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In this paper we consider some fractional versions of classical pure birth, pure death and birth
and death processes.

The classical non-linear pure birth process is a model of an expanding population where the
number of components at time ¢ is a random point processN(¢),t >0, with birth rates

A k=1,
The state probabilities

p,()=Pr{N({t)=k|N(©0) =1}, k>1¢>0, (1)
satisfy the difference-differential equations
d
Epk = aDia — M D k=1,
2
©-1 . X
PP 0, k>2.
In the fractional version of (2), we replace the time derivative with the fractional derivative
v t i
d f(@)= 1 j S1(s) ds, O<v<], (3)
dt’ Ir-v)g@-s)

called Caputo or Dzhrbashyan-Caputo derivative.
We have shown, in Orsingher-Polito (2010) that, for the fractiona birth process N"(¢),t > 0,
the solution to

dv
dt’ Pi = AaDia — A Dis k>1
4
©=1" k=1 x
Pr 0, k2.
has the form
_ E (-4,t")
v _];:1/1‘/ ];1:1 - , k>1
pk (t) = Hl:l,l¢m (ﬂ’l - ﬂ’m) (5)
Ev,l(_ﬂ’ltv)’ k =1
where
k
" X
E, (x)=)] Tk 1D xeR,v>0, (6)

isthe Mittag-L effler function.
For v =1, werecover, from (5), the classical distribution of the non-linear pure birth process.

We were able to show that, between N'(¢f)and N(¢), holds the following subordination
relation:

N*(1) = N(T, (1)), >0, @)
where T, (), t > 0, isarandom process possessing alaw satisfying the fractional diffusion
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equation

2v 2
0 uzﬁ—zu, O<v<1¢>0, x>0,
ot’ dx
u(x,0) =06(x), (8)
u,(x,0)=0, for1/2<v<],
u (0,1) =0.

For v=1/2, T,(¢) is areflecting Brownian motion so that we can write
1

N2(1)=N( B() ], t>0. (9)
The digtributional structure (5) is complicated, and some special cases must be considered in
order to illustrate what is going on. For the linear case, that is when A, = Ak,4A >0, the
equations governing the state probabilities become

dv
ar pi =Alk=Yp,, —kp,, k21,
10
©={"7" "
P ok 22,
and we obtain that
k-1 - .
1&0)=§:§{?_1}—DJWQA—@tL k=1 (12)
For v =1, thedistribution (11) becomes the geometric distribution
prt)=e " (L-e), k>1. (12)

Linearity permits us to obtain, in arelatively simple form, the probability generating function
G (u,))=Eu™ ®, |u|1, >0, the mean and the variance, which read

EN" () =E,,(A"),
VarN*(t) = 2E,,(2At") - E, ,(At") - EZ, (At").

We can see that, for 0<v <1, the mean number of components of the population increases
faster and faster, as v decreasesin thisinterval.

Something similar to what we present here, happens for the pure death process.

We have initially a population consisting of ng individuals, subject to non-linear death rates z, .
While in the pure birth case (fractional or not), the population expands without restriction, in the

pure death case, it is condemned to extinction.
The state probabilities

(13)

PO =P{M () =k|M"(Q)=n,}, O0<k<ny,t>0, (14)
satisfy the fractional equations
d’ . - -
ar P = HiaPrv — HiPis k=1,
15
0= £t ()
PR 0, 0<k<n,
The solution to (15) becomes
(@) =E, (~u,1"), k =n,, (16)
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~ Ev 1 (_ltlm t ' )
pi ()= Hn‘ikuﬂ-z ek P ’ O<k <nyg, (17)
! ! LT3 s (1 — 1)
~v ny ny lu v _
P (t) =1- Z mzlnh:l,h;tm (—hjEv,l(_ﬂt )1 k=0, ny > 1. (18)
/Llh - /’lm
In the very special case where 71, =1, the extinction probability becomes
po()=1-E, (-mt"). (19)

Also, in this case, linearity (z, = uk) simplifies the form of the state probabilities, which
become

~v n No—. n _k r A4
by (r)=(k°]2 [ . ](—1) E, (~(k+r)ut"), 0<k<n,. (20)
For v =1, we extract from (20), the classical pure death distribution (Binomial):

At [ PO | —uke —ut \ng—k
pk(t)—[k je L—e )", t>0,0<k<n,. (21)

The mean value of the fractional linear pure death process M " (¢),t > 0, is
EM* (1) =noE, ,(-ut"), (22)

and therefore it steadily decreases as ¢ increases.
Another special case of death process is the sublinear fractional pure death process, where the
death rates have the form

U, = u(ny +1-k), 0<k<n,. (23)
In this case, the death intensities of individuals increases as the population size decreases. We
are able to prove that the fractional sublinear death process M " (¢),¢ > 0, has distribution

PHAT (1) = k | M (0) = no = 700"(”";kj(—l)va,l(—u(Hl)z”), 1<k<n, (24

The extinction probability, in the sublinear case, is given by

~v n, n v

po(t) = z 1_00( loj(_l)lEv,l(_lﬂt )- (29)
Furthermore, by summing up the probabilities (24), we get that

ny -~ " (pn )

Zpk (1) :1_2 ° (_1)kEv,1(_kﬂt )s (26)

k=1 k=0 k

and thus (24) and (25) form a genuine probability distribution. Curiously enough, the mean
value in the sublinear death process, has a rather complicated structure, since it has the
following form:

EM"(¢) = > Zf’_l(’;::ll](—l)’”lel(—yk "), 0<v<11¢>0. (27)

Between the linear birth process N" (¢),z > 0, and the sublinear death process Z\}V(t),t >0,
there are some unexpected analogies, for example:
PrN' () =k |N"(Q) =1} =Pr{M* (1) =ny +1-k | M"(O) =n,},  1<k<n,  (28)
and
Pr{N"(t) > ny | N"(0) =1}= Pr{¥1" (t) = 0| M* (0) =, | (29)
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If we assume that the population is simultaneously subject to births and deaths, the analysis of
the fractional counterpart of the classical process becomes more complicated; therefore we
restrict ourselves only to the fractional linear birth and death process.

The state probabilities, in this case, are subject to the governing equations

dv
ar Py =—(A+wkp, + Ak =Y p, , +ulk +Dp;,, k=0, (30)
and
1, k=1,
0= 31
pk( ) {O, k=l (31)
For v =1, we obtain the well-known distribution
_ ey (A= Byt
p,f (t)=(1- y)ze (A=)t ((/1(_ ye‘“‘”)’)))’”l , k>21L1t<0, u#A. (32)
For = A, wehave avery fine distribution which becomes
P (z)zﬂ k>11t>0. (33)
g L+ A1) -
The extinction probabilities, play a fundamental role, and take the form
At | A=,
- 1+ At
pO (t) = —1(A-p) (34)
H—He
T o A+ .
A—1e 1(A-u)

What is remarkable about (34) is that they solve Riccati equations. In the case A = u, this
equation has the form

d
Epo+2/1p0:/'t+/1p§. (35

As must be expected, al these distributions in the fractional case, have a much more
complicated structure. The extinction probabilities, in the three cases A > u,A < u, and

A = u , become

_ A- " " )

Po () :%_T#Z ml(%j E, (-=m(A—p)t"), A> (36)
_ .y A\

Do) =1- /JTZ Zl(;j E, (=m(u—-2)"), A<y, (37)
pot)=1- J.:e_wEv‘l(—/ltvw)dw, A=u. (38)

First of all, we note that, for v =1, we get from the above distribution, the classical extinction
probabilities of the linear birth and death process. This is ailmost immediate for 4 = £, since

E,,(=x) = e ". Furthermore, we note that, for # — oo, the extinction happens with probability
onefor x> A while, for u < A,limpgy(¢) = /A, asintheclassical case.
t—0

For the sake of completeness, we give aso the state probabilities for £ > 0. For 4> u we
have that

_ I+k ! k-1
ﬁk(t){lTﬂjZ ;0_0( 4; ](%) Z’,‘_é(—l)’( . ]Ev,l(—(l +r+)(A-)t"), (39
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while, for 4 <

ro=( 2] [“AB T2z e e a0, @

M Ji=o
The case 4 = u is particularly interesting because, in this case, the state probabilities can be
expressed in terms of the probability of extinction

PriN" () =k} =By () = (-D)** ﬂk; : jﬂk FIEN0)) k>1 (41

Some direct information on the behaviour of the fractional linear birth and death process, can be
obtained from the moments. The mean valueis

E, (- )", (>0, 4%,
A=u,

EN'(f) = (42)

and the variance, for 4 # 1, reads
=, 24 " At ) ;
Varl (0= 5= B2 =) =5 = B = B, (89)

while, for A = i, thevarianceis

21t"
r(v+1)
From (42) and (43), for v =1, we obtain the classical expressions of the mean and variance of
the linear birth and death process. For example, when v =1,

— ;H—’ue’”‘”’ (e"*) 1), A+ U,
VarN*(t) =< A — u (45)
20t A=
This showsthat, for 4 > u, the variance increases as ¢ growsto infinity.
As in the previous cases, the subordination relation between the classical linear birth and death
process N'(z), t >0, and its fractional version N (¢), ¢ > 0, holds and we can write
N'(1)=N'(T,, (1)), ¢>0, (46)

and this has been the main mean of investigation, permitting us to evaluate all the probabilities
presented here.

VarN" (t) =

(44)
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