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Abstract. The development of the theory of birefringet~cc ,~ a ~ ~  
'composites has proceeded mainly along the fotlowmt~ d~ '~r |~n~ ~ ' ~  
strain models, analogy, integrated photoelasticity and len~,~r~| n,~.~'~ ~ 
birefringence. All these studies have concluded thai lhg~ ~ n ~ ~ !  
photoelastic constants are needed to characterize o r l h ~ t o p ~  u ~  
materials. In the literature, there has not been uniformlt~ ~ o|  ~ n ~ m  ~ 
in the representations of the results. 

In this paper, using uniform notation, existi~g pht~lO-~th~r,~l~ ' C ~ , ~  
city theories are reviewed under three major headings: ~ ~  ~ .  
strain-optic laws and approximate strain,optic l a ~  T ~  ~ c t t ~ e ~ e ,  
ships between stress-optic and strain-optic ¢~eiT~cienls arc ~o~h~¢ ~,~ 
Interpretation of isoclinics is discussed. The s t e~  m , ~ ~ ,  It~ ¢ ~ h ~ ¢  
a birefringent orthotropic composite are summarized and f i ~ l ~  ~ 
influence of residual birefringence is also discussed, 

Keywords. Orthotropic composites; photoelastioly; p h o ~ o o o ~ h o ~ : ~  
elasticity; stress-optic taw; strain-optic law, 

1. Introduction 

Composite materials have established themselves as strong e ~ n d i ~ t ~  t~¢~lr ~ m t ~ u ~  
structiJral applications. For their efficient utilization, complete a t r ~  ~ l y ' ~  a ~  
reliable failure criteria are essential. Analytical methods tend to t ~ m ~  di t f f~t |  
composites due to material anisotropy, and multiplicity of failure m ~ ,  C ~ o l ~ l ~ $ ~ ,  
experimental methods of stress analysis and failure analysi~ a ~  vet8 m ~  |~t  
composites (Whitney et al 1984). 

Among various experimental methods, optical method.s have. the a ~ I v ~ n ~  ¢~' 
yielding full-field quantitative results. In recent years the~  h a ~  ~ n  ~ ~ |  
efforts to extend photoelastic methods of stress analysis for a p ~ t i o ~  tn~o|v~nS 
composites. One approach outlined by Dally & Alfirevich (|963~k i~ to ~ ~ ,  ~ t ~  
birefringent coatings bonded to the composite. In this ease, the strain ~ ~ 

* For correspondence 
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from the coating using a reflection polariscope together with conventional methods 
of photoelastic analysis established for isotropic materials. 

The second approach, initiated by Pih & Knight (1969) involves the use of a 
transparent birefringent model of the composite with anisotropic elastic and optical 
properties. 

Though the first approach is simple in its application, there are several difficalties 
associated with it. Pipes & Dally (1972) conducted detailed analysis near free edges 
of composite materials and pointed out the limitations of the method due to the 
mismatch of the Poisson's ratios of the coating and the substrate. Further, the 
birefringent coating method is not suitable for studies on the dynamic fracture of 
composites since the coating reinforces the laminate and arrests crack growth. 

On the other hand, development of transmission photoelastic techniques for 
composites is the right choice for studying dynamic crack propagation in composites. 
One of the important requirements for this technique is the d~elopment of appropriate 
model materials. This has been addressed by several investigators (Pih & Knight 
1969; Agarwal & Chaturvedi 1970; Sampson 1970; Dally & Prabhakaran 1971; 
Prabhakaran 1980b; Tiwari 1990; Agarwal et al 1991). 

The second difficulty is the interpretation of the optical response. In the case of 
isotropic model materials, the optical response can be quantitatively re!ated to the 
differences in principal stresses using a single stress-optic coefficient. 

In the case of a transparent composite laminate, the state of stress at each point 
along a light beam through the model thickness is different. The optical response 
observed in a polariscope is due to the integral effect of the stress field through the 
thickness of the model. It has been observed experimentally that the orientation of 
fibres influences the photoelastic response, and hence, a single photoelastic constant 
is not sufficient to characterize the model material. In the past two decades research 
work in this area has been primarily done for the determination of calibration constants 
for unidirectional composites. 

In the following paragraphs, using uniform notation, various existing photo- 
orthotropic elasticity theories are briefly reviewed. Interrelationships between stross- 
optic and str~tin-optic coefficients ai'e brought out. Interpretation of isoclinics is 
discussed, The steps required to characterize transparent orthotropic composite 
laminates are summarized and finally the influence of residual birefringence is also 
discussed. A detailed review can be found in the ARDB report of Ramesh & Tiwari 
(1991). 

2. Stress-optic laws 

Though Pih & Knight (1969) were the pioneers in analysing transparent composites 
using the principle of stress proportioning, their results are far from satisfactory due 
to inaccuracies in their stress-strain model. Sampson (1970) developed the concept 
of "Mohr's circle of birefringence" by simple analogy and arrived at the following 
relation for fringe order N, 

N = [{(,,dfL)- + (1) 

Let the principal stresses be (p,q) and the principal stress p be at an angle ~x to the 
L axis, then (1) becomes 
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N = E{ [ "c~ + (q/p)'sin z t] - [sin2 + (q/p)'cos2 -](fLtfr)} 2 + 

[1 -- (q/p) ]2. [sin2oc.(f d f  Lr) ]2] .(t. p / f  D. (2) 

For a uniaxial stress-field (i.e. q = 0), 

N = [{(COS2Ot/fL)- (sin2oc/fr)} 2 + (sinZ2~,/f2r)]~J~~. p. (3) 

It has been pointed out earlier that the fibre-orientation angle influences the fringe 
order. In other words the material fringe value is a function of fibre-orientation angle. 
If f= is defined as t .p/N then the above equation directly gives the value of f=. 
Extending the analogy of Molar's circle, Sampson (1970) obtained the optical isoclinic 
angle q5 as 

tan 2~b = (2rLT/fLr)/F(CrL/fL) -- (rrr/fr)]. (4) 

In terms of the fibre orientation angle for a uniaxial stress field, 

tan 2~b = (fL" sin 2=)!EfLr" {cos ~ ~ - (A/ f r )"  sinZ cz} ], (5) 

and for a general biaxial stress field, 

tan 2q5 = [fL'(l - q/p)" sin 2~]/[fLr" {COS 20C + q" sin 2 ~/p 

--( fL/ fr) ' (s in2~ + q'COS2~/P)I] �9 (6) 

Using the analogy approach, Sampson (1970) could show that three photoelastic 
constants ( fL , f r  and f i r )  are required to characterize orthotropic materials. He 
supported his theory by limited experimental results. No mathematical proof was 
provided by him to support his theory. However, all later investigators, proceeding 
from various standpoints substantiated his results. 

Dally & Prabhakaran (1971) also predicted three fundamental photoelastic 
constants. Their important contribution is that they evaluated these constants as 
functions of the elastic and optical properties of the constituents of the composites. 
While formulating their model, they assumed that the total retardation introduced 
by the laminate is the algebraic sum of retardation introduced by fibre and matrix 
phases. Using the principle of stress proportioning and the results of Greszczuk (1966), 
they showed that the accuracy of the results is greatly influenced by the accuracy 
with which the stresses in the constituents can be evaluated. Their experimental results 
agreed closely with the stress-optic law formulated by Sampson (1970) (figure 1). 
However, they did not discuss the interpretation of isoclinics. 

Bert (1972) introduced the application of tensorial-relations in the formulation of 
the stress-optic laws by adapting the work of Bhagavantham (1966) on the crystal 
theory. In this theory, stress and birefringence were shown as second-order tensors 
so that the photoelastic properties, tensor relating stress and birefringence must be 
of fourth order. Symmetry of an aligned, fibrous composite was assumed to be 
representable by an orthorhombic crystal. The equations presentedwere in a form 
not practically suitable for solving general plane-stress problems. No experimental 
data were presented in their paper. 

Cernosek (1975), using the principle of integrated photoelasticity analysed the 
orthotropic composite and arrived at the same results as Sampson (1970) and Bert 
(1972). The approach of integrated photoelasticity explicitly takes care of the variation 
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Figure 1. Material-fringe value f~ for a 
unidirectional laminate as a function of 
fibre orientation angle (from Dally & 
Prabhakaran 1971). 

of the principal stress direction and magnitude from point to point along the path 
of light. Using the principle of "optical equivalence" (Aben 1966), even for the most 
general ease of principal stress variation both in magnitude and direction a long  the 
path of light, the net optical effect could be reduced to a combination of a retarder 
and a rotator. Cernosek (1975) observed that for the case of orthotropic composites,  
the optical effect could be represented by a retarder alone with the following 
retardation, 

260 = 2n [6~. + 62," + 26.,,-6,. "COS2~] 1/2. (7) 

He obtained the orientation of the retarder to be the same as that given by (5). 
Using Dally and Prabhakaran's (1971) stress-strain model, he showed that (7) could 
be reduced to (3). Thus he established a similarity between Sampson's 11970) pheno- 
menological theory and Prabhakaran's stress-proportioning concept. Fur ther ,  he 
showed that the expression of f~ developed by Dally & Prabhakaran (1971) is exact 
only when ~ = 0 ~ or 90 ~ In contrast to this, Sampson's (1970) theory is valid for any 
value of e. Though the expression for f ,  as developed by Dally & Prabhakaran (1971) 
is approximate, the expression for fz and f r  in terms of the parameters of  the 
composite's constituents is exact since by definition e = 0 ~ or 90 ~ in such cases. 

Knight & Pih (1976) using the Bhagavantham (1966) theory derived a general  
stress-optic law and then simplified it to the two-dimensional ease. Their formula t ion  
was general and also accounts for initial birefringence. Their simplified equations are 
of the same form as those of Sampson (1970) and Bert (1972)�9 

Equations (2), (3), (5) and (6) directly show the influence of fibre orientation. While  
using these equations, it is to be remembered that the angle ~ is the orientat ion of 
principal stress 'p' with respect to the 'L ~ axis of the composite. Through explicitly 
bringing in the equations, the influence of fibre orientation angle has led to certain 
simplifications in the ease of strain optic laws; (1) and (4) are recommended for general 
use because of their generality and simplicity. 
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3. Strain-optic Laws 

The reduced influence of mechanical anisotropy on the strain-fringe wdue, compared 
to its effect on the stress-fringe value, has been recognized by Horridge (1955}, Hayashi 
(1962), Grakh & Mozhenskaya (197I) and Netrebko (1971}. Pipes & Rose 11974) 
developed a strain-optic law involving only one photoelastic constant, ttowever, their 
results are applicable only to unidirectional composites having a very low fibre 
content. Following the approach of Sampson (I 970), Prabhakaran (1975) dcvelopcd 
a strain-optic law based on the concept of Mohr's circle of bircfringcnce and 
introduced three material strain-fringe values, ./~t,, Ji:'r and f, t .r .  These are related to 
the observed fringe order in the model material by the relation, 

N = I- + { 1:2" t. {t,i) 

The isoclinic angle is given by 

tan2q~ = ()' Lr / f  t, t,r )/(~:L/f ~.L -- e,T /./I:T ). 

Agarwal & Chaturvedi (1982) derived an exact strain-optic law ft~r orthotropic 
materials using Pockers (1906) theory of crystalline photoelasticity. Their approach 
is similar to the method followed by Knight & Pih (19761 for stress-optic laws. 
Chaturvedi (1982) pointed out that ,~ also contributes to the photoelastic effect. 
The final form of the equations obtained by Prabhakaran {1975) and Agarwal & 
Chaturvedi (1982) are identical. They also concluded that three material strain fringe 
values are required for the total characterization t~f the composite model material. 

4. Approximate strain-optic laws 

The proponents of strain-optic laws did not stop at their exact theories but also devi~d 
ways to develop approximate strain-optic laws for better and practical utilization. 
Important contributions in this.direction were made by Agarwal and his c~workers 
(Jha 1980; Agarwal & Chaturvedi 1982; Agarwat 1983). Prabhakaran {1975) also 
proposed an approximate strain-optic law. In this approximate law he defined a 
single strain-optic coefficient, whose value was taken as the algebraic mean of the 
three strain-optic coefficients. Since the quantities under consideration are tonsorial 
in nature, algebraic addition is not strictly correct. 

Agarwal & Chaturvedi (1982) proposed an approximate strain-optic law, in whictl 
the square of the error between the predictions of exact and approximate laws was 
minimized. However, the accuracy of the approximate strain-optic law was found to 
vary with the fibre orientation angle and also with the volume fraction of the fibres. 
Later, Jha (1980) and Agarwal (1983) modified the approximate law of Agarwal & 
Chaturvedi (1982) slightly and proposed a new approximate strain optic law which 
can be written as 

N = E(~p - ~q)/f:.3 [ cos2 2/I, + ( f : / f ,  Lr) 2. sin: 2//c) ] t12.t, (! 0) 

4 = 1/2"tan -~ {[f , .L/f ,  Lr] ' tan2[t ,} .  (11) 

This law is exact for a balanced composite and approximate for a general one. 
The predictions were found to be in good agreement with experimental results. 
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5. Interrelationships between stress and strain optic coefficients 

Using M ohr's circle of birefringence, Prabhakaran (1979) has obtained the relationships 
between material strain-fringe and stress-fringe values as follows 

f~L = (1 -- VLr'VTL)/[(EL/f L ) -- (Er" VLr,/f r)], 

L T  = (1 - -  VLT" PTL)/[{ET/f T ) -  (E L" VTLIIfL)], 

f~LT = fLT/2GL:r" 

(12) 

(13) 

(14) 

Inverting the above set of equations one obtains 

1/'fL = [ 1 / ( E L ' f J ]  + VLr/(E,:Lr), (lS) 

1/f r = [1/(Er" f~r)] + Vrz/(Er" f,L), (16) 

1/fzr = 1/(2Grr'f~/~r). (17) 

Doyle (1978), starting from the premise that optical and mechanical constitutive 
relations do not necessarily have similar forms, showed initially that two constants 
are sufficient to get the optical response of the composites. This suggests that there 
must be an interrelationship between fL, f r  and ft.r. In a discussion of the above 
paper, Prabhakaran (1980a) explicitly expressed the interrelationship as 

fLT .'q 

In a later paper, Doyle (1980) emphasized that two constants are insufficient if the 
volume fraction of the fibre in the composite exceeds by 6%. Thus, (18) holds good 
if the volume fraction of fibre in the composite is less than 6%. For cases when fibre 
content in composite exceeds this limit, knowledge of three independent constants  is 
essential for proper characterization of the model material. 

It is interesting to note that the stress-fringe values can be related to the propert ies  
of the constituents of the composite. Dally & Prabhakaran (1971) obtained one such 
set of relations for fL, f r  and fLr. 

6. Interpretation of isoclinics 

Pih & Knight (1969) realized that the isoclinics in orthotropic models do not  give 
the principal stress directions of the composite. Although Sampson (1970) found  
strong support from the isochromatic results of Pih & Knight (1969) for his stress- 
optic law based on analogy, he could not show a similar agreement between his 
predictions and the isoclinic results of Pih & Knight (1969). Pipes & DaUey (1973) 
pointed out that the experimenal isoclinic results of Pih & Knight (1969) could not 
be deemed reliable due to end-effects; they measured the isoclinic parameters for two 
fibre orientations and concluded that the isoclinic parameter is influenced b y  the 
stress level (due to the residual effects caused by matrix shrinkage) and t ha t  the 
isoclinics give neither the principal stress directions nor the principal strain directions. 
They revived the possibility that Sampson's (1970) concept of the Mohr circle of 
birefringence could predict the isoclinic parameters but did not substantiate this 



Photo-orthotropic elasticity theories 991 

possibility. Pipes & Rose (1974) hypothesized that the isoclinic parameter gives the 
principal strain direction. 

Prabhakaran (1976), working on the premise that Sampson (1970) was unable to 
verify his isoclinic predictions because of the absence of reliable experimental results, 
measured the isoclinic parameters in uniaxial as well as biaxial stress-fields. For a 
uniaxial stress field, (5) relates the optical isoclinic with the fibre orientation as shown 
in figure 2. It is seen that the predictions based on the concept of Mohr's circle of 
birefringence (i.e. orthotropic theory using (5)) agree with the experimental results 
very well. Various other angles, such as the principal stress direction (Or), principal 
strain direction (tie) of the composite, principal stress direction of fibre (| and 
matrix (19,.) are also shown in figure 2. It is clear from the graph that the optical 
isoclinic parameter is a closer approximation to the principal strain angle than to 
the principal stress angle. It may be noted that in figure 2, the angles are measured 
with the L-axis as reference. 

The isoclinic parameter has been investigated in biaxial stress-fields (Prabhakaran 
1976) also. A circular disk, unidirectionally reinforced, was diametrically compressed 
at different orientations. The optical isoclinic parameter at the centre of the disk was 
measured and the strains at the centre were also measured by a strain gauge rosette. 
The influence of the residual birefringence can be seen in figure 3. At sufficiently high 
loads, the measured isoclinic parameter could be considered as due to the applied load. 

In figure 4, the optical isoctinic parameter (q~), using (6), is shown as a function of 
the fibre-orientation angle e. Also shown in the figure are the principal stress angle 
(physical isoclinic parameter) and the principal strain angle for the composite. Both 
appear to deviate from the optical isoclinic parameter by equal amounts. 

Thus it is clear that the Mohr's circle of birefringence concept is successful in the 
interpretation of not only the isochromatics but also the isoclinics in orthotropic 
models. 
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7. Calibration of photo-orthotropic composites 

The development of the theory of birefringence of anisotropic composites has proceeded 
mainly along the following direction; stress-strain models, analogy, integrated 
photoelasticity and tensorial nature of birefringence. All these studies have concluded 
that three independent photoelastic constants are needed to characterize orthotropie 
model material. 

Interrelationships between stress and strain optic coefficients have been given in 
(i2) to (17). It is more difficult to determine strain-fringe values experimentally as 
compared to stress-fringe values. This is due to the fact that application of uniaxial 
stress is easier than application of uniaxial strain. 

Using tension specimens with fibres oriented at 0 ~ and 90 ~ it is easy to determine 
f~. and Jr. On the other hand, determination of fz, r is not easy since it requires 
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loading the specimen in pure shear. One can adopt anyone of the following three 
approaches depending on the accuracy desired. 

(1) One approach is to use the interrelationship obtained in (18)if V: is less than 6~. 
[2) An approximate method to determine fLr is by obtaining f,/4 initially, by 

conducting a 45 ~ off-axis coupon test and then using this value in the following 
relation to get fLT" 

fLr/f , / ,=[1 +(1/4){fLr/f t}Z{l-(f t / fr)}2] ~:=. (19) 

The error in equating ft.r to f~,4 depends upon the ratios, ft.r/fL and f t / f r .  This 
error is small (usually less than 3Vo). 

(3) An exact method for finding fz r  has been reported by Chaturvedi (1978) and is 
as follows. 

It is seen from (3) that f ,  is directly related to fzr when 

fr/fL = tan2 ~0. (20) 

The values of % can be determined by knowing fz  and f r  of the composite. If 
the unidirectional composite is subjected to the %~ coupon test, then 

fLr = f~0"sin 2~o. (21) 

Strain-fringe values can be determined by using the interrelationships between 
stress-fringe and strain-fringe values [-(12) to (17)]. 

In the case of isotropic materials, accurate determination of fo is very critical since 
this is the only parameter which relates theoretical a.nd experimental results. Following 
the same approach, it is essential that fL, f r  and f t r  are determined with extreme 
care. In the determination of fLr, the second method is widely used. However, the 
method proposed by Chaturvedi (t978) is better and is recommended for cases where 
higher accuracies are demanded. 

8. Influence of residual birefringence 

Curing of all types of epoxy or polyester resins is accompanied by a change of volume. 
Due to this shrinkage, residual birefringence is introduced. This is unavoi.dable while 
fabricating a transparent composite for conducting photo-orthotropic experiments. It 
has been found experimentally (Pipes & Dalley 1973) that the principal direction of 
residual birefringence is identical with the direction of the fibres. 

In the literature, accounting for residual birefringence is basically done in two 
different ways. In one approach, the final fringe order and optical isoclinic angle are 
expressed as functions of residual birefringence. Cernosek (1975) using integrated 
photoelasticity and Mittal (1975) based on Toupin's (1963) theory of deformable 
dielectrics obtained identical expressions for fringe order and isoclinic angle incorpora- 
ting the effect of residual birefringence. The total fringe order N r in the presence of 
residual birefringence is given by 

NT = t" [ [ (N , /0  + (~L/ fL)  -- (~ r / f r ) ]  2 + [ ( 2 r L r / f L r ) ] Z ]  I/2, (22) 
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and the isoclinic angle q5 r in the presence of residual stress is given by 

tan 24r  = ( 2 r t r / f  r r)/[ (N,/t)  + (a~./f z) - (a t~ f  r)]. (23) 

Using the above expression for 4)r Cernosek (1975) was able to fit the experimental 
results of Pipes & Dalley (1973) very precisely. The above expressions are strictly 
valid only for cases in which residual birefringence is in the direction of fibres. 

The other approach is to extract the load-induced birefringence and the isoclinic 
angle. Cernosek (1975) has shown that an orthotropic composite can be modelled as 
a retarder without any rotation. Due to this, extraction of initial birefringence is very 
similar to the procedure adopted in isotropic cases (Guenter 1977). This has been 
shown using the tensorial nature of birefringence by Knight & Pih (1976). Load 
induced birefringence is given by 

and 
N = [N~. + N 2, - 2 N r N C O S 2 ( d ~ r -  4),)31,,2, (24) 

tan 2q~ = (N r.sin 24)r - N,. sin2qS,)/(Nr, cos 24) r - N,'cos 2q5,), (25) 

q5 r and qS, should be referred to the L-axis of the composite. Cernosek (1975) and 
Mittal (1975) assumed ~b, to be 0. This has been experimentally confirmed by Pipes 
and Dalley (1973). 

When a theoretical reconstruction of fringes is required (which is gradually acquiring 
significance), one can use (22) and (23) (Cemosek 1975; Mittal 1975). On the other 
hand, (24) and (25) are appropriate for experimental calculations. 

9. Conclusions 

Birefringent isotropic model materials can be characterized by a single photoelastic 
constant. However, three constants are required for the complete characterization of 
photo-orthotropic model materials. In general, the directions of principal stresses 
and strains are not identical. Hence, the stress-optic laws and the strain-optic laws 
are different for these model materials. Both stress-optic and strain-optic theories 
highlight the need for three independent calibration constants for photo-orthotropic 
materials. Interrelationships do exist between stress-optic and strain-optic coefficients. 

It can be concluded that when an accurate photoelastic analysis of an orthotropic 
model is needed, either the stress-optic law or the strain-optic law can be employed; 
Both of them are equally complex to use. When an approximate analysis is sufficient, 
the approximate strain-optic law proposed by Agarwal (1983) can be employed. This 
approximate strain-optic law is, however, exact for a balanced composite. 

Due to complexities in the birefringent phenomena in orthotropic model materials, 
the isochromatic fringes observed in such materials are neither representative of 
contours of principal stress differences nor of the principal strain differences. Further,  
the optical isoclinics seen neither represent the principal stress directions nor the 
principal strain directions. 

In view of the above, separation of principal stresses or strains is not a simple task 
even for a two-dimensional problem. Several methods have been proposed by various 
investigators. 

Sampson (1970) proposed that the components of birefringence according to the 
Mohr's circle of birefringence, along with the differential equations of equilibrium, 



Photo-orthotropic elasticity theories 995 

could be used in a shear difference method. Another method to separate the principal 
stresses has been addressed by Agarwal & Jha (1983). Recently, Prabhakaran (1982) 
has summarized various techniques for separating principal stresses. 

The research work reported in this paper is supported in part by an lndo-US project 
jointly funded by NSF of USA (Grant No. INq'-90011089), and the Department of 
Science and Technology, India and an ARDB project (no. 540) of the Government of 
India. 
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EL, ET 
L 

fL, fT, 
L,,, L,.T 
GLr 
II 

N 
N, 
Nr 
P,q 
t 
Vl 
C~ 

2fir 
2~,, 
230 
~p,, s 

~L, RT, ~LT 
Oc, 0r 0,~ 

v o 
ffL~ fiT, "CLT 

Q 

Young's modulus of composite in L and T directions; 
material stress fringe value of composite for a fibre orientation angle 
cq 
material stress fringe values of composite in L, T and L T directions; 
material strain fringe values of composite in L, T and L T directions; 
shear modulus of the composite w.r.t. L -  T axes; 

'total numbers of fibres traversed by light; 
load induced birefringence in the composite; 
residual birefringence in the composite; 
total observed birefringence in the composite; 
principal stresses in the composite; 
thickness of the model material; 
volume fraction of fibre in composite; 
orientation of L-axis of the composite w.r.t. Y-axis; 
principal strain direction in composite w.r.t. L-axis; 
relative phase retardation in a single fibre; 
relative retardation in matrix surrounding one fibre; 
total retardation in a composite laminate; 
principal strains in the composite; 
strain components referred to L-T axis; 
principal stress directions in composite, fibre, and matrix, respectively, 
w.r.t. L axis; 
Poisson's ratio of composite w.r.t. (i,j) axes; 
stress components referred to L -  T axis; 
load induced optical isoclinic angle w.r.t. L-axis; 
residual isoclinic angle in the composite w.r.t. L axis; 
total observed isoclinic angle in the composite w.r.t. L axis; 
Om - 0 s. 
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