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Abstract 

The optimization of energy systems is of crucial importance for a rational use of natural 

and economic resources and for minimizing their adverse effects on the environment. 

Optimizing such systems may be considered at three levels: synthesis (configuration), 

design (component characteristics), and operation. The first two of these levels are ex-

amined in this article. After a discussion on the uniqueness of the solution and the pos-

sibility of finding this solution, the principal approaches and methods for solving the 

optimization problem are described in brief. 
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1.  Introduction 

When the energy needs of a group of con-

sumers of any size (house, city, industrial unit, 

region, etc.) are identified, questions such as the 

following arise: 

• Given the energy needs, what is the best 
type of energy system to be used? 

• What is the best system configuration 
(components and their interconnections)? 

• What are the best technical characteris-tics 

of each component (dimensions, material, 

capacity, performance, etc.)? 

• What are the best flow rates, pressures, and 

temperatures of the various working fluids? 

• What is the best operating point of the sys-

tem at each instant of time?  

The best or ‘optimum’ system is the one 

that satisfies a criterion of optimality, i.e. the one 

that minimizes (or maximizes) an objective func-

tion. Three levels of optimization are identified: 

(A) synthesis, implying the set of components 

appearing in a system and their interconnections, 

(B) design, implying the technical specifications 

of the components and the properties of sub-
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stances flowing throughout the system at the 

nominal load, and (C) operation, implying the 

operating properties of components and sub-

stances under specified conditions. The complete 

optimization problem is stated by the following 

question:  

What is the synthesis of the system, the de-

sign characteristics of the components, and the 

operating strategy that lead to an overall opti-

mum? 

Level C, which appears when the synthesis 

and design of a system are given, is not the sub-

ject of this article, but the interested reader can 

find information in the literature, e.g., (Bausa 

and Tsatsaronis 2001, Frangopoulos et al. 1996, 

Olsommer et al. 1999). 

2.  Discussion on the Uniqueness of the Solu-

tion of the Synthesis and Design Optimiza-

tion Problem and on the Possibility of 

finding this Solution 

In mathematical optimization, the best sys-

tem is the one that minimizes (or maximizes) an 

objective function. Let us assume that minimiza-

tion of the total cost is the objective and that the 

optimization problem has a solution, i.e. a system 

has been determined that satisfies the objective. 

Is this indeed the solution sought or must one 

also compare the performance of this system 

with the performance of other (non-optimal) sys-

tems based on other points of view, e.g., main-

tainability or environmental effects? There may 

be cases when such a comparison shows that the 

‘optimal’ with respect to the cost of the system is 

not at all good when these other points of view 

are considered (attempts to translate other as-

pects into cost are made but there may still be 

aspects that cannot be handled in this way). 

Multi-objective optimization is an attempt to 

correct such deficiencies. However, the solution 

then depends on subjective weighting factors or 

additional criteria. The point of all this is that the 

optimal solution may not be unique and is ‘opti-

mal’ only in the strict mathematical sense. Thus, 

even if the design procedure can be automated, 

expert human intervention is needed to evaluate 

the results and reach a final decision. 

Another issue is the following. In the usual 

design process of an energy system, the designer 

uses knowledge and experience to select the 

type, configuration and technical characteristics 

of a workable system (i.e. a system that is tech-

nically feasible and satisfies a given set of 

needs), which he/she then evaluates for its tech-

nical and economic performance and for ways of 

improving it. If the system synthesis (type and 

configuration) is given, the decisions to be taken 

are of a rather quantitative nature. If, however, 

the synthesis is not given, in addition to quantita-

tive decisions there is need for many qualitative 

decisions, which may be non-deterministic. In 

such a case, innovation and creativity play a vital 

role. Given the multitude of energy system types 

and the variations in each type, one may question 

whether it is ever possible to replace the experi-

enced designer’s mental process with an algo-

rithm consisting of a set of formulae and rules. 

On the other hand, in today’s complex world, 

this same multitude of types and variations 

makes it rather impossible even for an experi-

enced designer to evaluate all possible alterna-

tives. Consequently, an automated procedure, if 

properly used, can be of invaluable help to the 

designer.  

Several methods have been developed for 

the synthesis optimization of processes and sys-

tems. Some of these are applicable only to par-

ticular classes of systems (e.g., heat exchanger 

networks). Other methods are applied to more 

complex energy systems. However, up until now 

there has been no single method that can tackle 

the synthesis optimization problem in all its gen-

erality and completeness. The field is, thus, still 

open to research.  

3.  Approaches to the Optimal Synthesis of 

Energy Systems 

The various methods that have appeared in 

the literature on the optimal synthesis of energy 

systems can be classified into three groups: 

(a) Methods based on heuristics and evolution-

ary search. 

(b) Methods attempting to reach pre-

determined targets, which have been iden-

tified by the application of physical rules. 

(c) Methods starting with a superstructure, 

which is reduced to the optimal configura-

tion. 

In class (a), rules based on engineering ex-

perience and on physical concepts (e.g., exergy) 

are applied to generate feasible configurations, 

which are subsequently improved by applying a 

set of evolutionary rules in a systematic way. 

These rules may come from special techniques, 

such as exergy analysis. Artificial Intelligence 

and Expert Systems have proven effective in 

generating appropriate configurations. For each 

acceptable configuration, a figure of merit or 

performance indicator is evaluated (e.g., effi-

ciency, cost, etc.) and the system with the best 

performance is selected. The best of a certain set 

of configurations, however, does not guarantee 

that the optimal configuration has been revealed. 

In most cases, though, at least a near-optimal 

configuration has been obtained (Kott et al. 

1989, Sciubba 1998, Sciubba and Melli 1998).  



In class (b), principles from thermodynam-

ics and other physical sciences are applied to 

obtain targets for the optimal system configura-

tion. These targets can correspond to upper or 

lower bounds on the best possible configuration 

and provide vital information for improvement of 

existing configurations. In addition, many con-

figurations are excluded from further investiga-

tion, thus reducing the search space for the best 

system. If the physical target is the optimization 

objective (e.g., minimization of energy utiliza-

tion), then these methods provide the solution to 

the optimization problem. However, if the opti-

mization objective is economic, e.g., minimiza-

tion of the total cost, then these methods are not 

very appropriate. Attempts have been made to 

introduce economics at a second level, but the 

whole approach is mathematically non-rigorous 

and, conse-quently, the configuration obtained 

may be non-optimal (Linnhoff et al. 1982, Linn-

hoff 1989).  

In class (c), a superstructure is considered 

with all the possible (or necessary) components 

and interconnections. An objective function is 

specified and the optimization problem is formu-

lated. The solution of the optimization problem 

gives the optimal system configuration, which, 

inevitably, depends on (and is restricted by) the 

initial superstructure. The main advantages of 

such an approach are that it can work with any 

objective function and that it automatically re-

veals the optimal system configuration. The dif-

ficulty with these methods is that the size of the 

optimization problem may be such that the avail-

able mathematical optimization algorithms may 

not be capable of a rigorous solution. Thus, the 

need arises for advances in optimization theory 

and algorithms. It goes without saying that the 

methods of class (c) can find the optimal con-

figuration only out of those represented in the 

superstructure (Olsommer et al. 1999, Floudas 

1995, Frangopoulos 1990, Munoz and von 

Spakovsky 2000, 2001a, 2001b).  

It should be noted that the distinction 

among the three classes may not be so clear-cut. 

For example, the targets of class (b) can serve as 

heuristics or rules in class (a) and they can be 

embedded in the optimization procedures of class 

(c) to the benefit of the whole process.  

4.  Mathematical Statement of the Complete 

Optimization Problem 

The objective function of the complete op-

timization problem (i.e. synthesis, design, and 

operation) is written in the general form: 

, ,
min imize F( , , )

x w z
x w z  (1) 

subject to the constraints 

hi(x) = 0, i = 1, 2, …, I (2) 

gj(x) ≤ 0, j = 1, 2, …, J (3) 

where 

x set of independent variables for operation 

optimization (load factors of components, 

mass flow rates, pressures and temperatures 

of streams, etc.), 

w set of independent variables for design op-

timization (nominal capacities of compo-

nents, geometry, mass flow rates, pressures 

and temperatures of streams, etc.), 

z set of independent variables for synthesis 

optimization; there is only one variable of 

this type for each component, indicating 

whether the component exists in the opti-

mal configuration or not; it may be a binary 

(0 or 1), an integer, or a continuous variable 

such as the rated power of a component, 

with a zero value indicating the non-

existence of a component in the final con-

figuration.  

hi(x) equality constraint functions, which consti-

tute the simulation model of the system and 

are derived by an analysis of the system 

(energetic, exergetic, economic, etc.), 

gj(x) inequality constraint functions correspond-

ing to design and operation limits, state 

regulations, safety requirements, etc. 

Several objectives pertinent to energy sys-

tems can be written in the form of Eq. (1). For 

example, F can be the fuel consumption, exergy 

destruction, annualized cost of owning and oper-

ating the system, life-cycle cost (including envi-

ronmental considerations, if needed), etc. Multi-

objective optimization can also be written in the 

form of Eq. (1), but only if the various objectives 

are combined into one objective function by 

means of weighting factors.  

For a given synthesis (structure) of the sys-

tem, i.e. for given z, the optimization problem 

becomes one of design and operation:   

d
,

min imize F ( , )
x w

x w  (1) d

Furthermore, if the system is completely 

specified (both z and w are given), then an opera-

tion optimization problem is indicated: 

opmin imize F ( )
x

x  (1) op

5.  Representative Methods for the Solution of 

the Synthesis Optimization Problem 

The design optimization problem can be 

solved by a number of methods described in the 

literature (Floudas 1995, Bejan et al. 1996, 

Stoecker 1989, Rao 1996, Reklaitis et al. 1983, 

Papalambros and Wilde 2000, Moré and Wright 
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1993). In this section, representative methods for 

the solution of the synthesis optimization prob-

lem are described in brief, no matter whether 

they locate the near-optimum solution (classes 

(a) and (b)) or the optimum one (class (c)) within 

the constraints and limitations mentioned in Sec-

tion 3. 

5.1.  The Connectivity matrix method 

This method is a direct application of Graph 

Theory to process design (Bondy and Murty 

1976, Linial et al. 1986). It consists of the fol-

lowing steps: 

1. Create a logical process scheme. This is a 

very general task and does not imply the se-

lection or placement of any component. It 

entails though the selection of the chemi-

cal/physical sub-processes that constitute 

the main process. 

2. Construct the Connectivity Matrix (CM) for 

the logical process scheme. The rows of 

CM represent fluxes of matter or of energy, 

while the columns represent "operations" to 

be performed on these fluxes. A "1" in posi-

tion ij signifies that flux i undergoes trans-

formation j; a "0" signals no inter-action of 

flux i with sub-process j. A logical process 

scheme and its connectivity matrix are 

shown in Figure 1 and TABLE I. 

3. "Translate" each operation listed in CM into 

a series of physical transformations and de-

vise one elementary sub-process scheme for 

each transformation. For example, the op-

eration "boiling" is translated into "pressur-

ized, then fed into a boiler, then super-

heated, then throttled, then exhausted". In-

troduce these sub-process schemes into 

each one of the applicable columns of CM: 

this corresponds to expanding the matrix by 

adding several additional columns. 
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4. Substitute into each transformation in every 

sub-process the component that performs it. 

Notice that at this point technical and op-

erational constraints may come into play 

and limit or deny altogether the feasibility 

of a certain solution. 

5. The resulting matrix is the Connectivity 

Matrix of the real process P. A proper quan-

titative simulation of P must now be per-

formed to obtain the optimal set of opera-

tional parameters. 

It is apparent that this method is a direct 

translation of the "mental scheme" a Process 

Engineer applies to a design task, and it is en-

tirely deterministic. Unfortunately, it is also clear 

that the method is strongly biased by the choices 

made in points 1 and 3. Choosing a process 

scheme in fact sets a major structural constraint 

on the resulting process configuration, and this 

step is entirely left to the "experience" of the 

Designer. Similarly, splitting a process into sub-

processes can be done in more than one way, and 

selecting the one or the other corresponds to bi-

asing the entire procedure. In spite of its limita-

tions, this method has been reported here because 

it has many similarities with the AI methods that 

will be discussed later. 
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Figure 1.  A logical process scheme. 

TABLE I.  CONNECTIVITY MATRIX OF 

THE PROCESS IN FIGURE 1. 

Component 
Stream 

C1 C2 C3 C4 C5 C6

1 1 0 0 0 0 0 

2 0 1 0 0 0 0 

3 0 1 0 1 0 0 

4 0 0 0 1 0 1 

5 1 0 1 0 0 0 

6 1 0 0 0 1 0 

7 0 0 1 0 0 0 

8 0 0 1 0 0 1 

9 0 0 0 0 1 1 

10 0 0 0 0 0 1 

5.2.  Simulated annealing 

Simulated annealing (SA) is a very smart 

variant of the Matrix Method and, in spite of 

some limitations that we shall discuss below, is a 

very reliable Process Synthesizer. Though origi-

nally conceived as a multi-variable optimization 

tool, it was later adapted to function as a struc-

tural optimizer (Metropolis et al. 1953). The 

name is derived from a physical process that will 

briefly be described before the details of the 

computational procedure are explained.  

When a mass of molten metal is slowly 

cooled, the temperature distribution inside the 

body is not uniform: it is usually lower at the 

external boundaries and hotter inside. Since the 

thermodynamic energy of the single molecules is 

proportional to their temperature, organized 

structures (crystals and grains) begin to appear 

preferably in the low-temperature areas: their 

distribution is normally random (in reality, it 

depends on the presence of "crystallization 

seeds", but this is irrelevant in our context). If the 



cooling is slow enough, the entire body reaches a 

state of minimum energy, corresponding to the 

crystalline (and phase) structure in equilibrium at 

that temperature. If the cooling rate is "too high", 

there is not sufficient time for the entire body to 

reach a global minimum energy configuration, 

and the final structure consists of a certain num-

ber of equilibrium crystalline structures (having 

the minimal energy level compatible with the 

local temperature) trapped inside of a usually 

irregular ensemble of "frozen" non-equilibrium 

entities (crystals and grains whose structures 

entail higher-than-equilibrium energies or amor-

phous, frozen liquid). Thus, the final outcome of 

the process depends on a global external parame-

ter (cooling rate), while the final global energy 

content may or may not be the global (equilib-

rium) minimum, depending on the history of the 

local conditions that were experienced by the 

various parts of the originally liquid mass upon 

cooling.  

The original idea for simulated annealing 

was that of constructing an algorithm that could 

mimic this search for a global optimum by con-

trolling the rate of decrease of a global "energy" 

parameter (which was called "T", a fictitious 

temperature) and nesting a sub-optimization for 

each level of T. The procedure consists of the 

following steps (Figure 2): 

1.  Select a Process Superstructure, i.e. a ficti-

tious process Connectivity Matrix (CM) in 

which all of the components that may be 

useful in any of the possible sub-processes 

that lead from input to output are repre-

sented. This particular CM has a very high 

interconnectivity: most components are 

connected to most others by at least one of 

the possible fluxes of matter or energy. 

2.  Establish (define) a global fictitious quan-

tity T that is the functional equivalent of the 

energy distribution in a solidifying liquid. 

Assuming we are trying to minimize the ob-

jective function, this means that if the sys-

tem is in state X, with a corresponding 

value f(X), there is a small probability that, 

for a given T, a different configuration Y, 

with f(Y) > f(X) is admissible, i.e. can be 

reached by the system. 

3.  Perform a simplified process simulation (if 

necessary introducing artificial constraints 

to force some of the most unlikely matches 

among components) and compute the ob-

jective function (usually consisting of a 

proper combination of performance and 

cost index). 

4. Randomly modify the system inter-

connection, for instance, by inserting "0" in 

all entries in a randomly selected column k:  

Initial Superstructure. F=F
0
, T=T

0

Two fluxes deleted. F=F
1
<F

0
, T=T

0

An additional flux deleted.

F=F
2
>F

1
, T=T

0

New Superstructure

0b / T
bp ae

−= ⇒ may be accepted

( )2 1 0F F , T T 1 ε= = −
 

Figure 2.  Working principle ofsimulated 

annealing. 

this corresponds to eliminating component 

K. Not all "moves" are acceptable: some 

physical (mass and energy balances) and 

possibly some configuration constraints ap-

ply. 

5.  Perform a simplified process simulation 

again and compute the new value of the ob-

jective function. If f(Y) < f(X), the "new" 

configuration is accepted. If f(Y) > f(X), 

there is a probability p = ae-b/T that f(Y) 

may still be an acceptable state (a and b are 

arbitrary, case-dependent constants). 

6.  Decrease T by a pre-assigned amount and 

repeat steps 4 and 5. 

7.  Repeat steps 3 to 6 N times: this corre-

sponds in our example to subtracting N 

components from the initial super-

configuration, but other norms for N are ac-
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ceptable as well. Record the minimum (or 

maximum, depending on the case) value of 

the objective function reached in these N 

reduced configurations. 

8.  Take now as the "new super-configuration" 

the modified configuration that achieved 

the lowest (or highest) value of the objec-

tive function in the previous N trials. 

9.  Repeat steps 3 to 7 until the value of the 

objective function does not change much 

from one "new super-configuration" to the 

next. The last configuration (which is likely 

to consist of a much lower number of com-

ponents than the original one) is the sought 

after "optimal" process structure. 

The correct choice of the quantifier T is 

crucial in simulated annealing. Unfortunately, its 

formulation is entirely heuristic, because the 

analogy between the numerical procedure and 

the physical annealing process is not perfect. 

Usually, a dimensionless T is defined, and its 

decrease from one level to the next is established 

a priori by a linear law of the type ( )j 1 jT T 1 ε+ = −  

with . It is important to remark, 

though this is rarely mentioned, that the choice 

of the initial superstructure has a strong influence 

on the final outcome, SA being in fact strongly 

biased with respect to its "initial conditions". 

ε 1 3%= ÷

5.3.  Algorithmic approaches 

The problem stated by Eqs. (1)-(3) can be 

solved by direct application of optimization algo-

rithms. Appropriate for this purpose are mixed 

integer - linear or integer - nonlinear program-

ming algorithms (depending on whether the 

functions appearing in Eqs. (1)-(3) are linear or 

nonlinear) and genetic algorithms (Floudas 1995, 

Goldberg 1989, Gen and Cheng 1997, Chambers 

et al. 1995). They both operate on a specified 

superstructure. Usually, integer variables are 

used to describe the synthesis of the system (e.g., 

existence or non-existence of components), while 

real variables correspond to design and opera-

tional characteristics of components.  

Genetic algorithms have the advantage that 

they can reveal more than one near-optimal con-

figuration, so the designer may apply additional 

criteria to select the preferable one. Computa-

tionally they are more intense and they, too, can 

be, if not properly conditioned, rather sensitive to 

the choice of the initial superstructure (‘gene-

pool’). It is also possible to combine a genetic 

algorithm with a linear or nonlinear program-

ming algorithm. The first one is used to effec-

tively reach near-optimal solutions for configura-

tion, design and operation and the second one to 

determine the exact values of the independent 

variables at the design and operation levels.  

Multilevel optimization and decomposition, 

which are described below as well as in the 

aforementioned article, can be used to facilitate 

the solution.  

5.4.  Targeting methods 

The term “supertargeting” also appears in 

the literature. The ideas originated in the attempt 

to optimize heat exchanger networks (HEN). 

One of the targets is the minimum utility cost 

target and the related problem can be stated as 

follows: 

Given a heat recovery approach tempera-

ture, determine the minimum utility consumption 

(or utility cost) of a heat exchanger network 

without prior knowledge of the HEN configura-

tion. 

This is a very important target since it cor-

responds to the maximum energy recovery that 

can be attained in a feasible HEN for a fixed heat 

recovery approach temperature. This target leads 

to near-optimal solutions (HEN configurations) 

as long as the energy is the dominant cost item as 

compared to the investment cost. The key con-

cept that allows for a determination of the mini-

mum utility cost prior to knowing the HEN struc-

ture is the pinch point. The related concepts and 

applications are presented in the literature (Linn-

hoff 1989, Floudas 1995, Frangopoulos 1990, 

Bejan et al. 1996). 

The related methods have been extended in 

two ways: (i) to include capital and operational 

expenses other than the cost of utilities, and (ii) 

to allow application to energy systems that in-

clude other components in addition to heat ex-

changers (e.g., power plants). The whole optimi-

zation problem is decomposed into two levels: 

synthesis of the system directed by thermody-

namic targets and then cost minimization. How-

ever, this decomposition is not always mathe-

matically correct, leading to inexact solutions of 

the optimization problem.  

5.5.  The intelligent functional approach 

The method is a further development of the 

Functional Approach described in the literature 

(Frangopoulos 1983, 1987, 1990). It operates on 

a superstructure, which is properly analyzed to 

define the functions of the various components 

and the related Lagrange multipliers. The values 

of the Lagrange multipliers, as they are calcu-

lated in the procedure, are used to decide on the 

existence of certain components. Multilevel op-

timization for the synthesis, design and operation 

optimization problems is applied. Decomposition 

can also be applied with respect to subsystems 

and/or with respect to time, if conditions change 

with time. A combination of genetic algorithms, 

nonlinear programming algorithms, and the intel-
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ligent functional approach has been successful in 

reducing the time for solution of the optimization 

problem.  

5.6.  Decomposition 

There are a number of reasons for using de-

composition in its various forms to reformulate 

the optimization problem for energy system syn-

thesis, design, and operation, which in its full 

complexity is defined as a dynamic, non-linear, 

mixed-integer programming problem. For exam-

ple, decomposition can make an intractable, 

highly complex, highly dynamic problem with a 

large number of degrees of freedom tractable by 

breaking the original optimization problem into a 

set of smaller problems, the solution to which 

closely approximates the solution of the former. 

Decomposition may also be warranted when cer-

tain company and geographical boundaries (e.g., 

design teams located far from each other) do not 

permit solution of the original problem as a sin-

gle problem. 

Three principal types of decomposition ex-

ist: conceptual, time, and physical.  The first of 

these decomposes the conceptual aspects of the 

optimization problem, i.e. synthesis, design, and 

operation, into two or three levels of optimiza-

tion (A, B, C, as mentioned in the Introduction). 

At the operational level, the system is optimized 

with respect to a set of operational/control vari-

ables for a fixed structure (synthesis/design) 

across an entire load/environmental profile in 

order to determine optimal system behavior un-

der any (design and off-design) conditions. The 

results are then integrated over time and intro-

duced at the synthesis level.  At this level, a new 

choice of system configuration (synthesis) is 

made based on minimizing (or maximizing) the 

system’s objective function with respect to a set 

of synthesis variables. The results of this optimi-

zation are then passed to the design level where 

for a fixed configuration the system’s objective 

function is minimized (or maximized) with re-

spect to a set of design variables. An iterative 

procedure is then set up which moves back and 

forth between the three levels of optimization, 

terminating once the global optimum for the ob-

jective function has been found. This type of 

decomposition results in a set of nested optimiza-

tion problems simpler than the original but much 

more computationally intensive (Olsommer et al. 

1999, Frangopoulos 1990). 

A variation on this type of decomposition, 

which avoids this sort of nesting, completely 

separates the synthesis/design level(s) from the 

operational level (Munoz and von Spakovsky 

2000, 2001a, 2001b). In this approach, the sys-

tem’s synthesis/design is optimized for the most 

stringent of the load/environmental conditions 

and a set of optimum and near-optimum feasible 

solutions determined for the given synthe-

sis/design point. These feasible solutions are then 

optimized at all off-design conditions in order to 

determine the overall optimal solution. This type 

of decomposition (sometimes referred to as a 

form of time decomposition in the literature) 

reduces the computational burden seen with the 

former approach by assuming that only a limited 

number of feasible solutions need be optimally 

evaluated at off-design. 

The next type of decomposition is time de-

composition, which decomposes the operational 

optimization problem into a series of quasi-

stationary sub-problems each of which corre-

spond to a given time interval. These can be op-

timized individually with respect to a set of 

unique operational/control variables and the re-

sults summed over all intervals. This form of 

decomposition complements the others. 

In contrast to the two previous types of de-

composition, physical decomposition looks at the 

system itself and breaks it down into a set of 

units (sub-systems, components, or sub-

components), each of which forms a sub-

problem within the context of the overall system 

optimization problem. All such approaches 

within the literature (e.g., Munoz and von 

Spakovsky 2000, 2001a, 2001b, von Spakovsky 

and Evans 1993), can be classified either as a 

Local-Global Optimization (LGO) or an Iterative 

Local-Global Optimization (ILGO) approach. In 

both, it is assumed that a number of disjoint sub-

sets of the set of synthesis/design variables (one 

set for each unit and one, if needed, at the system 

level) can be established. Each set at the unit-

level is used to optimize its respective sub-

problem while the system-level set is used to 

optimize the overall problem at the system-level. 

In LGO, this results in a nested set of optimiza-

tions of unit-level problems within an overall 

system-level problem. 

A conceptual depiction of this approach is 

seen in Figure 3 where, for example, at the unit-

level the local objective C1 is optimized (see the 

highly non-linear surface on the far right in Fig-

ure 3) with respect to its disjoint sub-set of vari-

ables . This optimization occurs for fixed 

values (ξ, ψ) of the system-level set of variables 

or coupling functions u

1 1,w z

ij. The other units are 

likewise optimized locally and this process is 

repeated many times for different values of the 

coupling functions. The final result of this proc-

ess is a set of unit-level optimum response sur-

faces (ORSs), the combination of which results 

in the system-level ORS seen in Figure 3. The 

system-level optimum is then found at the lowest 

point (if a minimization) on this surface (Figure 3).  
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Figure 3.  Local (unit-level) and global (system-level) optimizations for LGO and ILGO 

Of course, as with the other decomposition ap-

proaches, the principle disadvantage of LGO is 

that it is very computationally intensive. To cir-

cumvent this, ILGO instead of LGO may be ap-

plied since the former avoids the need for creat-

ing any of the ORSs and avoids as well the nest-

ing inherent in the other decomposition ap-

proaches. ILGO accomplishes the former by us-

ing derivative information in the form of what 

are called shadow prices (derivatives of the op-

timal value of a function with respect to certain 

variables) to intelligently move along the system-

level ORS towards the system-level optimum, 

and it accomplishes the latter by incorporating 

system-level information directly into the unit-

level objectives through the use of shadow prices 

5.7.  Artificial Intelligence and Expert Systems 

techniques 

In the preceding, it is tacitly assumed that 

all process design calculations can be carried out 

by properly implemented automated routines. 

Process design is a highly labor intensive and 

highly interdisciplinary task and is, therefore, by 

necessity performed by a team of specialists: as a 

consequence, it is also very expensive in mone-

tary terms, and there is a strong incentive to re-

duce this labor intensity (measured in man-

hours). The only task that has as of yet not been 

fully automated is the conceptual one: the choice 

of the type and of the characteristics of the proc-

ess itself. This automation can be implemented 

by a direct application of the very powerful Arti-

ficial Intelligence (AI) techniques, whose spe-

cific task is to allow the codification of proce-

dures that somehow mimic the thinking patterns 

of the human mind. Currently, only a subset of 

these techniques, called Expert Systems (ES), 

have been successfully applied to energy sys-

tems. ESs can be used to reproduce the engi-

neer’s decisional path that proceeds from the 

design data and constraints to possible process 

configurations. 

Expert Systems are based on relational 

languages that use the symbolism of formal pro-

positional logic. They draw inferences from a 

number of facts stored in a particular database, 

properly called a knowledge base. These facts 

can be design data, design rules, physical or logi-

cal constraints, etc. Each ES manipulates this 

knowledge in its own way, according to a logical 

procedure contained in its inference engine. 

Space limitations do not allow a detailed presen-

tation of AI and ES techniques, but the interested 

reader can find information in the literature 

(Sciubba and Melli 1998, Sriram 1997, Green 

1992). 

6.  Closure 

As one goes from operation optimization to 

design and synthesis optimization of energy sys-

tems, the problem becomes much more difficult 

not only from a computational but also from a 

methodological point of view. Several methods 

have been developed, which have been shown to 

be successful at least for particular classes of 

problems, even when the number of degrees of 

freedom is large and the models involved highly 

nonlinear and complex. However, the effort to 

develop even more capable and more generally 

applicable methods continues.  
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