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Abstract

Background: To evaluate the performance of a broad scope model-based optimisation process for volumetric

modulated arc therapy applied to esophageal cancer.

Methods and materials: A set of 70 previously treated patients in two different institutions, were selected to train

a model for the prediction of dose-volume constraints. The model was built with a broad-scope purpose, aiming to

be effective for different dose prescriptions and tumour localisations. It was validated on three groups of patients

from the same institution and from another clinic not providing patients for the training phase. Comparison of the

automated plans was done against reference cases given by the clinically accepted plans.

Results: Quantitative improvements (statistically significant for the majority of the analysed dose-volume parameters)

were observed between the benchmark and the test plans. Of 624 dose-volume objectives assessed for plan

evaluation, in 21 cases (3.3 %) the reference plans failed to respect the constraints while the model-based plans

succeeded. Only in 3 cases (<0.5 %) the reference plans passed the criteria while the model-based failed. In 5.3 % of

the cases both groups of plans failed and in the remaining cases both passed the tests.

Conclusions: Plans were optimised using a broad scope knowledge-based model to determine the dose-volume

constraints. The results showed dosimetric improvements when compared to the benchmark data. Particularly the

plans optimised for patients from the third centre, not participating to the training, resulted in superior quality. The

data suggests that the new engine is reliable and could encourage its application to clinical practice.
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Background
In the recent past, knowledge-based approaches were

studied and applied to some components of the radio-

therapy chain, in particular to treatment planning. Early

pre-clinical and clinical experiments have been per-

formed [1–7] to demonstrate the feasibility of predicting

appropriate dose-volume constraints starting from ap-

propriate modelling of historical data. The groups of the

Duke University [1–5] and of the Washington University

[6, 7], pioneers in knowledge-based planning, provided

evidence about the improved plan quality, reduced inter-

clinician variability, and about the possibility to transfer

the planning expertise from more experienced centres to

less experienced institutions.

In this frame, a recent commercial implementation of

knowledge-based planning was released by Varian Medical

Systems (Palo Alto, USA), the RapidPlan system. Early

pre-clinical validation studies have been published [8–10]

investigating its role for the planning of liver, prostate and

lung and head and neck cancer, using VMAT and IMRT

technologies. In all these studies, the primary focus was

the appraisal of the quality of the models built from
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relatively limited sets of patients, and the determination

of efficient methods for the model validation. The aim

of the RapidPlan system is to enable the automatic gen-

eration of individualised dose-volume constraints for

any new patient based on the knowledge and the mod-

elling of historical (or library-based) planning data. The

dose-volume constraints obtained from this modelling

should result: i) consistent with the consolidated clin-

ical practice, ii) achievable, i.e. encompassing and solv-

ing possible trade-offs between conflicting clinical

objectives and iii) optimal, in the sense that the overall

solution should represent the best balance between all

requests and the most effective healthy tissue protec-

tion, specific for the new patient. All the above can be

realised in the assumption that the models are built

from libraries of properly selected cases, i.e. cases opti-

mised by experienced planners with the implementa-

tion of state-of-the-art clinical objectives. The use of

this approach might streamline the optimisation

process by minimising the need of interactive or itera-

tive determination of planning objectives and, also, in-

crease the consistency and the transferability of

planning knowledge within and among a network of

institutions.

Volumetric modulated arc therapy (VMAT) has been

investigated for esophageal cancer in a limited number

of planning studies [11–18], and clinical results are still

to be provided. From these investigations, VMAT re-

sulted technically feasible with superior results in terms

of dose distributions (target coverage and organs at risk

(OAR) sparing) compared to 3D conformal therapy and

also to fixed field intensity modulated therapy (IMRT).

The aim of the present study was to demonstrate the

possibility to build, using a commercial system, a pre-

dictive model able to generate dose volume histogram

and constraints for optimizing VMAT plans for esopha-

geal cancer patients. Plan data from the databases of

three institutions were selected for the study. Data from

two clinics, with similar patient recruitment and plan-

ning strategies were used for the model definition and

training. Independent groups of plans from all three

clinics, not used for the training, were then used for the

model validation. The rationale for keeping clinic C in

the validation phase only, is to understand if a model

generated from plans with certain characteristics can be

effectively used in a broad-scope to transfer expertise

from more experienced centres to either less experi-

enced or more peripheral institutions with less resources

and/or excessive workload.

Matherial and methods

A new knowledge-based optimisation engine, named

RapidPlan, was introduced in the Eclipse treatment plan-

ning system (Varian Medical Systems, Palo Alto, USA)

from its release 13.5. First studies on pre-clinical valid-

ation have been recently published [8–10] and details on

its implementation in Eclipse and its main features can

be therein found. A more detailed description of the

mathematical implementation and of the algorithms ap-

plied can be found in [19, 20]. In summary, RapidPlan

has three components: i) a model building and training

environment (DVH Estimation Model Configuration); ii)

an automated model based dose-volume constraints pre-

diction tool (DVH Estimation); iii) a new VMAT and

IMRT optimisation algorithm (PO, Photon Optimizer).

The DVH estimation model configuration

A model uses a set of plan optimisation rules (chosen

objectives and priorities) for structures (target volumes

or OARs) included in the model itself. Objectives and

priorities can be manually and numerically assigned, or

generated for the specific patient by the model. The

model is configured from a number of relevant geomet-

ric and dosimetric features from a set of selected plans.

During the configuration process, a combination of Prin-

cipal Component Analysis and regression techniques

(PCA-regression) is applied for the in-field region of the

OARs, and a mean and standard deviation model for the

other OAR regions. The final result is a set of model pa-

rameters that are used in the next step to estimate the

DVHs for a new case.

Built-in model training evaluation

A statistical summary about the goodness of the model

is produced as an output of the training phase. Some pa-

rameters provide assessment about the model goodness-

of-fit and will be summarised in the results. The DVH’s

and GED’s (Geometry-based Expected Dose) principal

component average fits indicate the percentage of cases

in the training properly reconstructed by the model. The

coefficient of determination of the regression model pa-

rameters and the whole estimation model fit, measure

the variance and the quality of the regression model: a

good fit gives value close to 1. The average chi square of

the regression model parameters (Pearson’s chi-squared

test) represents the difference between the original and

the estimated data: the closer to 1 the better the fit. The

goodness-of-estimation is expressed by the mean squared

error between original and estimate, that measures the

distance between the original DVH and the mean of the

upper and lower bounds of the estimated DVH: the closer

to 0 the better. The percentage of dose bins falling outside

the estimation bounds should be 32 % in the ideal case

(out of 1 SD).

The DVH estimation

This component is used for generating estimated DVH

and optimization objectives for a plan of a new patient.
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From the DVH estimation model parameters, the most

probable, upper and lower bound DVHs are generated

using the PCA-regression model for the OAR in-field re-

gion, and the mean and standard deviation model for

the other OAR regions. Once the upper and lower

bound DVHs are computed, the objective generation

phase determines the dose volume constraints (lines

and/or points, user definable) to use in the optimization

process, according to the choices in the model configur-

ation. Users might also be free to add further objectives,

modify priorities and perform interactive optimisation if

needed.

Model definition and validation

Patients selection: the case of esophageal cancer was se-

lected for this investigation.

Seventy patients, from two clinics, previously planned

with RapidArc VMAT (Varian, Palo Alto, USA) were se-

lected for the training. All plans were approved for clin-

ical use. Forty patients were provided by clinic A with

dose prescriptions ranging from 40 to 60Gy (1.8-2.5 Gy/

fraction); 30 patients were selected from the database of

clinic B and were all planned with a dose prescription of

41.4Gy (1.8Gy/fraction). Patients were select to sample

with equal proportions the three districts for the local-

isation of the PTV (upper, medial and lower third of the

esophagus). No other special criteria were applied for

the selection of training cases except the fact that were

all judged clinically acceptable and usable for treatment.

Additional 40 patients, not used for the model config-

uration and training, were selected for the validation; 15

each from clinics A and B and 10 from a third clinic C

(this was added to better test the generalisation power of

the system). The latter group was characterised by a dif-

ferent strategy in target definition, and a dose prescrip-

tion of 50.4Gy (1.8Gy/fraction). Clinic C is experienced

in the RapidArc technique, but has an extreme workload

and relatively limited resources compared to the others.

Details about the planning strategy of the group C can

be found in [13].

The clinical target volume (CTV) was delineated to in-

clude the gross tumour and nodal disease, as identified

from the endoscopic and the imaging studies. Regional

nodes and the celiac axis were also added to the CTV.

The CTV was created by the expansion of CTV with 20

mm in the craniocaudal and 15 mm in the radial direc-

tions. The planning target volume was obtained with an

uniform expansion of 5mm from the CTV.

DVH estimation model characteristics: the model was

here configured to give line-type objectives for all in-

volved OARs with optimisation priorities generated by

the system. A line-type objective is in theory defined as

a continuous objective line representing the desired

DVH; objectives of this type would maximize the DVH

constraint strength in the whole dose range. In practice,

continuous lines are represented by a discrete number of

dose-volume constraint points and in the Eclipse imple-

mentation these are at least 5 equally spaced over the dose

range of the DVH. The usage of generated priorities

would leave the model to find the best possible solution

for the specific patient and related anatomy; fixed prior-

ities are more for a template-based approach. Constraints

and priorities for the PTV and CTV volumes were manu-

ally set to predefined values [9] to ensure coverage.

The OARs included in the study were: left and right

lungs, heart and spinal cord (spine). For patients with

target in the mid or lower-third of the esophagus, add-

itional OARs were included: liver, spleen, left and right

kidneys, stomach and small bowel. The average PTV

volume was 650 ± 270cm3 (range: 125-1209cm3) for the

training dataset and 397 ± 250cm3 (range: 54-1097cm3)

for the entire validation cases.

The Acuros-XB dose calculation algorithm was

adopted with a dose resolution of 2.5mm. Acuros was

applied as the algorithm for the final dose calculation as

well as for the so-called intermediate dose calculation.

In this study the intermediate dose calculation was auto-

matically run at the end of the optimisation phase to re-

fine the convergence to the planning objectives and it

results particularly effective when air cavities or signifi-

cant tissue heterogeneities, especially with low densities,

are involved. Plans were optimised for 6MV photon

beams for RapidArc with one or two full arcs. All plans

were normalised to the mean dose to PTV. Standard

DVH analysis was performed to appraise the quality of

the model-based optimised plans versus the clinically ac-

cepted baseline benchmark. Normal distribution of data

was assessed and confirmed.

A number of dose-volume objectives were used to ap-

praise the quality of the reference and RapidPlan dose

distributions and were quantitatively analysed for PTV

and OAR. All objectives are listed in detail in the result

tables. As reference, the clinically accepted plans were

selected.

To further appraise the RapidPlan data in comparison

with the reference plans, for each patient, PTV and OAR

and for all dose volume objectives (a total of 564 data

points) a pass-fail analysis was performed. Data were

grouped in 4 classes: class 1 for failed-passed cases

(reference-failed and RapidPlan-passed); class 2 for passed-

failed; class 3 for failed-failed and class 4 for passed-passed.

A test-point is defined as passed if the value in the

plan (either RapidPlan of the reference) improved the

dose-volume objective and failed in the opposite case.

Results
A qualitative and quantitative overview of the output of

the model configuration phase can be found in the
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Additional file 1. Table 1 reports a summary of the model

training statistics. Some structures were present only in

the cases where the PTV was located in the mid and mid-

lower thirds of the esophagus. The quality of the regres-

sion appeared good: more than 99 % of the cases were

reproduced in the DVH or GED (97 % for the left kidney)

components, with an average chi square of 1.08 ± 0.04.

Figure 1 shows, for 20 of the 40 cases (chosen every

second patient, i.e. almost randomly since patients were

not ordered according to any relevant parameter like

tumor volume or localisation) used in the validation

(including all the 10 cases from center C), the prediction

bands generated by the DVH estimation engine as well as

the final DVH lines after full optimisation and calculation

for the left and right lungs. To notice: i) the estimation

bands are narrow, ii) the final DVH falls normally below

the lower limit of the bands (according to the generated

line objective). Both observations support the good predic-

tion power of the model.

Figure 2 shows the dose distributions (the colorwash is

in the range 20–110 %) for one case from clinic C. The

comparison is between the reference plan (left panels)

and the RapidPlan data (right panels). Figure 3 reports

the average DVHs for CTV, PTV and OAR comparing

the reference and the RapidPlan data for clinic C

(Additional file 1: Figures S4 and S5 show the same for

the clinics A and B). RapidPlan allowed to modestly im-

prove some of the OARs (e.g. heart) with some more re-

markable effect on the spleen.

Table 2 presents the summary of the quantitative ana-

lysis of the DVH for the entire group of 40 patients in

the validation; p values are reported only when signifi-

cant (<0.05) or when a tendency to significance (p < 0.1)

was observed. The data confirm that modest but system-

atic improvements can be achieved with RapidPlan.

Table 3 presents the same summary but limited to the

10 cases from clinic C. The data resulted consistent with

the general analysis despite the different strategies in tar-

get definition and OARs contouring, the variations in

tumour stages, and in the dose prescriptions. On aver-

age, planning objectives were met for both the entire co-

hort as well as for the clinic C dataset.

Finally, Table 4 presents the results of the case-by-case

pass-fail analysis conducted on all the 40 validation pa-

tients and for all the planning objectives. Of the 624

dose-volume test points, 21 (3.3 %) were scored as fail-

ure for the reference plans and pass for the RapidPlan.

Of these, 14 were from the clinic C dataset. Only 3

points (<0.5 %) resulted with RapidPlan failing when the

reference plan succeeded (none from group C). Overall,

RapidPlan resulted equivalent or superior to the refer-

ence plans in almost the totality of the cases.

Table 1 Summary the model training statistics

Lung left Lung right Heart Spine Liver

Structures in model 70 70 70 70 65

Estimation model goodness of fit

DVH average fit 0.99 0.99 0.99 0.99 0.99

GED average fit 0.99 0.99 0.99 0.99 0.99

Coeff. of determination 0.83 0.92 0.73 0.49 0.88

Whole estimation model fit 0.83 0.91 0.73 0.49 0.87

Average chi square 1.07 1.09 1.04 1.05 1.05

Model goodness of estimation

MSE original and estimate 0.001 0.001 0.005 0.01 0.002

Dose bins outside bound.[%] 41 42 35 28 41

Spleen Stomach Left kidney Right kidney Small bowel

Structures in model 60 64 34 31 40

Estimation model goodness of fit

DVH average fit 0.99 0.99 0.99 0.99 0.99

GED average fit 0.99 0.99 0.97 0.99 0.99

Coeff. of determination 0.88 0.95 0.79 0.84 0.95

Whole estimation model fit 0.87 0.95 0.76 0.82 0.94

Average chi square 1.02 1.09 1.08 1.11 1.15

Model goodness of estimation

MSE original and estimate 25 0.002 0.01 0.004 0.003

Dose bins outside bound.[%] 0.005 39 29 23 44
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Planning time was not part of the study design since

its evaluation is prone to a number of subjective or ex-

ternal factors not easy to objectively quantify. In particu-

lar, the experience of individual planners and workload

as well as computer hardware have a strong influence.

Limiting to the RapidPlan aspects, some data were col-

lected. Once plans are identified as good candidates for

the model training, the time needed to “extract” the data

and load them into the configuration workspace is lim-

ited to about 15–20 s per plan. The time needed to train

a model is approximately 2 min. Being an investigational

study, the time needed to validate a model prior to the

dosimetric experiments, cannot be assessed and will be-

come clearer when the learning phase will be completed.

Plan optimisation with the DVH estimation engine re-

quires about 15–20 s for the constraints generation and,

in the case of esophagus, about 10–15 min of free-run

optimisation inclusiding of the so-called intermediate

dose calculation phase. The time needed for final dose

calculation is independent from the knowledge-based or

conventional approach applied for optimisation and de-

pends on the algorithm and the case complexity. For

esophageal cancer it takes about 6–8 min to perform a

full dose calculation with Acuros-XB.

Discussion
The scope of the present study was to appraise the pos-

sibility to use a knowledge-based dose-constraint predic-

tion engine for plan optimisation of VMAT with

clinically acceptable results. Previous studies [8–10]

demonstrated the possibility of developing and using

models for liver, lung, prostate and head and neck can-

cer patients. Validation tests showed that plan quality

was not inferior, while in some instances superior when

knowledge-based methods were applied to generate the

optimisation dose-volume constraints compared to the

routine clinical practice. All the published validation experi-

ments of RapidPlan were performed using only cases

pooled from the databases of the same institutions provid-

ing the model training cases. The approach of RapidPlan is

Fig. 1 Examples of estimated DVH ranges (solid bands) and final DVH after optimisation with the model-based algorithm. Data are shown for left

and right lungs for 20 of the 40 patients (chosen every second patient) used for the validation. Similar patterns for the other patients and organs

at risk
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based on the automated prediction of individualized dose-

volume objectives from a population-based or library-based

historical knowledge. This differs from other possible ap-

proaches that are currently available in clinical routine as

class solutions or fixed templates or that have been pre-

sented and are investigated like the use of or selection from

pools of Pareto-optimal groups of plans. The use of class

solutions and templates, although simple to implement, has

the limit given by the static nature of those objects. Any in-

dividualisation of the objectives is prone to the need of

trial-and-error planning and might lead to sub-optimal

planning when challenging patients or un-experienced

Reference RapidPlan

Fig. 2 Example dose distributions for the reference plan and for the model-based optimised plan for the clinic C. The colour-wash is from 20 %

to 110 % of the prescription dose (50.4Gy)

Fig. 3 Average DVH for target volumes and organs at risk for the validation experiment for the clinic C. The Reference lines are for the original

plans manually optimised, while the RapidPlan lines are for the model-based optimisation
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planners are involved. The other type of approach is more

interesting and in principle, following different paths, and

should aim to the same results: an individualised determin-

ation of the best plan from the optimisation of the trade-

offs between competing objectives. Several studies [21–26]

investigated the role of multi-criteria optimization (a form

of Pareto-optimal navigation approach) for both IMRT and

VMAT and demonstrated the possibility to maximise the

sparing of organs at risk with preservation of target cover-

age. The difference between the RapidPlan and the Pareto-

optimal approaches is mostly in the methodology: the first

aims to determine automatically the best personalized con-

straints, given the prescription requirements, the clinical

objectives and the historical knowledge; the latter starts

from static clinical objectives and navigates through the

realm of possible solutions to find the optimal plan. The de-

gree of automation of the process can be different between

the two approaches and dedicated comparative studies

would be needed to ascertain if one approach might be

preferable. At the present status this evidence is missing

and both methods appear to be very promising.

It is not directly relevant for the scope of these investi-

gations to discriminate if the use of physical or biological

(like EUD or NTCP) constraints are used to generate the

ideal optimisation results. Incidentally, within RapidPlan,

but not investigated here, it is possible to design the model

with any combination of physical dose-volume constraints

and/or generalised EUD for targets and OARs.

Table 2 Summary the DVH analysis for the reference and the

RapidPlan plans for the entire cohort of validation patients from

the 3 clinics

Objective Reference RapidPlan p

PTV

Mean [%] 100 % 100.0 ± 0.0 100.0 ± 0.0 -

D1% [%] <107 % 104.2 ± 3.2 103.8 ± 3.1 -

V95% [%] >95 % 97.3 ± 2.9 98.0 ± 1.2 -

St. Dev. [%] <5 % 2.1 ± 0.1 2.0 ± 0.1 -

Left lung

Mean [Gy] <15Gy 8.9 ± 4.2 9.1 ± 4.8 -

V20Gy [%] <20% 12.4 ± 10.2 12.6 ± 11.0 -

Right lung

Mean [Gy] <15Gy 9.2 ± 4.8 9.1 ± 5.2 -

V20Gy [%] <20 % 12.1 ± 11.3 12.2 ± 11.7 -

Heart

Mean [Gy] <25Gy 11.9 ± 9.9 10.7 ± 8.3 0.03

V30Gy [%] <30 % 10.3 ± 16.1 7.0 ± 8.9 0.07

Spine

D1cm3 [Gy] <45Gy 26.2 ± 11.5 23.6 ± 9.7 0.001

Liver

Mean <15Gy 8.5 ± 5.9 8.6 ± 6.4 -

Spleen

Mean [Gy] <20Gy 14.3 ± 7.6 12.3 ± 6.3 0.004

D1% [Gy] <40Gy 32.6 ± 10.6 30.6 ± 11.0 -

Left kidney

V15Gy [%] <35 % 16.4 ± 16.9 12.7 ± 18.7 0.03

Right kidney

V15Gy [%] <35 % 4.7 ± 7.3 3.4 ± 5.0 -

Stomach

D1% [Gy] <50Gy 43.3 ± 8.8 42.5 ± 9.9 0.07

Small bowel

Mean [Gy] <10Gy 6.6 ± 3.1 6.3 ± 3.0 0.03

D1% [Gy] <45Gy 25.6 ± 9.2 24.6 ± 8.6 -

Table 3 Summary the DVH analysis for the reference and the

RapidPlan plans for the cohort of validation patients from the

clinic C

Objective Reference RapidPlan p

PTV

Mean [%] 100 % 100.0 ± 0.0 100.0 ± 0.0 -

D1% [%] <107 % 105.0 ± 1.0 104.8 ± 0.9 -

V95% [%] >95 % 96.5 ± 2.5 97.1 ± 1.1 -

St. Dev. [Gy] <5 % 2.5 ± 0.8 2.4 ± 0.8 -

Left lung

Mean [Gy] <15Gy 11.4 ± 4.7 10.6 ± 4.2 0.01

V20Gy [%] <20 % 22.4 ± 10.6 18.9 ± 7.2 0.01

Right lung

Mean [Gy] <15Gy 12.6 ± 5.5 11.9 ± 5.3 0.01

V20Gy [%] <20 % 24.4 ± 12.3 21.7 ± 11.2 -

Heart

Mean [Gy] Minimise 15.4 ± 15.1 11.9 ± 11.9 0.06

V30Gy [%] <30 % 22.7 ± 25.5 16.2 ± 18.7 0.02

Spine

D1cm3 [Gy] <45Gy 43.3 ± 3.8 43.1 ± 4.4 0.01

Liver

Mean Minimise 4.9 ± 7.1 4.5 ± 6.4 0.01

Spleen

Mean [Gy] Minimise 19.7 ± 4.2 13.9 ± 3.5 -

D1% [Gy] Minimise 45.5 ± 3.2 43.8 ± 4.1 -

Left kidney

V15Gy [%] <35 % 14.0 ± 16.5 11.5 ± 14.3 -

Right kidney

V15Gy [%] <35 % 3.8 ± 4.6 3.7 ± 4.9 -

Stomach

D1% [Gy] Minimise 60.8 ± 0.6 61.5 ± 0.1 -

Small bowel

Mean [Gy] Minimise 7.7 ± 2.4 6.7 ± 2.3 0.01

D1% [Gy] <45Gy 39.3 ± 7.0 38.8 ± 6.9 -
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Other automated objective definition methods were

studied. Multi-criteria plan optimisation based on a set of

“wish-list” prescription objectives, together with the selec-

tion of beam geometries from libraries of candidate direc-

tions enabled the development of sets of Pareto-optimal

IMRT plans. In 97 % of the cases tested in a prospective

clinical study for head and neck cancer, the automatically

generated plans resulted preferable [27, 28].

Among these, methods to automatically adjust the objec-

tives during optimisation (autoplan concept) enabled some

degree of automation [29, 30]. Also data-driven methods

were developed in research-based planning systems. The

investigation of the spatial relationships between OARs and

targets and the automatic generation of objectives derived

from a database of cases and used as initial planning goals

was demonstrated to be reliable and suggestive of possible

automation of IMRT planning [31–33].

Knowledge-based planning methods (or Pareto-

optimal multi-criteria methods) do not eliminate the

need to perform individual plan optimisation and cal-

culation. The scope of these approaches is to automate

and individualise at maximum the process of optimisa-

tion with the definition of the best constraints possibly

minimizing interactive and iterative interventions. The

actual optimisation and final calculation can already

today be made automatic by the existing commercial

implementations so, with the demonstration of the reli-

ability of knowledge based methods, a further step to-

wards complete automation of the inverse planning

process is achieved.

Table 4 Summary of the case-by-case pass-fail analysis for the selected dose-volume planning objectives for the reference and for

the model-based plans for all the validation cases

Objective Reference fail Reference pass Reference fail Reference pass

Rapidplan pass RapidPlan fail RapidPlan fail RapidPlan pass

PTV (40 cases)

D1% [%] <107 % 0 (0 %) 0 (0 %) 0 (0 %) 40 (100 %)

V95% [%] >95 % 5 (12 %) 0 (0 %) 0 (0 %) 35 (88 %)

St. Dev. [%] <5 % 0 (0 %) 0 (0 %) 0 (0 %) 40 (100 %)

Left lung (40 cases)

Mean [Gy] <15Gy 1 (2 %) 0 (0 %) 4 (10 %) 35 (90 %)

V20Gy [%] <20 % 1 (2 %) 0 (0 %) 5 (12 %) 34 (86 %)

Right lung (40 cases)

Mean [Gy] <15Gy 0 (0 %) 2 (5 %) 2 (5 %) 36 (90 %)

V20Gy [%] <20 % 2 (5 %) 0 (0 %) 5 (12 %) 33 (83 %)

Heart (40 cases)

Mean [Gy] <25Gy 2 (5 %) 0 (0 %) 2 (5 %) 36 (90 %)

V30Gy [%] <30 % 2 (5 %) 0 (0 %) 1 (2 %) 37 (94 %)

Spine (40 cases)

D1cm3 [Gy] <45Gy 3 (7 %) 0 (0 %) 1 (2 %) 36 (91 %)

Liver (31 cases)

Mean <15Gy 1 (3 %) 1 (3 %) 3 (10 %) 26 (84 %)

Spleen (25 cases)

Mean [Gy] <20Gy 1 (4 %) 0 (0 %) 1 (4 %) 23 (92 %)

D1% [Gy] <40Gy 1 (4 %) 0 (0 %) 5 (20 %) 19 (76 %)

Left kidney (16 cases)

V15Gy [%] <35 % 0 (0 %) 0 (0 %) 1 (6 %) 15 (94 %)

Right kidney (16 cases)

V15Gy [%] <35 % 2 (12 %) 0 (0 %) 0 (0 %) 14 (88 %)

Stomach (31 cases)

D1% [Gy] <50Gy 0 (0 %) 0 (0 %) 2 (6 %) 29 (94 %)

Small bowel (20 cases)

Mean [Gy] <10Gy 0 (0 %) 0 (0 %) 1 (5 %) 19 (95 %)

D1% [Gy] <45Gy 0 (0 %) 0 (0 %) 0 (0 %) 20 (100 %)
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It is of course true that the findings presented in this

study are depending upon the specific software solution

implemented by the vendor and are directly applicable

only to centres having similar infrastructures. Neverthe-

less, the role of knowledge-based optimisation engines

and the clinical usability of these methods has a more

general value and might give insights to future directions

of developments of the radiotherapy chain.

In the present study, the case of esophageal cancer

was chosen to investigate the performance of a broad-

scope knowledge-based model. The concept of broad-

scope was realised with, on one side, the selection of a

heterogeneous set of plans for the training (wide range

of dose prescriptions, huge variation in target size and

localisation from the upper to the lower third - with par-

tial inclusion of the stomach -) to predict patient tailored

dose-volume objectives for inverse planning. The rele-

vant variation in dose prescription was due to the differ-

ent localisation of the target, the various trade-off with

OARs, and the different protocols applied. The variation

in target size and shape (from short-symmetric targets in

the upper third to very elongated-symmetrical in the cen-

tral and central-lower to the elongated and asymmetric-

lateral targets of the lower third) added complexity to the

optimisation process. The presence of many OARs, with

very different sizes and geometrical relationships to the

target induced several trade-off problems and challenged

the achievement of the planning objectives. The sub-

analysis on two groups with symmetric or asymmetric tar-

gets did not lead to any significant difference compared to

the main results. This was expected since the model was

trained with a cohort of mixed cases with equivalent inci-

dence of both classes. The DVH estimation engine dem-

onstrated a sufficient generalisation power and generated

adequate predictions for both groups during the valid-

ation. Similarly no difference was found in diviging the

group of patients by upper, medium or lower third of the

esophagus for the same reason. A training set which sam-

ples the patient population with an adequate case mix can

be used for a general purpose. .

As a second side of the broad-scope investigation, the

model validation was performed on three groups of

cases (not used for the training). Two sets of cases from

each of the two clinics contributing to the training and

one set from a third, external, clinic. This was similar to

the concept investigated by Good et al. in their study

[5]. Only if the model-based approach gives results

equivalent or superior to the corresponding reference

plans optimised with traditional methods in the external

clinic, the validity of the model and its broad-scope are

proven. The here presented results demonstrated that

this was indeed the case, and the model, built with 70

patients from clinics A and B resulted adequate to prop-

erly optimise plans from clinic C. The actual exchange

of the model between centers would be quite easy since

all the necessary data (the parameters fit from the train-

ing phases) can be exported in binary encrypted format

from one center and simply reimported into the Eclipse

planning system of the destination center. No exchange

of any patient data would be necessary for the purpose.

From an operational perspective, the RapidPlan

knowledge-based engine allowed to generate and train a

predictive model of clinically acceptable performance. The

number of cases used for training was 70, greater than

what used in the liver or lung and prostate experiments

(27 or 45) or in the head and neck study (30 or 60), but

still reasonably limited to allow patient selection in a

medium sized clinic. The training set was determined

without special selection criteria. The guideline followed

for the study was to include in the training set an adequate

representation of the population to be sampled. In the

present case, three main subgroups were identified ac-

cording to the location of the tumor and the number of

training cases used scaled with the number of classes

times the minimum number of patents per OAR to build

a model (which is 20). The results obtained thus reinforce

the possibility to build effective broad-scope models and,

likely, suggest that, to some extent, the use of heteroge-

neous datasets (in their geometric and dosimetric aspects)

might be useful if not necessary. Further studies are

needed to determine the correlation between heterogen-

eity of the input data, number of training cases needed,

and generalisation power of the models. The present re-

sults suggest that modest numbers are sufficient to repre-

sent wide clinical conditions.

The detailed analysis of the residual planning criteria

violations, showed that the knowledge-based plans pre-

sented fewer failures than the original clinical plans but

still not all criteria were met for all patients (the 3 cases

of class 2 pass-fail findings). The present results are gen-

erated with no user interaction during the optimisation

runs, and therefore might suggest some challenge when

complex trade-offs are present. In such cases it would be

possible to apply manual interactive refinements during

the optimisation.

The validation based on patients originated from a de-

partment not member of the training group, as in the

present study, is the proof of the broad-scope model con-

cept value. The fact that with RapidPlan it was possible to

generate plans systematically equivalent or superior to the

reference also for this centre, demonstrates a good power

of generalisation. As a consequence, the transfer of the

planning knowledge from more experienced and profiled

centres to either less advanced or more busy institutions

is shown to be possible. It would possibly be conceivable

the use of properly built broad-scope models to harmonise

and uniform the planning phases for multicentric trials

(provided compatible systems are available).
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Conclusions
RapidPlan, a novel knowledge-based DVH estimation

model was successfully configured, trained and validated

for esophageal cancer. The system allowed to improve

the quality of VMAT RapidArc plans against the refer-

ence clinically accepted plans. In particular RapidPlan

based plans resulted superior to reference plans for the

cases provided by a clinical centre not having contrib-

uted to any case in the model training phase. Results are

suggestive for a reliable application of the methodology

to the clinical routine.

Additional file

Additional file 1: Supplementary materials further describing the

Rapidplan logic and complementing the numerical results summarised in

the main text. (DOCX 2378 kb)

Competing interests

L. Cozzi acts as Scientific Advisor to Varian Medical Systems and is Clinical

Research Scientist at Humanitas Cancer Center. All other co-authors have no

conflicts of interest. No other conflict or source should be disclosed.

Authors’ contributions

LC and AF built and trained the model and performed the validation

analysis. GN, EV, AC provided part of the plans and built the analysis tools.

AT, MS and SL provided the test cases. All authors contributed in writing,

reading and approving the manuscript.

Acknowledgements

Nothing to mention.

Author details
1Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.
2Radiotherapy and Radiosurgery Department, Humanitas Clinical and

Research Center, Milan-Rozzano, Italy. 3Radiotherapy Department, Tata

Memorial Hospital, Mumbai, India.

Received: 25 July 2015 Accepted: 26 October 2015

References

1. Chanyavanich V, Das S, Lee W, Lo W. Knowledge based IMRT treatment

planning for prostate cancer. Med Phys. 2011;38:2515–22.

2. Zhu X, Ge Y, Li T, Thongphiew D, Yin FF, Wu J. A planning quality

evaluation tool for prostate adaptive IMRT based on machine learning.

Med Phys. 2011;38:719–26.

3. Yuan L, Ge Y, Lee W, Yin FF, Kirkpatrick J, Wu J. Quantitative analysis of the

factors which affect the inter-patient organ-at risk dose sparing variation in

IMRT plans. Med Phys. 2012;39:6868–78.

4. Lian J, Yuan L, Ge Y, Chera B, Yoo D, Chang S, et al. Modeling the dosimetry

of organ-at-risk in head and neck IMRT planning: an inter-technique and

inter-institutional study. Med Phys. 2013;40:121704.

5. Good D, Lo J, Lee R, Wu J, Yin FF, Das S. A knowledge based approach to

improving and homogenizing intensity modulated radiation therapy

planning quality among treatment centers: an example application to

prostate cancer planning. Int J Radiat Oncol Biol Phys. 2013;87:176–81.

6. Moore K, Scott Brame R, Low D, Mutic S. Experience based quality control

of clinical intensity modulated radiotherapy planning. Int J Radiat Oncol Biol

Phys. 2011;81:545–51.

7. Appenzoller L, Michalski J, Thorstad W, Mutic S, Moore K. Predicting dose-

volume histograms for organs-at-risk in IMRT planning. Med Phys.

2012;39:7446–61.

8. Fogliata A, Wang P, Belosi F, Clivio A, Nicolini G, Vanetti E et al. Assessment

of a model based optimization engine for volumetric modulated arc

therapy for patients with advanced hepatocellular cancer. Radiat Oncol.

2014;9:236.

9. Fogliata A, Belosi F, Clivio A, Navarria P, Nicolinig G, Scorsetti M, et al.

On the pre-clinical validation of a commercial model-based optimization

engine: application to volumetric modulated arc therapy for patients with

lung or prostate cancer. Radiother Oncol. 2014;113:385–91.

10. Tol J, Delaney A, Dahele M, Slotman B, Verbakel W. Evaluation of a

knowledge based planning solution for head and neck cancer. Int J Radiat

Oncol Biol Phys. 2015;91:612–20.

11. Martin S, Chen JZ, Rashid Dar A, Yartsev S. Dosimetric comparison of helical

tomotherapy, rapidarc, and a novel imrt & arc technique for esophageal

carcinoma. Radiother Oncol. 2011;101:431–7.

12. Van Benthuysen L, Hales L, Podgorsak MB. Volumetric modulated arc

therapy vs. Imrt for the treatment of distal esophageal cancer. Med Dosim.

2011;36:404–9.

13. Wang D, Yang Y, Zhu J, Li B, Chen J, Yin Y. 3d-conformal rt, fixed-field imrt

and rapidarc, which one is better for esophageal carcinoma treated with

elective nodal irradiation. Technol Cancer Res Treat. 2011;10:487–94.

14. Nicolini G, Ghosh-Laskar S, Shrivastava SK, Banerjee S, Chaudhary S, Agarwal

JP, et al. Volumetric modulation arc radiotherapy with flattening filter-free

beams compared with static gantry imrt and 3d conformal radiotherapy for

advanced esophageal cancer: A feasibility study. Int J Radiat Oncol Biol

Phys. 2012;84:553–60.

15. Sriram P, Syamkumar SA, Kumar JS, Prabakar S, Dhanabalan R,

Vivekanandan N. Adaptive volumetric modulated arc treatment planning

for esophageal cancers using cone beam computed tomography.

Phys Med. 2012;28:327–32.

16. Vivekanandan N, Sriram P, Kumar SA, Bhuvaneswari N, Saranya K. Volumetric

modulated arc radiotherapy for esophageal cancer. Med Dosim. 2012;37:108–13.

17. Fakhrian K, Oechsner M, Kampfer S, Schuster T, Molls M, Geinitz H.

Advanced techniques in neoadjuvant radiotherapy allow dose escalation

without increased dose to the organs at risk : Planning study in esophageal

carcinoma. Strahlenther Onkol. 2013;189:293–300.

18. Wang Y, Chen S, Chien C, Hsieh T, Yu C, Kuo Y, et al. Radiotherapy for

esophageal cancer using simultaneous integrated boost techniques:

Dosimetric comparison of helical tomotherapy, volumetric-modulated arc

therapy (rapidarc) and dynamic intensity-modulated radiotherapy. Technol

Cancer Res Treat. 2013;12:485–91.

19. Varian Medical Systems. Eclipse Photon and Electron Instructions for use.

Palo Alto, CA: 2014:183–213

20. Varian Medical Systems. Eclipse Photon and Electron Reference Guide.

Palo Alto, CA: 2014:263–348

21. Hu W, Wang J, Li G, Peng J, Lu S, Zhang Z. Investigation of plan quality

between RapidArc and IMRt for gastric cancer based on novel beam angle

and multicriteria optimization technique. Radiother Oncol. 2014;111:144–7.

22. McGarry C, Bokrantz R, O’sullivan J. hounsell A. Advantages and limitations

of navigation based multicriteria optimization (MCO) for localized prostate

cancer IMRT planning. Med. Dosim. 2014;39:205–11.

23. Chen H, Craft D, Gierga D. Multicriteria optimization informed VMAT

planning. Med Dosim. 2014;39:64–73.

24. Wala J, Cradt D, Paly J, Zietman A, Efstathiou J. Maximizing dosimetric

benefits of IMRT in the treatment of localized prostate cancer through

multicriteria optimization planning. Med Dosim. 2013;38:298–303.

25. Craft D, McQuaid D, Wala J, Chen W, Salari E, Bortfeld T. Multicriteria VMAT

optimization. Med Phys. 2012;39:686–96.

26. Craft D, Hong T, Shih H, Bortfeld T. Improved planning time and plan

quality through multicriteria optimization for intensity modulated

radiotherapy. Int J Radiat Oncol Biol Phys. 2012;82:e83–90.

27. Breedveld S, Storchi P, Voet P, Heijmen B. iCycle: integrated multicriterial

beam angle and profile optimization for generation of coplanar and

noncoplanr IMRT plans. Med Phys. 2012;39:951–63.

28. Voet P, Dirkx M, Breedveld S, Fransen D, Levendag P, Heijmen B. Toward

fully automated multicriterial plan generation: a prospective clinical study.

Int J Radiat Oncol Biol Phys. 2013;85:866–72.

29. Quan E, Chang J, Liao Z, Xia T, Yuan Z, Liu H, et al. Automated Volumetric

Modulated Arc Therapy Treatment Planning for Stage III Lung Cancer: How

Does It Compare With Intensity-Modulated Radio Therapy? Int J Radiat

Oncol Biol Phys. 2012;84:e69–76.

30. Xiaodong Z. Xiaoqiang L, Enzhuo M. Xiaoning P and Yupeng L A

methodology for automatic intensity-modulated radiation treatment

planning for lung cancer Phys Med Biol. 2012;56:3873.

Fogliata et al. Radiation Oncology  (2015) 10:220 Page 10 of 11

dx.doi.org/10.1186/s13014-015-0530-5


31. Wu B, McNutt T, Zahurak M, Simari P, Pang D, Taylor R, et al. Fully

automated simultaneous integrated boosted-intensity modulated radiation

therapy treatment planning is feasible for head-and-neck cancer: a

prospective clinical study. Int J Radiat Oncol Biol Phys. 2012;84:e647–53.

32. Wu, B., Ricchetti F, Sanguineti G, Kazhdan M, Simari P, Chuang M et al.

Patient geometry-driven information retrieval for IMRT treatment plan

quality control. Med Phys 2009;36:5497 5505.

33. Wu B, Ricchetti F, Sanguineti G, Kazhdan M, Simari P, Jacques R, et al.

Data-driven approach to generating achievable dose volume histogram

objectives in intensity-modulated radiotherapy planning. Int J Radiat Oncol

Biol Phys. 2011;79:1241–7.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Fogliata et al. Radiation Oncology  (2015) 10:220 Page 11 of 11


	Abstract
	Background
	Methods and materials
	Results
	Conclusions

	Background
	Matherial and methods
	The DVH estimation model configuration
	Built-in model training evaluation
	The DVH estimation
	Model definition and validation

	Results
	Discussion
	Conclusions
	Additional file
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

