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Abstract

In recent years, there has been an effort to develop new technologies for measuring gene expression and sequence informa-
tion from thousands of individual cells. Large data sets that were obtained using these ‘single cell’ technologies have allowed
scientists to address fundamental questions in biomedicine ranging from stems cells and development to cancer and immun-
ology. Here, we provide a brief review of recent developments in single-cell technology. Our intention is to provide a quick
background for newcomers to the field as well as a deeper description of some of the leading technologies to date.
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Introduction: The rationale of single-cell
analysis
Why single cells?

Over the past decade, progress in biochemistry, physics, engin-
eering and computer science has led to the development of
high-throughput technologies for measuring gene expression
and sequence information from biological samples. High-

throughput technologies such as RNA sequencing [1, 2] allowed,
for the first time, a deeper and detailed understanding of com-
plex biological processes such as organism development, tissue
regeneration and cancer.

Library preparation procedures for RNA sequencing typically
require large amounts of starting material (DNA/RNA), and thus
have the serious drawback that they ‘sum-up’ information from
thousands of cells. However, it is sometimes difficult to obtain a
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large number of cells, for example, when studying circulating
tumor cells or an early stage embryo. Moreover, it was realized
that many biological systems are composed of heterogeneous
cell types in which minority cell populations play important
roles. In these cases, the minority cells that often govern the
overall system behavior are not well represented in ‘bulk’ meas-
urements, and are therefore hard to identify and characterize.
For example, in many tumors, only a small fraction (typically
<1%) of molecularly distinct cells called ‘Cancer Stem Cells’
have the capacity for self-renewal and tumorigenesis [3–10].
Likewise, minority tissue-specific stem cell populations are
responsible for tissue development, regeneration and repair
[11–14]. Identification and molecular characterization of cancer
stem cells and tissue-specific stem cells, as well as the gene cir-
cuits that govern their behavior and interactions with other cell
types, has enormous therapeutic potential for developing tar-
geted therapies for cancer and for the effort to reconstruct dam-
aged tissues and organs. Another striking example is the
immune system in which dynamic cellular heterogeneity is es-
sential for fighting off the variety of attacking pathogens [15].
Therefore, it is essential to use single-cell transcriptomic tech-
nologies to fully understand these complex biological systems.

There are numerous challenges in single-cell measure-
ments. First, as RNA molecules are mostly unstable, individual
cells must be carefully collected and rapidly isolated from the
tissue or tumor to keep the cells as viable as possible. Second,
as a single cell contains roughly 10 pg of total RNA, which is
much smaller than the nanogram amounts typically required
for most gene expression and sequencing assays, a pre-
amplification step is required before the actual expression
measurement or sequencing can be done, which introduces
additional noise, bias and sequencing errors. Third, as the num-
ber of measurements is enormous (number of cells � number of
genes � number of transcripts), elaborate multiplexing strat-
egies such as microfluidic parallelization, droplet encapsulation
and molecular barcoding (tagging) must be used to perform
many millions of biochemical measurements at feasible time
and cost.

A typical single-cell experiment

The first step in a typical single-cell experiment is to collect the
tissue or tumor and dissociate it into a single-cell suspension
using digestive enzymes and/or mechanical shearing [16, 17].
Then, as an optional step, the desired cell population can be en-
riched using previously known markers. This is particularly
useful when the sought-out cell subpopulation is extremely
rare (e.g. cancer stem cells, which can constitute 0.1–1% of the
tumor bulk). If there is a sufficient number of cells, cell enrich-
ment can be done by using flow cytometry with two to three flu-
orescently labeled antibodies or reporter genes [18]. Another
option is to mix the cells with magnetic microbeads coated with
antibodies and then pass them through a magnetic separation
column [19].

Individual cells are then isolated from each other in separate
compartments. Cell isolation can be done by using a flow
cytometer to sort single cells into separate wells [16], by
‘picking’ individual cells using microscopy-assisted micropipet-
ting [20], by pushing a cell suspension through a series of micro-
fluidic traps [19, 21, 22], by allowing individual cells to settle in
microwells [23–25] or by encapsulating in nanoliter-sized drop-
lets [26, 27]. Once each cell is isolated in its own ‘partition’ (well/
microfluidic chamber/microwell/droplet), it is lysed and mixed
with buffers, enzymes, dNTPs and primers, and the RNA is

reverse transcribed and pre-amplified. Reverse transcription
can be done specifically for 100–200 targets [16, 23] or globally
for all polyadenylated transcripts [19, 28, 29]. Pre-amplification
is usually done by polymerase chain reaction (PCR) or linear
methods such as in vitro transcription [30, 31].

At this point, gene expression and sequence information can
be obtained from the amplified complementary DNA (cDNA) of
each individual cell. Expression levels of multiple genes from
each cell can be directly measured by quantitative real-time
PCR (qPCR) [32]. By using carefully designed primers and micro-
fluidic devices that allow for tens of thousands of qPCR reac-
tions to be performed in parallel, expression levels of multiple
(up to �300) genes from hundreds of individual cells can be
measured [16, 33–35]. Once a reasonable number of single-cell
expression profiles have been measured, computational clus-
tering algorithms can be used to cluster them into groups—each
representing a distinct cell subpopulation. Each subpopulation
can be identified according to the existing scientific literature
and online databases incorporating histological information
and functional studies [36, 37]. From our experience, to identify
cell types within a tissue or tumor, it typically is desired to have
at least 20–30 representative cells from each population and to
be able to observe the same subpopulation repertoire within at
least two independent biological experiments.

Even more information can be obtained by RNA sequencing,
which provides both expression and sequence data for all
mRNA transcripts without preselecting primers. For single-cell
RNA sequencing, the pre-amplified cDNA is collected, barcoded,
pooled and sequenced on a next-generation sequencer such as
the Illumina platform [28, 29]. The output short sequence reads
are aligned to the reference genome using splice aware aligners
such as TopHat [38–40] or STAR [41], and gene expression levels
are inferred from the number of reads that overlap with each
gene [42–45]. The underlying assumption is that genes that had
many mRNA transcripts in the original cell will result in many
corresponding amplified fragments and many aligned reads.
Molecular tagging techniques [46–48] can be used to ‘count’ the
original transcripts while correcting for bias caused by pre-
amplification. Once single-cell expression levels from hundreds
of individual cells has been obtained, single-cell profiles can be
clustered to identify cell subpopulations, and data from all cells
belonging to the same subpopulation can be mixed in silico to
provide a deeper characterization of each subpopulation [30]. As
RNA sequencing technology provides information about the
whole transcriptome—and not only a predetermined set of gen-
es—it can be used to discover new genes and surface markers
that are uniquely expressed by each cell subpopulation [19].
Moreover, sequence data can reveal splicing patterns [28, 49–
52], allele-specific expression [53], single-nucleotide variations
(SNVs) [54] and copy number variations (CNVs) [54].

Single-cell transcriptomic technologies

In the past few years, there has been an explosion of new sin-
gle-cell transcriptomic technologies [55, 56], each having its
unique capabilities and limitations in terms of throughput (i.e.
the number of cells and genes that can be measured), sensitivity
(i.e. the ability to detect lowly expressed genes), accuracy (i.e.
how close the measurement is to the true value) and precision
(i.e. how well the results can be reproduced on replicate sam-
ples) [19, 57]. The field is developing quickly with new technolo-
gies coming out every few months [58]—see Table 1 for selected
technologies. In this briefing, we will describe the main trends
and delve deeply into a few examples.
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Single-cell qPCR is used to measure expression of
multiple selected genes in hundreds of individual cells
with sensitivity and precision

qPCR was one of the first genomic technologies to be used for
measuring the expression of selected genes from single cells
[32]. Measuring multiple genes simultaneously from hundreds
of individual cells requires performing a huge number of bio-
chemical reactions in parallel (e.g. 100 genes � 100 cells¼ 10 000
reactions), which is infeasible in terms of cost and labor. This
problem was overcome by the development of microfluidic de-
vices such as Fluidigm Dynamic Arrays [33, 59, 60], which can
achieve a high level of parallelization and combinatorial
mixing.

Typically (Figure 1), individual cells are first sorted by a flow
cytometer into individual wells of 96 well plates prefilled with
PCR buffer [16, 33]. Cells are lysed by influx of fluids through
their cell membranes because of hypotonic pressure. Then, the
RNA is reverse transcribed and PCR-amplified for 14–20 cycles
using a mixture of primers for a predetermined set of genes
(this is referred to as ‘specific target transcript amplification’ or
STA). Once the single-cell cDNA has been amplified, expression
levels of selected genes can be measured using benchtop qPCR
in tubes [32] or Fluidigm Dynamic Arrays [33, 59]. The Dynamic
Array chip is built as a matrix of 48–96 microfluidic channels
carrying different single-cell cDNA samples crossing 48–96
channels carrying gene-specific ‘detectors’ (e.g. primers) [60]. At
each intersection, cDNA from a specific cell and primers de-
signed against a specific gene are mixed in a separate microflui-
dic chamber and a single-real-time qPCR reaction takes place.
Using this strategy, microfluidic parallelization can be used to
perform thousands of independent qPCR reactions in a single
experiment.

The resulting data are in the form of a matrix of threshold
cycles (Cts) whose rows represent individual cells and whose
columns represent individual genes. The single-cell gene ex-
pression matrix can be standardized (e.g. by subtracting the
mean Ct of each specific gene averaged over all cells and by
dividing by the SD) and partitioned into groups using clustering
algorithms such as K-means or hierarchical clustering. Cell
subpopulations are identified as clusters of single-cell profiles
that express common sets of genes. From our experience, there
is little to gain from normalizing to ‘housekeeping genes’ (as
done in bulk gene expression measurements), as each single
cell is inherently normalized.

As microfluidic single-cell qPCR is based on reverse tran-
scription and amplification of specific preselected targets, it has
high sensitivity and precision and a wide dynamic range [21,
61]. Primers for each specific gene can be carefully designed and
optimized [35] to allow for detection of rare transcripts and
transcription factors. Moreover, by running multiple microflui-
dic chips per pre-amplified material, expression of up to 280
genes from hundreds of individual cells has been obtained [35].
As a result, single-cell qPCR can provide a detailed multigene
picture of the cell subpopulation repertoire from which a com-
plex tissue or tumor is composed [16, 18, 20]. However, the
major drawback is that the genes defining the various cell types
have to be known in advance or ‘guessed’ from the known sci-
entific literature. Moreover, false-positive fluorescence signals
may rise because of nonspecific hybridization of primers.

Whole-transcriptome amplification technologies
enable sequencing of full-length mRNA molecules
from hundreds of individual cells

The development of next-generation sequencing [62], and RNA
sequencing [1, 2] in particular, paved the way for the develop-
ment of single-cell RNA sequencing technologies for measuring
gene expression and sequence information from hundreds of
individual cells. Single-cell RNA sequencing technologies can be
roughly divided into two families: protocols that reverse tran-
scribe and amplify full-length mRNA transcripts from single-
cell samples to extract full sequence information, and protocols
that amplify only the 50 or 30 ends of each transcript, with the
aim of counting mRNA molecules for measuring gene expres-
sion (Table 1). We will start by describing the full transcript
length sequencing protocols.

In a typically single-cell full transcript length sequencing ex-
periment, single cells are isolated by Fluorescence-activated cell
sorting (FACS) or micropipetting and inserted into individual
tubes. After cell lysis, first-strand cDNA synthesis for all mRNA
molecules is done by reverse transcriptase using primers that
consist of a common sequence that is appended to an oligo-dT
tail (Figure 2). To capture full sequence information from each
mRNA molecule, it is desired to synthesize cDNA that will cover
the full length of the original mRNA transcript, and that will
also have well-defined flanking regions to enable priming for
PCR pre-amplification. Therefore, before pre-amplification, an
additional priming site has to be created at the 30 end of the
newly created first cDNA strand. This can be done either by ap-
pending a poly-A tail before second-strand synthesis—as in the
Tang and Surani method [63], or by ‘template switching’ at the
end of reverse transcription [64, 65]—as in the ‘SMART-seq’ [49]
and ‘SMART-Seq2’ methods [29]. Then, PCR pre-amplification
can be done using primers complementary to the newly created
priming sites on both ends—the first one that was created by
the reverse transcription primer and the second one that was

Figure 1. Sketch of a typical single-cell qPCR workflow performed with the

Fluidigm Dynamic Array microfluidic chip. Combinatorial mixing on the micro-

fluidic chip allows for performing up to 96 � 96¼ 9216 qPCR reactions in parallel,

thus allowing expression levels of 96 genes from 96 individual cells to be meas-

ured in a single experiment.
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created by template switching/poly-A tailing. The next step is
pre-amplification by PCR, after which cDNA from all individual
cells can be multiplexed and sequenced.

The input material—also known as ‘library’—for second-
generation sequencers such as the Illumina HiSeq platform con-
sists of short DNA fragments (typically 100–10 000 bp) flanked by
sequencer-specific adaptors on both ends. Standard library
preparation protocols usually involve DNA fragmentation, end
polishing, adaptor ligation and PCR [1, 2, 62]. As this involves
multiple pipetting and cleanup steps, which is infeasible to do
for each one of the hundreds of single cells, a more appropriate
approach is to use Tn5 transposase-mediated library prepar-
ation (Nextera technology) [66–69], a technique in which both
DNA fragmentation and adapter insertion are performed in a
single �5 min in vitro step (‘Tagmentation’; Figure 2). This step is
followed by a PCR amplification step that enriches for frag-
ments with correctly inserted adapters and appends full-length
sequencing adapters on both sides of each fragment. During
this PCR step, primers are used to incorporate a unique sample-
specific barcode to all fragments originating from the same cell,
thus allowing for multiple (96–384) single-cell libraries to be
pooled and sequenced simultaneously in a single sequencer
lane (Figure 2).

Libraries can be sequenced single end or paired end. The re-
sulting data consist of short reads (usually 50–150 bp long) cov-
ering the full length of each transcript (though there exists
some 30 bias [70]). The reads are then aligned to the reference
genome of the organism studied, and a single-cell gene expres-
sion matrix can be constructed by counting the number of reads
that align to each gene in each individual cell. Detailed se-
quence information (splice isoforms, allele-specific expression,
CNVs and mutations) can be obtained for transcripts with suffi-
cient coverage.

In the past few years, single-cell RNA sequencing has been
used to transcriptionally characterize the subpopulation reper-
toire of complex tissues and tumors [15, 19, 49, 54, 71, 72], as
well as rare populations of circulating tumor cells [28]. Two
major limitations of single-cell RNA sequencing technologies
are the expense of reagents and the long pipetting workflow
that includes multiple cleanup steps. This makes these proto-
cols expensive and difficult to automate. Another limitation is
the low reverse transcription efficiency (with respect to targeted
gene expression protocols that use primers designed for specific
genes [73]), which limits the ability to detect lowly expressed
genes. To overcome this, microfluidic devices such as the
Fluidigm C1 integrated fluidic circuit were developed. These de-
vices can automatically and simultaneously perform multiple
(96) single-cell whole-transcription amplification workflows on
nanoliter scales, thus allowing for reduced reagent consump-
tion, relatively quick implementation in nonexpert laboratories
and increased measurement sensitivity [21, 57]. For example, in
the Fluidigm C1 system (Figure 2), once a single-cell suspension
with optimal concentration and buoyancy is obtained, all that
remains for the user is to insert it along with the appropriate re-
agents into the chip inlets, and the rest of the cell isolation, lysis
and pre-amplification steps are done automatically by the ma-
chine. The use of microfluidic chambers of small volume allows
for the product of each reaction to be diluted within a larger vol-
ume of the following reaction without multiple bead or column-
based cleanup steps. After pre-amplification is complete, the
single-cell cDNA is ‘harvested’ from the chip outlets and is
ready for subsequent library-preparation steps. However, al-
though microfluidic chips can mitigate cost and labor to some
extent, they sometimes have difficulty in trapping small or

unusual cells [47], especially from heterogeneous tissues and
tumors.

‘Molecular tagging’ strategies allow for digital counting
of mRNA transcripts from whole transcriptomes of
many thousands of single cells

A major downside of single-cell qPCR and full transcript length
mRNA sequencing is the limited number of cells that can be
processed: beyond a few hundreds of cells, the required costs
and labor become unfeasible. As the cells of interest (e.g. cancer
stem cells) are usually a small fraction (0.1–1%) of the ‘bulk’ tis-
sue or tumor, many thousands of cells are typically required to
obtain a satisfactory number of representative cells. As a result,
elaborate enrichment steps (e.g. by FACS) are needed to increase
the proportion of the desired cell type. This, however, requires
prior knowledge of putative cell markers as well as finding opti-
mal antibodies for them. Another problem is that prior cell-type
enrichment creates bias in measuring the proportions of differ-
ent cells types. To overcome these limitations, ‘molecular
tagging’ strategies were developed to increase the cell through-
put to many thousands of single cells, such that even rare cell
types will have sufficient representation in silico without need
for prior cell-type enrichment.

In a typical molecular tagging workflow (Figure 3), special-
ized primers are used in the first reverse transcription step to
append a cell-specific sequence (a ‘tag’ or ‘barcode’) to all tran-
scripts originating from each single cell. In the following steps,
all barcoded single-cell cDNAs are mixed together in a single
tube for pre-amplification and library preparation using stand-
ard benchtop pipetting in 100 ml to 2 ml volumes. Libraries are
sequenced paired end, where one end is aligned to the reference
genome to identify the gene of origin, while the other end is
used to recover the cell-specific barcode to identify the cell of
origin. After sequencing, the reads of individual cells are
demultiplexed in silico according to their separate barcodes.
Using this strategy, a few thousands of cells can be processed in
a single experiment.

There are a number of differences between full transcript
length mRNA sequencing and molecular tagging technologies.
The first difference is at the physical level: as the number of
cells that can be analyzed is much larger in molecular tagging
protocols, single-cell capture and isolation is usually done in
microfluidic chambers, microwells [23, 24] or droplets [26, 27,
74], which offer much higher cell throughput (although cell
picking or FACS sorting into 96 or 384 well plates can also be
done [30, 75]). Each compartment contains a single cell and re-
verse transcription primers, all having the same cell-specific
tag. In droplets, this is usually done by encapsulating, within
each droplet, a single DNA-barcoded bead along with a single
cell. In micro-wells, this can be set up either by loading with
DNA-barcoded beads (single bead per well) or by preprinting
barcoded primers into each microwell. While it is somewhat
faster to create many thousands of droplets, microwells are
more suitable for optical imaging, short-term culturing or per-
turbation of single cells [24].

The second difference between full transcript length mRNA
sequencing and molecular tagging technologies is at the
molecular level. Both methods contain three main stages: re-
verse transcription, pre-amplification and library preparation.
However, in molecular tagging protocols, an additional cell-
specific barcode is appended to the 30 end of the transcript dur-
ing reverse transcription, and therefore only library fragments
that contain the 30 end of the original transcript can be used. As
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Figure 2. An example for a typical ‘SMART-Seq’ protocol for full transcript length mRNA sequencing from 96 individual cells using the Fludigm C1 microfluidic system.

Left panel: Workflow sketch. Tissues are collected and enzymatically and/or mechanically dissociated. The desired cell type is enriched using cell-type-specific anti-

bodies labeled with magnetic beads. The cell suspension is then inserted into a microfluidic chip, where it is pushed through a series of 96 butterfly-shaped microflui-

dic traps. Each trap is designed such that once an individual cell is captured, the rest of the suspension flows on to the next trap through a pair of bypass wing-shaped

channels. Then, individual cells are isolated from each other, and each cell is lysed. SMART-Seq technology is used to reverse transcribe and pre-amplify the mRNA,

after which the amplified cDNA is harvested from the chip into 96 tubes. Library preparation and cell barcoding are done off-chip using the Nextera protocol with 96

different combinations of i5 and i7 barcodes. All 96 libraries are combined and sequenced on a single Illumina HiSeq lane. Right panel: The SMART-Seq protocol at the

molecular level. First-strand synthesis is carried out using the MMLV reverse transcriptase in the presence two primers: a cDNA synthesis (CDS) primer that contains

an oligo-dT segment, and a template-switching oligo (TSO). When the reverse transcriptase reaches the 50 end of the mRNA, it adds a few (2–5) C nucleotides to the 30

end of the newly synthesized cDNA. The TSO, which contains three rG nucleotides at its 30 end, base pairs with the C-rich tail and the reverse transcriptase ‘switches

templates’ and continues to replicate the TSO. The resulting cDNA strand contains well-defined flanking regions for PCR priming and pre-amplification. After PCR amp-

lification, the cDNA is ‘tagmented’ using Tn5 transposase-mediated fragmentation and adapter insertion (Nextera), followed by PCR, which appends the full sequenc-

ing adapters and incorporates cell-specific barcodes. Typically, 96 single cells are sequenced on a single Illumina Hi-Seq lane at 1–2 million reads per cell (Note: the

location of the i5 index primer varies between different Illumina machines).
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Figure 3. A sketch of the DropSeq protocol [26]—a 30 tag counting technology. Left panel: Workflow. After tissue dissociation, the cell suspension is injected into a

microfluidic device, where it is joined by another flow containing DNA-barcoded beads that are suspended in lysis buffer. Each bead is linked to primers containing a

cell barcode (a DNA sequence of 12 bp, which are the same for all primers linked to the same bead), a subsequent UMI (a random sequence of 8 bp) and an oligo-dT seg-

ment. Joining a third flow of oil creates an emulsion in which thousands of droplets, many of which contain a single bead and a single cell, are dispersed within the oil.

Thus, each such droplet is a distinct compartment in which a single cell is lysed and its mRNA is hybridized to the beads. The droplets are broken by adding a demulsi-

fier to disrupt the water–oil interface, and the beads (along with the hybridized mRNA) are separated from the oil by centrifugation and are resuspended in reverse

transcription buffer. The mRNA is then reverse transcribed and pre-amplified. To prepare sequencing-ready cDNA fragments that also contain the cell barcode and

UMI, Tn5 transposase-mediated fragmentation and adapter insertion (‘tagmentation’) is done, followed by PCR, which selects for the ‘3’-end’ fragments and appends

the sequencing adapters. Paired-end sequencing is done to extract both the sequence of the gene from which the mRNA was transcribed (Read 2) as well as the cell bar-

code and UMI (Read 1). Right panel: Molecular biology of the DropSeq protocol. Note that instead of using a standard library preparation step (that is intended to create

adapter flanked fragments that cover full transcript length), here a 30 end enrichment step is performed to choose only those fragments that contain the cell-specific

barcode and UMI that were inserted in the first reverse transcription step. This requires using a custom read 1 sequencing primer that contains segments of the reverse

transcription primer.
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a result, all sequence information further than a few hundreds
of bases from the 30 end is lost. For example, in the library-
preparation step of the drop-seq protocol [26], only the 30 ends
of the cDNA fragments are prepared for sequencing. Hence, mo-
lecular barcoding protocols aim for counting transcripts (‘3’ tag
counting’) for expression measurements rather than for
sequencing the entire transcript length. Note that some barcod-
ing methods append the molecular tag to the 50 end of the tran-
script rather than the 30 end [75].

Molecular barcoding can be taken one step further to attach
a unique barcode to every single mRNA molecule in each single-
cell sample [46–48, 76]. It is thought that most genes are

expressed at <1000 mRNA transcripts per single cell. By ran-
domly appending a unique barcode (also called ‘Unique
Molecular Identifier’ or UMI) to each transcript at the reverse
transcription step, it is possible to discern between sequencing
reads originating from different transcripts to those originating
from copies of the same transcript that were created by PCR rep-
lication (Figures 3–4). In this way, it is possible to directly count
the original number of barcoded transcripts and avoid selective
sequence-specific bias and inaccuracy at low copy numbers
caused by the pre-amplification and library preparation steps.
In practice, UMIs are usually appended by inserting a sequence
of random bases after the cell-specific sequence tag within the

Figure 4. Single-cell RNA sequencing data analysis. Right panel: Full transcript length sequencing—libraries covering the full transcript length are sequenced either sin-

gle end or paired end. Reads are demultiplexed according to cell-specific barcodes on both ends. For each cell, reads are aligned to the reference genome. The number

of reads that align to a particular gene locus is an indication for its expression level. Similarly, splice isoform expression and other sequence information can be

inferred. Left panel: An example for 30 end digital expression. Sequencing library fragments covering the 30 end of the transcript are sequenced paired end. Read 1 con-

tains a cell-specific barcode (or ‘tag’) and a unique transcript identifier (UMI). Read 2 is aligned to the reference genome to identify the specific gene from which the

transcript originated. In a simplified algorithm, each library fragment is represented by a textual string containing a unique cell ID and UMI (from read 1) and a gene of

origin (from read 2). The fragments are lexicographically sorted in three levels: first according to the cell ID, then according to the gene of origin and then according to

the UMI. Then, for each individual cell, the number of unique UMIs for each gene is counted. This better represents the original number of transcripts.
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reverse transcription primer [26] (or template-switch oligo [75]).
The expression level of each gene is estimated by counting the
number of reads with distinct UMIs that align to the position of
that gene within the genome (Figure 4). To properly count the
number of molecules, the number of distinct UMIs must be
larger than the number of molecules that are to be counted. For
example, a 5 bp long UMI can distinguish between 4^5¼ 1024
molecules, which is more than the typical number of transcripts
originating from most genes. UMIs provide a more ‘digital’ way
for measuring gene expression (often called ‘3’-end digital ex-
pression’), and were found to significantly increase precision
[47] (in the sense of reproducibility on replicate samples) and re-
duce technical variability in single-cell RNA sequencing experi-
ments [77].

The combination of ‘molecular tagging’ strategies and auto-
mated droplet/microwell technologies has led to an increase in
the number of individual cells that can be analyzed. Current
protocols can process 10 000–50 000 individual cells within a few
days. Recently developed ‘split-pool’ barcoding strategies that
use the cells themselves as ‘containers’ can be used to increase
throughput to millions of cells [78, 79]. This can provide un-
biased counting of cell types in complex tissues and tumors,
which usually contain cell subpopulations whose sizes span
several orders of magnitude. This capability is critical for the
discovery of new rare cell types such as cancer stem cells with-
out requiring prior knowledge of markers for prior cell enrich-
ment. The drawback of molecular tagging techniques is that
with short-read sequencing technology, most transcript se-
quence information such as splice isoforms, SNVs or allele-spe-
cific expression, is lost (Figure 4).

One difficulty encountered in molecular tagging techniques
is the occurrence of cell doublets within a single compartment
(chamber/microwell/droplet), which may occur because of cells
sticking together or because of imperfections in the mechanism
of partitioning [26]. While cell doublets are encountered at low
frequency (�1%) in almost all single-cell technologies, the num-
bers can become significant when processing many thousands
of cells. This may be mitigated by careful calibration of the input
cell concentration, as well as by automatic scanning microscopy
and image processing algorithms to identify and exclude doub-
lets from the analysis. In addition, contaminating RNA, presum-
ably originating from cells that were damaged during the
preparation of the single-cell suspension, can confound single-
cell measurements. This may be overcome by careful tissue col-
lection and dissociation, by using digestive enzymes optimized
for each particular tissue and, when possible, by using a wash
step after cell trapping. Finally, the number of UMIs is often
overestimated because of PCR amplification errors. This can be
solved by merging together similar UMIs and treating them as a
single count [80].

Data analysis: inferring meaningful biological
insight from single-cell RNA sequencing
measurements

A major challenge in analyzing single-cell RNA sequencing data
is the large technical noise due to the small amount of input
material and low transcript detection efficiencies. This results
in significant variability because of random Poisson ‘sampling’
of mRNA molecules, as well as variability in sequencing effi-
ciencies across different cells. Using spike-in RNA standards
[81, 82], these inherent noise sources can be measured, modeled
and de-convolved [77, 83].

Unlike methods that are designed to target specific tran-
scripts (such as microfluidic single-cell qPCR), single-cell RNA
sequencing data are often sparse because of the fact that many
genes—especially those expressed at low levels—are not de-
tected. As a result, it can be computationally challenging to
identify the repertoire of cell subpopulations as well as the
genes that differentiate between them. A straightforward
method is to choose a subset of previously known genes or tran-
scription factors relevant to the biology of the specific tissue or
tumor [30], and to use clustering algorithms to identify mean-
ingful cell types according to the expression of these genes
across the different cells. A more unbiased approach is to per-
form principal component analysis and choose genes with max-
imal loadings in the first principal components, or to use the
representation of the gene expression matrix along the first
principal components - those that explain most of the cellular
variability - for further analysis [19, 26]. Yet, another approach
(which can be used in combination with the rest) is to choose
only genes whose variance exceeds that of a baseline Poisson-
like noise level, with the underlying assumption that the vari-
ability in these genes arises because of active upregulation or
downregulation between the different cell types rather than
random sampling noise [26, 84]. It is sometimes also helpful to
filter out genes whose expression does not correlate to any
other gene [84].

Some notable clustering algorithms that can be used for
identifying cell populations from single-cell expression data are
K-means clustering [85], hierarchical clustering [19], bi-
clustering [84, 86, 87], affinity propagation [84, 88], density-
based spatial clustering (e.g. DBSCAN) [26, 89], modeling as a
mixture of multivariate distributions [90, 91] and network-based
community detection algorithms [75, 92]. In many cases, it is
useful to use methods such as tSNE [93] for embedding high-di-
mensional data in two or three dimensions for visualization
and further analysis [26]. Once cell subpopulations have been
identified, their transcriptomes can be combined to form
‘pooled’ transcriptomes for deeper characterization [30] to iden-
tify new markers and gene circuits.

Often, there are many cells whose type cannot be completely
determined and these create a continuum between ‘seed’ cell
types [30, 94]. For example, the cell cycle state is often inferred
from correlating to gene sets known to be upregulated in differ-
ent phases of the cell cycle [26, 54]. In developing or differentiat-
ing biological systems, where time dependence is relevant,
algorithms have been developed to infer a ‘pseudo-time’—a
temporal trajectory according to which the cells can be ordered
in silico [95].

Outlook

During the past decade, there has been an ‘explosion’ of new
single-cell technologies, each having its own capabilities and
limitations. The main challenges that lie ahead are improving
the detection yields—mainly through improvement of reverse
transcription and pre-amplification efficiencies, as well as find-
ing ways to retain spatial information, i.e. the arrangement of
cells within the tissue/tumor and the location of each transcript
within each cell [96–98]. Moreover, there are considerable chal-
lenges in profiling single cells from paraffin-embedded tissues.
There are also considerable challenges in developing computa-
tional tools for analysis and visualization of the huge single-cell
data sets that are being produced.

To date, we believe that a combined approach is most ap-
propriate for dissecting tissues and tumors: large-scale
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‘molecular tagging’ techniques should be used to identify cell
types from many thousands of cells and find markers for fur-
ther enrichment. Then, medium-scale methods for sequenc-
ing full transcript lengths from hundreds of cells can be used
for deeper analysis of selected cell populations, for example,
to identify novel splice isoforms, allele-specific expression,
CNVs, RNA editing events and point mutations. Finally, target-
specific methods such as single-cell qPCR and mRNA-FISH
(Fluorescence in situ hybridization) can be used for more exact
measurement, validation and spatial localization of specific
targets of interest such as transcription factors.

Key Points

• Recently developed single-cell transcriptomic technol-
ogies enable high-resolution analysis of complex
biological systems such as a developing embryo, a
regenerating tissue or a tumor.

• Single-cell qPCR can be used to measure expression of
multiple selected genes in hundreds of individual cells
with high sensitivity and precision.

• Whole-transcriptome amplification technologies en-
able sequencing of full-length mRNA molecules from
hundreds of individual cells.

• ‘Molecular tagging’ strategies allow for digital counting
of mRNA transcripts from whole transcriptomes of
many thousands of single cells.

• The main challenges that lie ahead are improving
transcript detection yields and retaining spatial
information.
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