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In this paper we consider some fractional versions of classical pure birth, pure death and birth 
and death processes. 
The classical non-linear pure birth process is a model of an expanding population where the 
number of components at time t  is a random point process 0),( >ttN , with birth rates 

1, ≥kkλ . 
The state probabilities 
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In the fractional version of (2), we replace the time derivative with the fractional derivative 
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called Caputo or Dzhrbashyan-Caputo derivative. 
We have shown, in Orsingher-Polito (2010) that, for the fractional birth process 0),( >ttN v , 
the solution to 
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has the form 
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where 
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is the Mittag-Leffler function. 
For 1=v , we recover, from (5), the classical distribution of the non-linear pure birth process. 
We were able to show that, between )(tN v and )(tN , holds the following subordination 
relation: 

)),(()( 2 tTNtN v
v =   0>t ,   (7) 

where 0),(2 >ttT v , is a random process possessing a law satisfying the fractional diffusion 
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equation 
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For )(,2/1 1 tTv = is a reflecting Brownian motion so that we can write 

0|),)((|)(2
1

>= ttBNtN .   (9) 
The distributional structure (5) is complicated, and some special cases must be considered in 
order to illustrate what is going on. For the linear case, that is when 0, >= λλλ kk , the 
equations governing the state probabilities become 
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and we obtain that 
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For 1=v , the distribution (11) becomes the geometric distribution 
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Linearity permits us to obtain, in a relatively simple form, the probability generating function 
0,1||,),( )( ><= tuEutuG tN

v

V
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We can see that, for 10 << v , the mean number of components of the population increases 
faster and faster, as v  decreases in this interval. 
Something similar to what we present here, happens for the pure death process. 
We have initially a population consisting of n0 individuals, subject to non-linear death rates kμ . 
While in the pure birth case (fractional or not), the population expands without restriction, in the 
pure death case, it is condemned to extinction. 
The state probabilities 
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satisfy the fractional equations 
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The solution to (15) becomes 
,),()(ˆ 01, 0

nktEtp v
nv

v
k =−= μ    (16) 
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In the very special case where 10 =n , the extinction probability becomes 
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Also, in this case, linearity ( )kk μμ =  simplifies the form of the state probabilities, which 
become 
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For 1=v , we extract from (20), the classical pure death distribution (Binomial): 
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The mean value of the fractional linear pure death process 0),( >ttM v , is 
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v
v
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and therefore it steadily decreases as t  increases. 
Another special case of death process is the sublinear fractional pure death process, where the 
death rates have the form 

.0),1( 00 nkknk ≤≤−+= μμ     (23) 
In this case, the death intensities of individuals increases as the population size decreases. We 
are able to prove that the fractional sublinear death process 0),(~ >ttM v , has distribution 
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The extinction probability, in the sublinear case, is given by 
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Furthermore, by summing up the probabilities (24), we get that 
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and thus (24) and (25) form a genuine probability distribution. Curiously enough, the mean 
value in the sublinear death process, has a rather complicated structure, since it has the 
following form: 
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Between the linear birth process 0),( >ttN v , and the sublinear death process 0),(~ >ttM v , 
there are some unexpected analogies, for example: 
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and 
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If we assume that the population is simultaneously subject to births and deaths, the analysis of 
the fractional counterpart of the classical process becomes more complicated; therefore we 
restrict ourselves only to the fractional linear birth and death process. 
The state probabilities, in this case, are subject to the governing equations 

,0,)1()1()( 11 ≥++−++−= +− kpkpkkpp
dt
d

kkkkv

v

μλμλ  (30) 

and 

⎩
⎨
⎧

≠
=

=
.1,0

,1,1
)0(

k
k

pk      (31) 

For 1=v , we obtain the well-known distribution 

.,0,1,
)(
))1(()()( 1)(

1)(
)(21 λμ

μλ
λμλ μλ

μλ
μλ ≠<≥

−
−

−= +−−

−−−
−− tk

e
eetp kt

kt
t

k   (32) 

For λμ = , we have a very fine distribution which becomes 
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The extinction probabilities, play a fundamental role, and take the form 
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What is remarkable about (34) is that they solve Riccati equations. In the case μλ = , this 
equation has the form 
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As must be expected, all these distributions in the fractional case, have a much more 
complicated structure. The extinction probabilities, in the three cases μλμλ <> , , and 

μλ = , become 
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First of all, we note that, for 1=v , we get from the above distribution, the classical extinction 
probabilities of the linear birth and death process. This is almost immediate for μλ = , since 

xexE −=− )(1,1 . Furthermore, we note that, for ∞→t , the extinction happens with probability 
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For the sake of completeness, we give also the state probabilities for 0>k . For μλ >  we 
have that 
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while, for μλ < , 
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The case μλ =  is particularly interesting because, in this case, the state probabilities can be 
expressed in terms of the probability of extinction 
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Some direct information on the behaviour of the fractional linear birth and death process, can be 
obtained from the moments. The mean value is 
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and the variance, for μλ ≠ , reads 
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while, for μλ = , the variance is 
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From (42) and (43), for 1=v , we obtain the classical expressions of the mean and variance of 
the linear birth and death process. For example, when 1=v , 
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This shows that, for μλ ≥ , the variance increases as t  grows to infinity.  
As in the previous cases, the subordination relation between the classical linear birth and death 
process 0),(1 >ttN , and its fractional version 0),( >ttN v , holds and we can write 

)),(()( 2
1 tTNtN v

v =  0>t ,    (46) 
and this has been the main mean of investigation, permitting us to evaluate all the probabilities 
presented here. 
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