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Abstract

X-ray emission from neon-like Fe XVII has been measured with high-resolution spectrometers

from laboratory or celestial sources for nearly seven decades. Two of the strongest lines regularly

identified in these spectra are the 1P1 → 1S0 resonance, and 3D1 → 1S0 intercombination line,

known as 3C and 3D, respectively. This paper gives a brief overview of measurements of the

intensities of the lines 3C and 3D from laboratory and celestial sources, and their comparison to

model calculations, with an emphasis on measurements completed using an electron beam ion trap.

It includes a discussion of the measured absolute cross sections compared to results from modern

atomic theory calculations, as well as the diagnostic utility of the relative intensity, R = I3C/I3D,

as it applies to the interpretation of spectra measured from the Sun and extra-Solar sources.

PACS numbers: 32.30.Rj, 32.30.-r, 32.70.Cs, 52.72.+v, 95.85.Nv, 96.60.P-, 97.10.Ex
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The X-ray spectrum from neon-like Fe XVII has one of the most distinct spectral sig-

natures of any ion. It has been observed in laboratory plasmas, the Sun, or in extra-solar

sources for nearly 70 years, starting in 1938 with the first identification of Fe XVII X-ray

lines in the laboratory [1]. The Fe XVII X-ray spectrum is dominated by eight lines falling

in the 13–18 Å wavelength band corresponding to X-rays at ∼ 13.9 Å emitted from 3p → 2s

transitions, ∼ 15 Å from 3d → 2p transitions, and ∼ 17 Å from 3s → 2p transitions.

The lines are commonly labeled 3A–3H starting at the shorter wavelength [2]. Two of the

strongest most distinct lines are the 2p53d3/2
1P1 → 2p6 1S0 resonance line 3C, at 15.01 Å,

and the 2p53d5/2
3D1 → 2p6 1S0 intercombination line 3D, at 15.26 Å. These lines are par-

ticularly attractive as diagnostics because their wavelength separation is large enough to be

resolved by spectrometers with moderate resolving power, and small enough so that errors

in spectrometer response are relatively small. In addition, because Fe16+ is the dominant Fe

ion over a large temperature range, 3C and 3D have been observed in a variety of celestial

sources including the Sun, other stellar coronae, elliptical galaxies, and supernova remnants.

The diagnostic utility of these lines, however, has been limited by the fact that although

many extensive studies have been completed, discrepancies between theoretical calculations

and measurements from celestial and laboratory sources persist.

The corona of the Sun is a bright source of Fe XVII X-ray emission. In 1963, using a

rocket borne crystal spectrometer, Blake et al. [3] measured the first high-resolution Solar

spectrum that included Fe XVII X-ray lines. The spectrometer employed no slits for these

measurements, so the spectrum included emission from the entire Solar disk. However,

owing to the fact that they were only emitted from well localized active regions, the Fe

XVII X-ray lines were relatively well resolved. From these first measurements the relative

intensity of the resonance to intercombination line, R = I3C/I3D, was measured to be 1.60

±0.32. Later rocket borne experiments included a collimated Bragg crystal spectrometer

that produced some of the highest resolution Fe XVII X-ray spectra ever recorded [2, 4]. The

ratio R for these rocket flights ranged from 2.1 to 2.6. The measured ratios were compared

to several theoretical calculations, and moderate agreement was found. For example, using

calculations based on the Coulomb-Born approximation, Loulergue & Nussbaumer [5] found

a ratio R of 2.7, just above many of the observed ratios.

The first satellite borne X-ray spectrometers to measure and resolve the strong Fe XVII

X-ray lines were also flown in the 1960s. These were NASA’s Orbiting Solar Observatories,

2



OSO-III, V, and VI [6, 7], and also the United States Air Force’s OV1-10 and OV1-17

[8, 9][81]. These satellites all carried slit-less crystal spectrometers that, like early rocket

experiments, integrated over the entire Solar disk. These flights were very successful and

yielded many high-resolution spectra of Fe XVII [6–10]. From these observation, R was

found to lie between 1.8 and 3.2, with larger values generally found in the spectra measured

during flares.

In the late 1970s, the P78-1 satellite was launched by the USAF. It carried a Bragg crystal

spectrometer with a 20 arcsecond collimation and an RAP crystal for diffraction of X-rays

[82]. Rugge et al. [11] compare values of R from 53 observation of the Sun measured by P78-

1 between 1978 and 1979, and covering a wide range of Solar activity. These observations

included regions with temperatures between 2.5 × 106 and 5 × 106 K. Except for a few

outliers, all the values of R from these observations were between 2 and 2.5.

In 1980, the Solar Maximum Mission (SMM ) was launched. It provided high-resolution

spectra of the Sun from 1980 until 1989, a time that covered a peak in Solar Activity [83].

SMM ’s flat crystal spectrometer had a 14 arcminute collimation and used a KAP crystal

to disperse X-rays. Many high resolution spectra were measured using SMM ; some can be

found in Phillips et al 1982 [12], 1997 [13], and 1999 [14], and also Schmelz et al. 1996 [15].

Similar to the P78-1 observations, compilations of several of the values R have been reported

[16–19] and R was found in the range from values just below 2 to ∼ 2.7.

In 1985, Smith et al. [20] published the results of a more complete calculation of the

Fe XVII X-ray emission that, unlike Loulergue & Nussbaumer [5], included configuration

mixing in its treatment of the wavefunctions, and also indirect population processes such as

dielectronic recombination and resonance excitation. Their results predict R to vary from

3.0 at 2×106K to 3.4 at 5×107K. Comparing these calculations to the results from P78-1,

Rugge et al. [11] found that, not only were most of the observed ratios R below theory,

but also that other ratios involving line 3C also did not agree with theory. Based on these

comparisons, Rugge et al. suggested that, because of its relatively large oscillator strength,

the flux of the line 3C was being absorbed then re-radiated out of the line of sight of the

detector; a process known as resonant scattering. Several authors took advantage of this

effect. For example, Schmelz et al. [16, 21], Saba et al. [17], and Waljeski et al. [22], used

resonance scattering of 3C to determine the column density, and electron density of the

source, as well as the optical depth of the line 3C. Schmelz et al. [16] also determined that
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the opacity of line 3C increased as the distance from the center of the Solar disk to the limb.

Phillips et al [19] analyzed the same data set and found the opposite trend in opacity, i.e,

the opacity of 3C decreased from center to limb. Saba et al. [17] and Bhatia & Saba [18],

revisited the SMM data and their analyses agreed with the findings of Schmelz.

Although the original suggestion of resonant scattering by Rugge et al. [11] was based

on comparison with the theory of Smith et al [20], Schmelz et al., Saba et al., and Waljeski

et al. based their diagnostics on more recent calculations by Bhatia & Doschek [23], and

also from Cornille et al. [24]. Bhatia & Doschek and Cornille et al. calculated R > 4 for

coronal temperatures, larger than the results of Smith et al. [20]. However, many other

calculations of the Fe XVII X-ray line intensities had also been completed throughout the

1980s and 1990s [18, 25–28], and values ranging from ∼ 3 to nearly 5 were reported. The

large variation in the calculations precluded the use of either the intensity ratio, R, or the

intensity of line 3C as a dignostic. This variation demonstrated the need for an accurate

laboratory value that could be used to benchmark theory and provide a reliable optically

thin value for R, which in turn could then be used as a reference for diagnosing celestial

sources.

Many laboratory measurements of the Fe XVII X-ray spectrum had been completed up

to the 1990s, beginning with the vacuum spark measurements by Tyrén 1938 [1], mentioned

earlier. Vacuum spark measurements were also carried out throughout the 1960s and 1970s

[29–31] and R was measured to be between 1.1 and 1.6. However, because of the relatively

high densities (ne ∼ 1019cm−3), and the fact that several charge states are present simul-

taneously, the low ratios might result from opacity effects and possibly line blending with

X-ray emission from other charge states. Fe XVII has also been observed in laser produced

plasmas [32–35]; however, those suffer the same problems of high density and presence of

many ions as found in vacuum spark plasmas. For example, figure 1 shows 3 different spectra

measured from laser produced plasmas at Tor Vergata University [35], where lower charge

states are present and opacity effects play a role .

Unlike laser produced and vacuum spark plasmas, plasmas created in tokamaks have

densities and temperatures similar to those found in the Solar corona, and, therefore, provide

a better means for understanding the atomic processes that produce Fe XVII in the corona.

Several measurements that include Fe XVII have been completed using the Princeton Large

Torus (PLT) [36, 37], the Divertor and Injection Tokamak Experiment (DITE), and the Joint
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FIG. 1: X-ray spectra of Fe spanning the range between 14 and 16.8 Å. These spectra were obtained

from plasmas produced using the 15 ns Nd:glass laser located at Tor Vergata University. Spectra

a, b, and c were measured from plasmas produced using different laser energies and spot sizes. (a)

laser pulse energy 6 J, laser spot 200 µm; (b) laser energy 4 J, laser spot 500 µm; (c) laser energy

2 J, laser spot 500 µm. The resolving power of the spectrometer used to measure this spectrum

was λ/∆λ ≈ 4000. This figure is adopted from May et al 2005 [35].

European Torus (JET) [13]. R values ranging from 2.05 to 3.33 have been reported [36],

similar to values reported from the Sun. Although these ratios are from spectra measured

from a multi-temperature plasma, making it challenging to isolate specific atomic processes,

and the measured spectra include emission from multiple charge states and ion species, they

provide a platform where opacity does not affect the line 3C. For example, from the tokamak

results, serious doubt was cast on the presence of resonant scattering in the Solar corona.

Figure 2 shows a spectrum of the Fe XVII X-ray lines measured from PLT [36].

In pursuit of understanding the processes responsible for its line intensities, Fe XVII

has been investigated using electron beam ion traps (EBITs). Studies using EBITs have

several advantages over laser produced plasmas, vacuum sparks, and tokamaks. An EBIT

uses a mono-energetic electron beam, making it possible to isolate a single Fe ion species

for study, and to probe specific population processes. EBITs operate at densities of 2 ×

1010−5×1012cm−3, similar to many celestial sources. Also, no opacity effects are present in

EBIT measurements that may affect the line intensities of Fe XVII 3C or 3D. In all, EBITs

provide a stable, low-background source of X-ray emission making it possible to measure
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FIG. 2: Spectrum measured at the Princeton Large Torus (PLT) tokamak. This is the sum of

several different tokamak runs, and was measured using a rotating flat-crystal spectrometer with

a microchannel-plate readout [36].

high resolution, high signal-to-noise spectra under well controlled conditions.

In 1993, in anticipation of the launch of the Chandra and XMM-Newton X-ray observa-

tories, the laboratory astrophysics program centered around Lawrence Livermore National

Laboratory’s electron beam ion traps began. The goal of this program was to provide accu-

rate, complete sets of atomic data including wavelengths, line identifications, and excitation

cross sections and rate coefficients for astrophysically relevant ions, with a strong emphasis

on the Fe L shell ions. As part of these studies, many novel methods of operating the LLNL

EBIT were invented and refined in order to help with the interpretation of high resolution

X-ray spectra from celestial sources. To name a few, these include the ability to produce a

quasi-Maxwellian distribution of electron energies [38, 39], and the ability to study spectra

produced by charge exchange recombination using the magnetic trapping mode [40, 41]. The

LLNL EBIT facility enjoys a suite of spectrometers for measuring photon emission, includ-

ing crystal spectrometers [42–44], grating spectrometers [45], solid state detectors, and the

NASA/GSFC microcalorimeter array [46–48]. The flexibility and wide range of parameter

space available to the EBITs make them perfectly suited for benchmarking atomic theory

and for providing accurate, complete sets of atomic data for interpreting astrophysical spec-

tra. A detailed description of the LLNL EBIT facility, including its utility as a tool for

laboratory astrophysics, can be found elsewhere [49–51].

To provide the basis for understanding the atomic processes governing the Fe L-shell
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FIG. 3: Fe XVII first-order spectra measured using the LLNL EBIT-II and a flat crystal vacuum

spectrometer [52]. Lines 3C and 3D are easily resolved.

.

transitions and to maximize their diagnostic potential, the laboratory astrophysics program

at the LLNL EBIT facility began with studies of Fe L-shell X-ray emission, with Fe XVII

being the first [52]. The Fe XVII L-shell studies were largely completed using flat crystal

Bragg spectrometers [42, 43]. These spectrometers employed TLAP, KAP, or RAP crystals

and gas-filled position sensitive proportional counters for the detection of photons and had a

resolving power of λ/∆λ ≈ 500 at 15 Å. The Fe XVII studies produced accurate wavelengths

for 29 Fe XVII lines and included the identification of weak, high-n to n = 2 transitions up

to n = 14. Figure 3 shows the first-order spectrum measured at EBIT spanning the 10–

17.5 Å band, and Figure 4 gives the second order spectrum showing the high-n transitions.

In addition to the wavelengths and line identifications, this work demonstrated that the

flux contribution from high-n transitions accounts for a significant amount of the total flux

emitted from Fe XVII. This flux had been missing from the spectral modeling packages and

its inclusion accounted for the “missing flux” problem found in the analysis of some ASCA

data. Wavelengths from this study have been implemented in standard spectral modeling

packages, such as APEC [53], employed by the high-energy astrophysics community for

analyzing X-ray spectra.

Several independent measurements of R using different crystals and several different
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.

mono-energetic electron beam energies were completed as part of the LLNL EBIT Fe XVII

study. For these measurements, the only population processes available were direct excita-

tion from the ground state, resonance excitation, and population by radiative cascades from

higher lying levels. For impact energies between 850 eV and 1300 eV, the average value of

R was measured to be 3.04 ± 0.12 [52]. As a check on this result, R was measured along

the neon-like isoelectronic sequence for elements with Z between 24 and 36 [54](see figure 5

and also Beiersdorfer et al. [36]). The Fe result agrees with the observed dependence of R

on atomic number, validating the Fe XVII measurement and also demonstrating that the

overestimation by theory is consistent along the entire neon-like isoelectronic sequence for

mid-Z ions. The LLNL EBIT value of R is well below the calculated value adopted by the

Solar physics community when assessing the influence of resonance scattering. However, it

is in agreement with many, but not all, of the values measured from the Sun, indicating that

in some cases no scattering occurred and in others its effect had been overestimated.

In pursuit of the cause of the ratios observed in Solar corona that were lower than the

LLNL laboratory measurements, the laboratory study was expanded to include measure-

ments of R in the presence of large abundances of Na-like Fe XVI to measure the influence

of Na-like Fe XVI innershell satellite lines that fall near the line 3C and 3D [56]. Because the

energies required to excite the innershell satellites are much greater than the 489 eV ioniza-

tion potential of Fe XVI, and at these higher energies the charge balance in the LLNL EBIT

is nearly 100% Fe XVII when using the MeVVA for injection, a different injection method

was used. Specifically, neutral Fe was injected as gaseous iron pentacarbonyl, Fe(CO)5.
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.

By injecting iron in gaseous form, the average charge in the trap was reduced and a large

fraction of Fe XVI was present in the trap in addition to Fe XVII, and at energies above the

threshold for exciting Fe XVI innershell satellites. These measurements unveiled the fact

that an Fe XVI innershell satellite line is coincident with the Fe XVII intercombination line

3D, causing lower values of R when large amounts of Fe XVI are present (see figure 6). It

followed that in other sources, where significant amounts of Fe XVI and XVII coexist, the

ratio R is reduced by the enhancement of line 3D by the coincident line “C” from Na-like Fe

XVI. This line coincidence explained the low ratios measured in tokamaks [36]. In addition,

by coupling the relative abundance of Fe XVI to Fe XVII to its temperature dependence

and then the strength of line C to the Fe XVI abundance, Brown et al. [56] showed that R

can be used as a temperature diagnostic. Figure 7 graphs the electron temperature versus

apparent ratio R.

Measurements of Fe XVII X-ray emission have also been completed using the electron

beam ion trap located at the National Institute of Standards (NIST) using a single pixel

microcalorimeter provided by the Harvard-Smithsonian Center for Astrophysics. In those
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figure is from Brown et al. [56].

experiments, the ratio was measured at two different electron beam energies. The ratios

measured were 2.94 ± 0.18 for a beam energy of 900 eV and 2.50 ± 0.13 for a beam energy

of 1250 eV [57]. Because of the relatively low resolving power of the SAO instrument

(E/∆E ∼ 90 in the 700–900 eV band), the fact that no attempt was made to “gate out”

the transient phase of the NIST EBIT cycle time, and that no simultaneous high resolution

spectrum was measured, the amount of contamination from Na-like Fe XVI in the SAO
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calorimeter spectrum is unknown.

Motivated by the laboratory astrophysics work, Brickhouse & Schmelz [59] revisited the

values of R measured by SMM to determine the effect of the Fe XVI innershell satellite line

coincident with 3D. They found that R does increase as a function of electron temperature,

that the low ratios are explained by the presence of Fe XVI line coincidence, and that, unlike

in previous analyses, invoking resonant scattering was not necessary. Figure 8 compares the

spectrum measured at the LLNL EBIT in the presence of a large amount of Na-like Fe XVI

to one of the spectra measured using SMM . The Fe XVI innershell satellites are clearly

seen in both spectra.

Using the reflection grating spectrometer (RGS) on XMM-Newton and the transmission

grating spectrometers (HETG and LETG) on Chandra, high resolution spectra of Fe XVII

have been measured from a variety of extra-Solar sources, particularly stellar coronae, and

lines 3C and 3D have been measured and resolved, in most cases for the first time [60–64].

One of the standard sources observed by both Chandra and XMM-Newton is the binary
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star Capella (see figure 9). For Capella, the HETG measured a value of 2.72 ± 0.06 [61],

and the LETG measured a value of 2.64 ± 0.10 [62]. In the analysis of Capella data, the

presence of the line coincidence of the Na-like line “C” and the Fe XVII line 3D was pointed

out by Behar et al. [65] independently of the measurements by Brown et al. [56]. Ness et

al [60] did an extensive study of the ratio measured from 24 different stellar coronae using

measurements from both the RGS and HETG, and found R to be in the same range as

measured in the corona of the Sun. Although many sources have ratios that are comparable
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to those measured at the LLNL EBIT and thus no significant resonance scattering is taking

place, resonant scattering of line 3C has been observed (see for example [63]). Hence, when

diagnosing a plasma using R the influence of Ne-like Fe XVI must be accounted for before a

determination of the amount of scattering can be made, and before using R as a temperature

diagnostic, the possibility of resonant scattering must be assessed.
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FIG. 9: Chandra spectrum of Capella taken with the High Energy Transmission Grating (HETG).

The five strong neon-like 3 → 2 transitions are labeled 3C, 3D, 3F, 3G, and M2. The lines are

grouped by transition type. 3C and 3D are produced by 3d → 2p transitions, and the 3F, 3G, and

M2 are produced by 3s → 2p transitions.

The studies of Fe XVII at LLNL also include the intensity of the 3s → 2p lines relative to

3C [37, 66]. These measurements were conducted using three different instruments: a crys-

tal spectrometer, a grating spectrometer, and a microcalorimeter spectrometer array built

by the NASA/Goddard Space Flight Center, and were conducted at 13 different electron

impact energies. Similar to the results for R, the IΣ(3s→2p)/I3C line ratios agree with observa-

tions from celestial sources and tokamaks, but are much larger than theoretical calculations.

Figure 10 shows the results of these measurements compared to ratios observed in celestial

sources and also compared to calculations [66]. The discrepancies found between theory

and measurements for these ratios, along with the discrepancies found between theory and

measurement for R, lead Beiersdorfer [37] to suggest that, since resonant scattering has been

eliminated as the source for the disagreements with ratios involving line 3C, the problem

must lie in the underlying atomic physics used in the calculations of the 3C line strength.
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The agreement found between laboratory measurements and the high-quality observa-

tional results provided a strong impetus for another generation of more advanced calcu-

lations of the Fe XVII X-ray lines, and many have been completed [67–72]. In some of

these cases, marginal to good agreement with the experimental ratio R was found, although

different methods of calculation were used and the reasons for why now better agreement

was found differed between the different calculations. For example, Chen & Pradhan [69]

and Loch et al. [72] used a closed-coupling, R-matrix calculation, including an extensive

set of resonance excitation channels, to find agreement at energies where resonances are

known to exist, while Fournier & Hansen [71] used a distorted wave approach with improved

configuration-interaction coefficients based on laboratory values of the level energies. Chen

& Pradhan [69] argued that resonance excitation plays a strong role in the total cross sec-

tion and discrepancies between theory and measurements are a result of the fact that many
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calculations do not include resonance excitation or underestimate its contribution. Indeed,

their ratio agreed with the laboratory results at some energies where resonances play a role.

However, strong contributions from resonance excitation were not borne out by other calcu-

lations and the ratios predicted by [69] do not agree with measurements at higher energies

where resonance do not play a role (see figure 11). Because ratios from celestial sources are

emitted from plasmas containing a distribution of Fe ions, multi-ion models have also been

employed in an attempt to reproduce the observed ratios [67, 68]. While these models did

find that population processes involving other ions bring the ratio involving the 3s lines into

better but not complete agreement, in the case of the the ratio R, essentially no effect was

seen (excluding the influence of the coincident innershell Fe XVI line mentioned above).
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FIG. 11: Measured relative intensity R = I3C/I3D versus electron impact energy compared to the

theory of of [27] (solid line with open diamonds), [69] (solid line with open squares), and the FAC

calculations with resonance excitation (solid line). Although some calculations agree in the region

where resonance excitation is present, the results are significantly larger than measured at higher

energies.

The challenge of unraveling the mystery of the relative line intensities of the neon-like

Fe XVII lines requires a set of measurements that goes beyond relative intensities, i.e., it

requires a measurement of the absolute cross sections. Complete sets of absolute excitation

cross sections provide the most stringent test of theoretical calculations and also can provide

the basis for accurate excitation rate coefficients necessary to model X-ray emission from a

variety of plasmas. Essentially, the LLNL EBIT was built specifically to measure absolute

cross sections; however, the low resolution of solid state detectors and the prohibitively low
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effective collecting area of crystal spectrometers have limited these measurements of L-shell

transitions of high Z ions or K-shell transitions in low to mid Z ions [73, 74]. In these cases,

the uncertainty in the unknown overlap between the source ions and the electron beam can

be avoided by simultaneously measuring the photon emission from radiative recombination

(RR) of beam electrons with source ions.

The implementation of NASA/Goddard Space Flight Center’s X-ray microcalorimeter,

the EBIT/XRS [46–48], at the LLNL EBIT facility in 2000 provided the resolution and

collecting area necessary to measure the absolute excitation cross sections of Fe L-shell X-

ray line emission. Because of its large bandwidth and energy resolution of ≤ 10 eV, this

instrument is able to resolve and detect photons from both direct excitation and radiative

recombination simultaneously, eliminating cross calibration errors. Since 2000, the absolute

cross sections of the X-ray lines from all the Fe L-shell ions, Fe XVII–Fe XXIV have been

measured [75–77]. These measurements were done as a function of electron impact energy

and in many cases go from energies below excitation threshold where dielectronic resonances

contribute, to above threshold where direct excitation from the ground state, resonance

excitation, and cascade contributions can contribute to the line strength. Figure 12 shows

the measured spectra used to determine the absolute cross sections of line 3C and 3D,

including a high resolution crystal spectrum of the direct excitation line emission used to

check for line blending. The high resolution of the XRS/EBIT made it possible to measure

level specific RR into the 3s, 3d, and 3p levels and the excitation cross sections, σ3C and

σ3D, are determined from normalizing to each RR peak independently. The agreement

found between the cross sections derived from each peak [77] shows that no influence from

background ions or high-lying DR channels influenced this result.

Figure 13 shows the results of the cross section measurements for lines 3C and 3D com-

pared to the R-matrix calculations of [78] and [27], and the distorted wave calculations using

the FAC. Oddly, the R-matrix calculations of [69], which are believed to be more complete

and accurate because they include resonances in an a priori fashion (and which gave good

agreement with the measured R ratio at a few electron impact energies), gives discrepant

results for the cross sections of both 3C and 3D. The LLNL measurements show that the

cross section for line 3C, the resonance line, is significantly smaller than predicted, while

better agreement is found for the intercombination line, 3D. In fact, excellent agreement

is found between the EBIT measurements and calculations of the 3D cross sections when
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FIG. 12: (A) Spectrum of Fe XVII measured by the XRS/EBIT. The insert shows a close up

view of the energy range containing the photons from M-shell radiative recombination. The width

of the RR peaks is 20 eV FWHM, and is determined by the width of the electron beam energy.

The peaks are labeled with their different fine structure levels. (B) Crystal spectrum measured

simultaneously to insure no line blending influences the cross sections for the DE lines measured

with the microcalorimeter. Line B is the strongest innershell satellite line from Na-like Fe XVI.

no resonances or cascades are included in the model. Not surprising, is that EBIT mea-

surements show resonances contribute little to the total cross section of either 3C or 3D,

in agreement with most theories. This result illustrates the importance of absolute cross

section measurements; measurements involving only ratios are clearly not stringent enough

to constrain theory, and also demonstrates that the discrepancies found between theory and

experiment in the of line 3C, are rooted in the calculation of the direct excitation cross

section.

The fact that the cross section measurements agreed well with the values assumed by

astrophysical spectral modeling codes for 3D explains the fact that when modeling spectra

from the stellar corona of Capella [65], better agreement was found when normalizing to

the line strength of the intercombination line 3D. Normalizing to 3C gave poor spectral

modeling results, which is expected from the finding that atomic theory does not accurately

predict the excitation cross section needed for predicting the intensity of this line.

The large discrepancy between theory and measurement in the case of σ3C and σ3D, as
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FIG. 13: Cross sections for the resonance line 3C (top) and intercombination line 3D (bottom) as

a function of electron-impact energy given by closed circles. The error bars in the y direction are

statistical and the error bars in the x direction denote the bin size. These curves are normalized

to the single-energy measurement at Ee−= 964 eV. Each cross section is compared to the theories

of [27] (solid line with open circles), [69] (solid line with open squares), and the FAC calculations

with (solid line) and without (dotted line) resonance excitation.

well as the discrepancies found in the various relative line intensities, has sparked interest in

the X-ray emission from other neon-like ions, namely neon-like Ni XIX. The study of Ni XIX,

although not as mature, has followed a similar path as Fe XVII. The measured ratio R for Ni

XIX has been found to be significantly lower than calculated [54]. A more complete follow-

up study [79] of all of the strong Ni XIX X-ray line emission, including extensive modeling

and measurements, support the discrepancies found by [54], and also found the measured

relative intensities of the 3s → 2p lines relative to 3C, as in the Fe XVII case, to be larger

than predicted (see figure 14). Again, similarly to the case of neon-like Fe XVII spectrum,

an extensive set of R-Matrix calculations of the relative cross sections of the resonance to

intercombination lines 3C and 3D have been completed [80], and some agreement was found

with EBIT experiments (see figure 15). Because no experimental values for the absolute
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FIG. 14: Comparison of the experimental and theoretical Ni XIX line ratios. The filled cir-

cles are measurements from the grating spectrometer, and the filled squares are those from the

NASA/GSFC XRS/EBIT microcalorimeter. All the experimental data were measured at the LLNL

EBIT facility. The solid lines are the theoretical calculations using the Flexible Atomic Code (FAC)

which includes resonance excitation. The dashed lines are from FAC without resonance excitation.

The dotted lines are ratios from APEC for Maxwellian plasmas with temperatures in the 500–1000

eV range, i.e., for APEC, an energy of 1 keV in the figure corresponds to a temperature of 500 eV.

These plots are from Gu et al 2004 [79].

cross sections of the Ni XIX lines exist, there is no way to know if the calculations of [80] are

as good as implied by the comparison with the R ratio, or if the agreement found with the

relative intensities is fortuitous, as it was in the Fe XVII case. To check the cross sections

of the Ni XIX lines 3C and 3D, measurements of the absolute excitation cross sections

have been planned. These measurements would not only test the validity of the agreement

between theory and experiment in the case of the intensity ratios, but would also provide

a consistency check on the measured absolute excitation cross sections, σ3C and σ3D of Fe

XVII. This check would provide more evidence of the finding that, in the case of line 3C, the

discrepancies between theory and experiment lie in the calculation of the direct excitation

cross section.
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eV and 30 eV. The oscillatory behavior of the calculation caused by resonance excitation. Also
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microcalorimeter spectrometers, and three measurements from the NIST EBIT using an SAO

microcalorimeter. This is a complete version of a figure found in Chen et al. 2006 [80].
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