP5(Σ2 ∪ Φ2 ∪ ζ ∪ γ′, 4)

≥ hP5(Σ2 ∪ Φ ∪ ζ̃ ∪ γ′, 3) + hP4(Φ2 ∪ (ζ ∩ P4), 3)

≥ hP5(Σ2 ∪ Φ ∪ ζ̃ ∪ γ, 3) + 65 + deg(ζ ∩ P4)

= 114 + deg ζ̃ + deg(ζ ∩ P4) + deg γ

= 6 · 19 + deg ξ′.

Hence by lemma 4 we have

hP5(Σ2 ∪ Φ2 ∪ {p′, q′}2, 4) = 126.

This completes the proof of theorem 2. 2
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