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A Brief Review of Network Embedding
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Abstract: Learning the representations of nodes in a network can benefit various analysis tasks such as node

classification, link prediction, clustering, and anomaly detection. Such a representation learning problem is referred

to as network embedding, and it has attracted significant attention in recent years. In this article, we briefly review

the existing network embedding methods by two taxonomies. The technical taxonomy focuses on the specific

techniques used and divides the existing network embedding methods into two stages, i.e., context construction

and objective design. The non-technical taxonomy focuses on the problem setting aspect and categorizes existing

work based on whether to preserve special network properties, to consider special network types, or to incorporate

additional inputs. Finally, we summarize the main findings based on the two taxonomies, analyze their usefulness,

and discuss future directions in this area.
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1 Introduction

Network embedding, which learns the node

representations of a given network, is essential for

various analysis tasks including node classification[1],

link prediction[2], clustering[3], and anomaly

detection[4]. The key idea of network embedding

is to obtain the node presentations by preserving certain

network properties. Comparing with the traditional

feature extraction methods which require manual

design of node features (e.g., in-degree and out-

degree), one of the advantages of network embedding

methods is automatically learning of these features[5].

In this article, we present two taxonomies to

categorize existing network embedding methods. The

first taxonomy focuses on the technical aspect, i.e., the
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specific techniques used to learn the node embeddings.

Specially, we divide existing methods into two stages,

i.e., context construction and objective design. The

context construction stage aims to derive a context

network from the original network, where the context

information (e.g., the properties to preserve) for each

node is encoded in the context network. In particular,

we divide the widely-used context networks into three

classes: original network, local neighborhood (which

incorporates indirect nearest neighbors as additional

context nodes), and walking network (which applies

random walks on the original network). In the objective

design stage, an objective function is designed over

the constructed context to obtain the final node

representations. We divide the existing objectives

into reconstruction-oriented objective (which aims

to reconstruct the context network), discrimination-

oriented objective (which aims to distinguish the

context nodes from the non-context nodes), and

ranking-oriented objective (which aims to preserve the

relative orders of edges).

The second taxonomy focuses on the non-technical

aspect, and categorizes existing work based on whether

they preserve certain special network properties,

consider special network types, or incorporate
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additional inputs. Existing works commonly preserve

the local neighborhood structure. By contrast, special

global properties such as node roles (e.g., structural

identity[6]) and global ranking[7] have also been

considered. For network types, although numerous

network embedding methods are designed for general

networks, a few special treatments can be applied to

special network types such as directed networks, signed

networks, heterogeneous networks, and dynamic

networks. In addition to the network topology, various

additional inputs such as node attributes, community

structures/group labels, and supervision labels can

be utilized. Figure 1 summarizes the proposed two

taxonomies.

For each taxonomy, we first review and categorize

the existing network embedding methods accordingly.

Then, we describe several representative methods in

each category. Finally, we summarize the main findings

and discuss possible future directions. We believe that

the proposed taxonomies can benefit the research on

network embedding in the following aspects.

� Compared with the existing surveys (see the

related work section for details), we provide a

new technical taxonomy to categorize the techniques

used for network embedding. The proposed technical

taxonomy consists of two orthogonal dimensions

which we can use as basis to develop new network

embedding methods by different combinations of these

dimensions. Further, we can systematically evaluate

these combinations to understand the advantages and

disadvantages of different choices in each dimension.

� The proposed non-technical taxonomy mainly

considers the problem settings. That taxonomy can

be first used to find the research gaps to fulfill (e.g.,

the problem settings that have not been considered

before). Second, when researchers develop a new

network embedding method, they can find suitable

competitors by comparing their problem settings with

those of the existing methods.

The rest of the article is organized as follows.

Section 2 reviews the related network embedding

surveys. Sections 3 and 4 present the proposed

taxonomies. Section 5 concludes the paper with

discussions of future directions.

2 Related Work

Several existing surveys center on network embedding.

In the technical aspect, Hamilton et al.[8] divided

existing network embedding methods into factorization-

based methods, random walk methods, and other

(a) Technical taxonomy

(b) Non-technical taxonomy

Fig. 1 The proposed two taxonomies.
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generalized methods (e.g., graph convolutional

networks[9]); Goyal and Ferrara[10] divided them into

factorization methods, random walks, and deep learning

methods; Yao et al.[5] divided existing methods into

neural network models, factorization based models,

and regularization based models. These surveys focus

on the specific techniques used during the network

embedding process, whereas the non-technical aspect

is ignored.

Considering the non-technical aspect of network

embedding, Zhang et al.[11] categorized network

embedding methods into unsupervised and semi-

supervised methods. In each category, they further

consider whether to incorporate content information in

the embedding process. However, the used techniques

are not well-categorized.

Other existing surveys consider both the technical

and non-technical aspect. Cui et al.[12] categorized

existing methods based on whether the methods

consider side information or whether they are designed

for specific tasks (in addition to structure preserving).

With regard to the used techniques, similar to Goyal

and Ferrara[10], they divided existing methods into

matrix factorization, random walks, and deep neural

networks. Cai et al.[13] also divided the existing

network embedding methods based on the input (e.g.,

homogeneous networks v.s. heterogeneous networks).

Considering the network embedding techniques, the

authors divided the existing methods into matrix

factorization, deep learning, and edge reconstruction.

In contrast to the above two surveys, instead of

dividing the existing methods based on the specific

used techniques, we divide them into two orthogonal

stages of context construction and objective design,

where the second stage is similar to existing surveys

but standing at a higher perspective. Additionally,

we provide a wider non-technical taxonomy to cover

different problem settings.

Less related to this work, some other surveys also

exist. For example, Wang et al.[14] contributed to

knowledge graph embedding only, Fu and Ma[15]

focused on the traditional graph embedding methods

(e.g., Isomap[16] and local linear embedding[17]).

3 Technical Taxonomy

In this section, we first present the proposed technical

taxonomy of existing network embedding methods,

and then discuss some representative methods under

this taxonomy. The discussion is followed by a brief

summary.

3.1 Taxonomy

We categorize existing methods based on two

orthogonal stages of context construction and objective

design. Table 1 shows the categorization results.

Specifically, we mainly categorize the unsupervised

or semi-supervised network embedding methods. The

supervised methods designed for specific tasks such as

Refs. [58–60] are not covered.

As presented in the table, the first stage constructs the

context network where each node can be characterized

by a set of context nodes. Such context contains the

network properties that different network embedding

methods aim to preserve. In literature, the existing

Table 1 A unified technical framework of network embedding methods.

J1: reconstruction-oriented J2: discrimination-oriented J3: ranking-oriented

N1: original network

SVD, SDNE[18], LINE[19], HNE[20], BPR[21], EP[22],

AANE[23], LANE[24], PTE[25], CENE[26], SiNE[27], SNEA[28],

DANE[29], SNEA[28], EOE[30], MVE[31], DynamicTriad[32]

MVC-DNE[33] IIRL[34]

N2: local neighborhood
SVD#, LLE[17], LINE[19], PRUNE[7]

Isomap[16], M-NMF[35]

N3: walking network

SVD##[36], GraRep[37], DeepWalk[38], APP[39],

TADW[40], HOPE[41], node2vec[42], GENE[43],

DNGR[44], NetMF[45], TriDNR[46], Planetoid[47],

URGE[48], UltimateWalk[49] metapath2vec[50], HIN2Vec[51],

struc2vec[6], SNS[52],

DP-Walker[53], MINES[54],

ANE[55], SIDE[56],

GraphSAGE[57]
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methods mainly use the following classes of context

networks.

� N1: original network. The first class directly uses

the original network as the context network. That is, the

connected nodes fully define the context for each node.

� N2: local neighborhood. Local neighborhood

incorporates both direct and several indirect neighbors

(i.e., neighbors of neighbors) as context nodes. Earlier

network embedding methods such as Isomap[16] and

LLE[17] also belong to this category.

� N3: walking network. The walking network can

be constructed by applying random walks on the

original network. The main difference between walking

network and local neighborhood is that the former

usually incorporates neighbors several steps away.

Objective design is the second stage in the table: it

is used to preserve the properties of the constructed

context matrix. In this article, we divide existing

objectives into reconstruction-oriented, discrimination-

oriented, and ranking-oriented objectives. When

discussing the objective design, we only consider

the objective function of the network structure. For

example, if two objective functions are separately used

on the network structure and node attributes (we will

discuss the details about node attributes in the next

section) in a method, we categorize this method based

on the first objective.

� J1: reconstruction-oriented objective.

Reconstruction-oriented objectives aim to reconstruct

the edges of the context network. Usually, different

types of matrix low-rank approximations are used to

reconstruct the networks.

� J2: discrimination-oriented objective. The

discrimination-oriented objective aims to distinguish

the context nodes from the non-context ones.

� J3: ranking-oriented objective. The ranking-

oriented objective aims to optimize the relative orders

of a set of edges. For example, a ranking-oriented

objective is used in EP[22] to ensure that the connected

nodes are closer than the unconnected ones.

In the following, as the construction of the context

network is relatively straightforward, we mainly discuss

the representative methods in terms of the three types of

objectives.

3.2 Representatives of J1

For the reconstruction-oriented objective, we further

divide existing work into two classes. The first class

uses different types of matrix low-rank approximations

such as SVD, Probabilistic Matrix Factorization (PMF),

and Non-negative Matrix Factorization (NMF). For

example, SVD##[36] and NetMF[45] directly use SVD,

TADW[40] and HOPE[41] apply a variant of SVD by

keeping the Frobenius norm, M-NMF[35] further adds

non-negativity constraints, etc. Other examples include

Refs. [23, 24, 28, 29, 37, 48, 49, 61, 62].

The basic idea of these methods is to first construct

a node-context matrix, and then use the low-rank

approximation matrices as the embeddings. Consider

GraRep[37] as an example. As shown in Fig. 2,

GraRep consists of three steps. Step one, GraRep

computes all the possible paths between nodes via k-

hop multiplications of the normalized adjacency matrix.

Next, for each k value, GraRep applies SVD on the

shifted Pointwise Mutual Information (PMI) matrix[36];

the PMI matrix is defined below:

PMI.i; j / D log.
#.i; j / � jDj

#.i/ � #.j /
/ (1)

where #.i; j / denotes the number of occurrences that

nodes i and j are in the same context, #.i/ (#.j /)

refers to the number of occurrences of node i (j ), and

jDj D
P

i

P
j #.i; j /. Finally, GraRep concatenates

the resulting embeddings from all k values.

The second class of reconstruction-oriented

objectives adopt autoencoders. The basic idea here is

to first map the context matrix into embeddings, and

then use the embeddings to reconstruct the context

matrix. Examples include SDNE[18], DNGR[44],

and MVC-DNE[33]. For example, SDNE inputs the

neighbor vector of each node into the autoencoder, uses

the hidden state as the embedding, and further regulates

the embeddings of connected nodes to be close to each

other.

3.3 Representatives of J2

For the discrimination-oriented objectives, the key idea

is to learn the node embeddings by designing the

objectives to distinguish between the context and non-

context nodes. A recent trend involves the application

of the skip-gram model in word2vec[63, 64] to learn the

node embeddings. Another common practice uses the

logistic regression model for classification purpose. In

fact, nearly all the existing methods that fall into this

category use either the skip-gram model (or its variant)

or the logistic-like objective. Examples include Refs.

[6,7,19,20,25,26,30,31,34,38,39,42,43,46,47,50–57].

We next briefly explain the basic assumption of the

skip-gram model. Given a node u in a network G D
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Fig. 2 The illustration of GraRep[37].

.V; E/, and its neighbors N.u/, the skip-gram model

aims to maximize the following objective,X

u2V

log P r.N.u/jf .u// (2)

where f .u/ denotes the embedding of node u. Then,

by assuming a conditional independence, the above

equation can be written as follows:

P r.N.u/jf .u// D
Y

v2N.u/

P r.vjf .u// (3)

where the softmax function is usually used to estimate

the conditional probability:

Pr.vjf .u// D
exp.g.v/ � f .u//P

v0
2V exp.g.v0/ � f .u//

(4)

Here, “�” denotes the inner product, f stands

for the embedding function for central nodes, and

g refers to the embedding function for neighbor

nodes. The denominator of the above equation is

expensive to compute for large networks. Therefore,

negative sampling techniques are commonly used to

approximate the denominator. Based on the above

model, we can learn the functions f and g which are

used to map nodes to their embeddings.

Based on the skip-gram model, different methods

use various extensions and modifications to further

enhance the performance. For example, node2vec[42]

combines DFS and BFS with normal random walk; DP-

Walker[53] finds that edges can be formed by social rank

(i.e., the richer get richer phenomenon), and modifies

the walking process of DeepWalk to reflect the real

proximity between nodes.

3.4 Representatives of J3

Existing ranking-oriented objectives mainly aim to

optimize the relative orders of a pair of edges. Different

from the discrimination-oriented objective which aims

to identify the difference between a positive edge

(connecting to a context node) and a negative edge

(connecting to a non-context node), the ranking-

oriented objective ensures that the proximity of the

positive edge is larger than that of the negative edge.

Consider BPR[21] as an example. BPR is originally

proposed for recommender systems. The intuition

behind this method is that the user preference on

an observed item should be higher than that on an

unobserved item:

max
U;V

X

.u;i;j /2D

ln �. OR.u; j / � OR.u; i// (5)

where U and V contain the learned embeddings for

users and items, respectively, D contains the .u; i; j /

triples with observed .u; i/ from user u to item

i and unobserved .u; j / from user u to item j ,
OR.u; i/ D U.u; W/V.i; W/0 is the estimated preference of

user u on item i , and �.x/ D
1

1 C e�x
. We ignore

the regularization terms for brevity. Given the above

formulation, when the estimated preference of an

unobserved item (i.e., item j ) is higher than that of an

observed item (i.e., item i ), a larger penalty is added on

the objective function. We can then adapt the above

BPR formulation for pairwise network embedding as

follows:

max
U;V

X

.u;v;c/2D

ln �. OS.u; v/ � OS.u; c// (6)

where the .u; v; c/ triple consists of a positive edge

.u; v/ and a negative edge .u; c/, and OS.u; v/ D U.u;

W/V.v; W/0 is the estimated edge weight corresponding to

the edge S.u; v/ in the context network S.

Several network embedding methods also follow
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this pairwise objective. For example, SiNE[27] and

SNEA[28] are proposed for signed networks, and they

concentrate on the triad structure and propose a pairwise

objective where the similarity of positively-linked

nodes should be higher than that of negatively-linked

nodes. Similarly, DynamicTriad[32] also works on the

triad structure, and it uses such structure for dynamic

network embedding. EP[22] proposes a message passing

framework to propagate embeddings, and adopts the

above pairwise ranking loss at the top layer. SNEA[28]

appears in both the ranking-oriented column and the

reconstruction-oriented column as it simultaneously

uses two types of methods to embed the network.

3.5 Summary and discussion

Based on the information in Table 1, we can infer

the following observations. First, the three types of

context networks (especially the original network and

the walking network) have already been widely used

by the existing methods. This finding implies that no

absolute conclusion decides which context network

performs better, and the performance may depend on

how the context network is combined with the objective

design.

Second, most of the existing methods select

the reconstruction-oriented and discrimination-oriented

objectives. This condition probably results from

the popularity of low-rank approximation model

(i.e., reconstruction-oriented objective) and skip-gram

model (i.e., discrimination-oriented objective). This

observation also encourages us to consider other

models such as ranking-oriented models in the

future research. Additionally, as mentioned above,

SNEA[28] appears in both the ranking-oriented column

and the reconstruction-oriented column. Thus we

may simultaneously use multiple context networks

and multiple objectives to obtain high-quality node

embeddings.

Third, considering the combinations of context

network and objective design, the table still contains

vacancies (e.g., walking network with ranking-oriented

objective). Future efforts can be spared to explore

these areas. We also observe that many of the existing

methods are applicable to different context networks

(e.g., SVD, SVD#, and SVD## are variants of SVD

applied to the three types of context networks).

Exploring such case is also an interesting future

direction.

4 Non-Technical Taxonomy

In this section, we categorize the existing network

embedding methods with a non-technical taxonomy.

We first present the taxonomy and several representative

methods in each category, and then discuss the

observations from the categorization results.

4.1 Taxonomy

In our non-technical taxonomy, our categorization is

built upon the basic problem setting, that is, learning the

node embeddings for general networks via preserving

the local structures, with only the network topology as

input. Based on such basic models, we further consider

the cases when special global network properties are

preserved, special network types are embedded, or

additional inputs are used.

� Basic Models. Basic network embedding models

only utilize the original network as the input.

Additionally, these models consider the case of general

networks and basic neighborhood properties.

� Considering Special Network Properties. Several

existing network embedding methods incorporate

special network properties that go beyond the local

neighborhood. Examples include node roles (e.g.,

structural identity[6] and graphlet similarity[52]) and

global ranking[7].

� Considering Special Network Types. To handle

different network types, special treatments can be

applied. Existing work mainly considers four types

of special networks including directed, signed,

heterogeneous, and dynamic networks.

� Considering Additional Inputs. In addition to

the input network topology, various additional inputs

can be utilized to enhance the network embedding

quality. Examples include node attributes, community

structures/group labels, and supervision labels.

Table 2 summarizes the existing network embedding

methods based on the above non-technical taxonomy.

In the following, we mainly discuss the representative

methods in each category. One embedding method may

belong to multiple categories (e.g., considering special

network types while introducing additional inputs),

whereas another embedding method can consider

multiple aspects in each category (e.g., considering

signed and directed networks).

4.2 Basic models

We start with the basic models. Most basic models for

network embedding are based on the skip-gram model
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Table 2 Non-technical taxonomy of network embedding methods.

Method Special network property Special network type Additional input

DeepWalk[38] — — —

SVD##[36] — — —

GraRep[37] — — —

LINE[19] — — —

PTE[25] - Heterogeneous networks Node attributes, supervision labels

TADW[40] — — Node attributes

HNE[20] — — Node attributes

node2vec[42] — — —

DNGR[44] — — —

SDNE[18] — — —

CENE[26] — — Node attributes

HOPE[41] - Directed networks —

GENE[43] — — Group labels

TriDNR[46] - Heterogeneous networks Node attributes, supervision labels

Planetoid[47] — — Node attributes, supervision labels

AANE[23] — — Node attributes

APP[39] - Directed networks —

M-NMF[35] — — Group labels

LANE[24] — — Node attributes, supervision labels

struc2vec[6] Structural identity — —

metapath2vec[50] — Heterogeneous networks —

HIN2Vec[51] — Heterogeneous networks —

SiNE[27] — Signed networks —

EP[22] — — Node attributes

DANE[29] — Dynamic networks Node attributes

SNEA[28] — Signed networks Node attributes

EOE[30] — Heterogeneous networks —

MVE[31] — Heterogeneous networks —

MVC-DNE[33] — — Node attributes

PRUNE[7] Global ranking — —

URGE[48] — Uncertain networks —

UltimateWalk[49] — — —

SNS[52] Graphlet similarity — —

GCN[9] — — Supervision labels

GraphSAGE[57] — — Node attributes

DynamicTriad[32] — Dynamic networks —

IIRL[34] — — Node attributes

NetMF[45] — — —

DP-Walker[53] — — —

MINES[54] — Heterogeneous networks Hierarchical structure

ANE[55] — — —

DepthLGP[65] — Dynamic networks —

SIDE[56] — Signed networks, directed networks —

and the matrix factorization models. Typical examples

include DeepWalk[38], LINE[19], node2vec[42], and DP-

Walker[53] which are all built upon the skip-gram model;

as well as SVD##[36], GraRep[37], UltimateWalk[49], and

NetMF[45] which are built upon matrix factorization

models.

In addition to the above types of basic models, other

models have also been adopted. For example, SDNE[18]

and DNGR[44] use autoencoders to reconstruct the

context network; ANE[55] and GraphGAN[66] adopt

adversarial networks by, e.g., simultaneously training

a structure preserving component and an adversarial
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component.

4.3 Considering special network properties

Although basic models typically consider the local

neighborhood structure, other methods further

incorporate the global structure into the embedding

process. For example, struc2vec[6] considers the

structural identities of nodes (e.g., hubs and authorities),

and computes the proximity of structural identities;

SNS[52] considers the graphlets[67] to compute the

similarities between local subgraphs of two nodes.

Different from the above methods, PRUNE[7] preserves

the global ranking (e.g., PageRank value) in the model

and develops a multi-task neural network structure;

RaRE[68] considers a Bayesian perspective, and

assumes that edges are formed by either proximity or

the social rank, similar to the global ranking concept.

4.4 Considering special network types

4.4.1 Directed networks

Several researchers pay special attention to directed

networks[39, 41, 56] as the proximity computation can

encode the asymmetric information which cannot be

encoded by methods working on general networks. For

example, when computing the proximities between

nodes, HOPE[41] handles high-order proximity

measurements, such as Katz Index and Adamic-

Adar in a matrix factorization framework; APP[39] and

SIDE[56] are built upon the skip-gram model, and they

primarily focus on how to generate the random walks

that are suitable for directed networks.

4.4.2 Signed networks

Different from the normal unsigned networks (with only

positive edges), signed networks contain both positive

and negative edges. A key issue here is to deal with the

negative edges. As an example, SiNE[27] concentrates

on the triad structure where the similarity of positively-

linked nodes should be higher than that of negatively-

linked nodes. SNE[69] is another embedding method

designed for signed networks, which adopt the log-

bilinear model to linearly combine the embeddings

of the context nodes for a given central node. Other

examples include SNEA[28] which embeds signed

networks with node attributes, and SIDE[56] which

embeds signed and directed networks.

4.4.3 Heterogeneous networks

Heterogeneous networks contain nodes/edges

of different types[20, 30, 31, 46, 50, 51, 54]. To tackle

heterogeneity, one line of existing work is based on the

concept of metapaths[70], which consists of multiple

types of nodes or edges. For example, metapath2vec[50]

defines metapaths and learns the embeddings in a

manner similar to DeepWalk; HIN2Vec[51] defines

metapaths and adopts a logistic classification method

to learn the embeddings. Another line of existing

work is based on the multi-view learning framework

where each view deals with a certain type of edge.

For example, given the multiple views of networks,

MVE[31] learns the embeddings for each view and

combines them via attention mechanism; Ma et

al.[71] learnt the network embedding and multi-view

clustering via tensor factorization.

In addition to the above two lines of work, other

types of heterogeneous network embedding methods

have also been proposed. For example, PTE[25] extends

the LINE model to embed heterogeneous networks:

LINE can be considered as an embedding method for

homogeneous networks (e.g., word-word networks),

whereas PTE further considers word-document

networks and word-label networks. Similarly,

TriDNR[46] exploits node-node networks, node-

content correlation, and label-content correspondence.

Different from PTE and TriDNR, Chang et al.[20]

considered the heterogeneous network where each

node may include different types of attributes; Xu

et al.[30] considered the heterogeneous networks

with two different but related networks connected

by inter-network edges; MINES[54] also deals with

heterogeneous networks with multiple relations

between nodes.

4.4.4 Dynamic networks

Several researchers proposed embedding methods for

dynamic networks where the network evolves over time.

For example, DANE[29] focuses on attributed networks

using eigen decomposition and learns the embeddings

of new nodes using neural networks on latent factors

to approximate the mapping from nodes to their

embeddings; DynamicTriad[32] learns the embeddings

via triadic closure process (e.g., if an open triad closes,

then the terminal nodes of the new connection should

be closer to each other). DepthLGP[65] assumes f

to be the mapping from nodes to their embeddings

and introduces a function h to map each node to its

hidden state. Then, DepthLGP learns a neural network

to transfer h to f . By doing so, DepthLGP can learn

the embeddings of new nodes.
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Although not explicitly mentioned in Table 2,

Planetoid[47], MVC-DNE[33], GraphSAGE[57], and

DyRep[72] can also potentially predict the embeddings

of new nodes, as they develop inductive models for the

embedding problem.

4.4.5 Others

In addition to the above network types, other interesting

network types have also been studied. For example, Hu

et al.[48] embedded uncertain networks where each edge

exists with a probability; IGE[73] considers bipartite

networks; Tu et al.[74] embedded hyper-networks where

a hyperedge involves more than two nodes.

4.5 Considering additional inputs

4.5.1 Node attributes

The node attribute is the first additional input

that has been widely used by existing network

embedding methods. The first way to use the

node attribute is to model it as a special type

of node in a heterogenous network[25, 46]. The

second way is to learn the representations of node

attributes via, e.g., neural networks or matrix

factorization. These learned attributes can help to

regulate the node embeddings. Examples include Refs.

[20, 23, 24, 26, 28, 29]. The third way is to develop

an inductive network embedding method which can

directly map the node features to node embeddings.

Examples include TADW[40], Planetoid[47], MVC-

DNE[33], GraphSAGE[57], and DepthLGP[65]. Other

methods include EP[22] which propagates node

embeddings (derived from node attributes) along

neighbors and updates the embeddings backwards, and

IIRL[34] which learns the node embeddings and the link

types together where links can be formed by structure

homophily and attribute homophily.

Notably, we can derive the node features (e.g.,

node degrees) from the network topology, and use

these features to substitute node attributes. Therefore,

a number of network embedding methods such as

Planetoid[47] and GraphSAGE[57] can also be used in the

settings without available node attributes. In Table 2,

we still put “node attributes” for these methods as they

can handle both cases.

4.5.2 Group labels

Several researchers propose to incorporate the

community structures or the group labels when

such information is available[35, 43, 75]. For example,

M-NMF[35] adopts the factorization based method

while preserving the community structure of the

network. M-NMF also collectively factorizes the

node similarity matrix and the community indicator

matrix and further adds an optimization term to

maximize the modularity[76]. GENE[43] generalizes the

DeepWalk model: DeepWalk generates the embedding

of a given node from its neighbors, whereas GENE

performs the same from the neighbors and the group

embedding. ComE[75] simultaneously learns the

community embedding and the node embedding.

4.5.3 Supervision labels

The supervision information is also used by existing

network embedding methods[9, 24, 25, 46, 47, 62]. For

example, PTE[25] and TriNDR[46] incorporate the

known labels as input when learning the embeddings,

and use these embeddings to predict the unknown

labels. MMDW[62] introduces the max-margin idea in

Support Vector Machine (SVM) and jointly optimizes

the max-margin based classifier and the network

embedding formulation. GCN[9] introduces graph

convolutional networks for network embedding and

optimizes the cross entropy.

We mainly review the semi-supervised network

embedding methods as their main goal is to learn the

node representations. Several supervised methods also

use network embedding as an intermediate step. For

example, Zhang and Hasan[59] used pairwise ranking on

the person-person network, person-document network,

and doc-doc network to perform name disambiguation;

SHINE[60] works on signed heterogeneous networks for

sentiment link prediction.

4.5.4 Others

Other inputs have also been used. For example,

MINES[54] incorporates hierarchical structures among

nodes (e.g., items are organized by categories in e-

commerce networks).

4.6 Summary and discussion

Overall, we can draw several observations from Table 2.

First, the local neighborhood is mostly used by existing

network embedding methods. A few exceptions may

compute the similarity of nodes far away in the

network. The lesson learned from these exceptions is

as follows. Although the basic assumption of network

embedding is to preserve the local neighborhood, we

consider that the global structure may benefit certain

types of downstream prediction tasks where the node

labels are more dependent on their roles over the whole
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network.

Second, recent works consider various special

network types (e.g., heterogeneous networks and

dynamic networks) and additional inputs (e.g.,

community structures and node attributes), as well

as the combinations of these extensions. From this

perspective, several future directions can be considered

by trying different combinations.

Finally, other network embedding methods exist in

addition to those in Tables 1 and 2. For example,

Misra and Bhatia[77] proposed binary embedding

which requires that the learned embeddings are

binary values; HARP[78] proposes the strategy to

learn node embeddings from smaller networks (which

approximates the global structure) to larger ones and

shows that this strategy improves the performance of

existing methods such as DeepWalk and node2vec.

In addition to learning the embeddings for nodes,

other researchers proposed to learn the embeddings

of communities/subgraphs[79, 80]. These methods are

beyond the scope of this article.

5 Conclusion

In this article, we have reviewed the existing network

embedding methods with two taxonomies. Technical

taxonomy divides the existing methods into context

construction and objective design. Specifically,

context network includes original network, local

neighborhood, and walking network, whereas

reconstruction-oriented, discrimination-oriented,

and ranking-oriented objectives are included. On the

other hand, non-technical taxonomy divides existing

work based on whether to preserve special network

properties, to consider special network types, or to

incorporate additional inputs. Several findings and

future directions are discussed based on the taxonomy

results. Thus, this article may benefit the future

network embedding research in terms of understanding

the advantages and disadvantages of design choices and

providing suitable competitors.

Several interesting future directions should be

considered. First, although the features from

manual feature extraction methods provide clear

meanings, network embedding methods provide

features with vague meanings. A future direction is

to interpret/explain the learned embeddings. Second,

although generating features in a dynamic setting has

been studied by several researchers, developing an

efficient and accurate dynamic embedding method

remains a challenging problem. Third, with the fast

development of network embedding research, studies

should aim to develop a platform where the results

of benchmark methods on benchmark data sets with

benchmark tasks can be shared and compared.
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