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The development of a fast multipole method (FMM) accelerated iterative solution of the boundary
element method (BEM) for the Helmholtz equations in three dimensions is described. The FMM for
the Helmholtz equation is significantly different for problems with low and high kD (where k is the
wavenumber and D the domain size), and for large problems the method must be switched between
levels of the hierarchy. The BEM requires several approximate computations (numerical quadrature,
approximations of the boundary shapes using elements), and these errors must be balanced against
approximations introduced by the FMM and the convergence criterion for iterative solution. These
different errors must all be chosen in a way that, on the one hand, excess work is not done and, on
the other, that the error achieved by the overall computation is acceptable. Details of translation
operators for low and high kD, choice of representations, and BEM quadrature schemes, all
consistent with these approximations, are described. A novel preconditioner using a low accuracy
FMM accelerated solver as a right preconditioner is also described. Results of the developed solvers
for large boundary value problems with 0.0001 <kD =500 are presented and shown to perform
close to theoretical expectations. © 2009 Acoustical Society of America. [DOI: 10.1121/1.3021297]

PACS number(s): 43.55.Ka, 43.20.Fn, 43.28.Js [NX]

I. INTRODUCTION

Boundary element methods (BEMs) have long been con-
sidered as a very promising technique for the solution of
many problems in computational acoustics governed by the
Helmbholtz equation. They can handle complex shapes, lead
to problems in boundary variables alone, and lead to simpler
meshes where the boundary alone must be discretized rather
than the entire domain. Despite these advantages, one issue
that has impeded their widespread adoption is that they lead
to linear systems with dense and possibly nonsymmetric ma-
trices. As the domain size increases to many wavelengths,
the number of variables in the discretized problem, N, should
increase correspondingly to satisfy the Nyquist sampling cri-
terion. For a problem with N unknowns, a direct solution
requires O(N®) solution cost and storage of O(N?). Use of
iterative methods does not reduce the memory but can reduce
the cost to O(N,,N?) operations, where N, is the number of
iterations required, and the O(N?) per iteration cost arises
from the dense matrix-vector product. In practice this is still
quite large. An iteration strategy that minimizes Nj, is also
needed. Other steps in the BEM are also expensive, such as
the computation of the individual matrix elements, which
require quadrature of nonsingular, weakly singular, or hyper-
singular functions. To reduce the singularity order and
achieve symmetric matrices, many investigators employ
Galerkin techniques, which lead to further O(N?) integral
computations. Because of these reasons, the BEM was not
used for very large problems. In contrast finite-difference and
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finite element methods, despite requiring larger volumetric
discretizations, have well established iterative solvers and are
more widely used.

The combination of the fast multipole method' (FMM)
and the preconditioned Krylov iterative methods presents a
promising approach to improving the scalability of BEMs
and is an active area of research. The FMM for potential
problems allows the matrix-vector product to be performed
to a given precision € in O(N) operations and further does
not require the computation or storage of all N> elements of
the matrices, reducing the storage costs to O(N) as well.
Incorporating the fast matrix-vector product in a quickly
convergent iterative scheme allows the system of equations
to be rapidly solved with O(N;,N) cost. The FMM was ini-
tially developed for gravity or electrostatic potential prob-
lems. Later this method was intensively studied and extended
to the solution of problems arising from the Helmholtz, Max-
well, biharmonic, elasticity, and other equations. While the
literature and previous work on the FMM is extensive, rea-
sons of space do not permit a complete discussion of the
literature. The reader is referred to Ref. 2 for a comprehen-
sive review.

Il. FMM AND FMM ACCELERATED BEM FOR THE
HELMHOLTZ EQUATION

The FMM and FMM accelerated BEM for the Helm-
holtz equation have seen significant work, and several au-
thors have recently published on various aspects of the
problem,}9 and new articles have appeared when this article
was in review.'® This article presents a FMM accelerated
boundary element solver for the Helmholtz equation that has
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the following contributions that distinguish it from previous
work:

e achieves good performance at both low and high frequen-
cies by changing the representation used,

* has a quickly convergent iterative scheme via a novel pre-
conditioner, which is described here,

e achieves further efficiency by considering the error of the
quadrature in the BEM in the overall error analysis of the
FMM, and

* uses the Burton-Miller (combined) boundary integral for-
mulation for external problems and avoids the problems
with spurious resonances.

A. Error and fast multipole accelerated boundary
elements

During the approximate solution of the Helmholtz equa-
tion via the FMM accelerated BEM, the following different
sources of error are encountered:

e geometric error due to the discretization of the surface with
meshes,

 quadrature error in computation of boundary integrals,

e matrix-vector product error due to the FMM, and

e residue error used as a termination criterion during the
iterative solution process.

One of the contributions of this paper is to consider all
the errors together and design an algorithm that provides the
required accuracy and avoids wasteful computations. It
should be noted that the error achieved in practice in many
reported simulation error tolerances is quite high, from a
high of a few percent to at most 10~ (see, e.g., Refs. 4, 5,
and 11). Many previous FMM/BEM simulations contain
computations that are wasteful of CPU time and memory
when considering the final error desired or achieved.

B. Resolving calculations over a large range of
wavenumbers

To be accurate, any calculation must resolve the smallest
wavelengths of interest, and to satisfy the Nyquist criterion,
the discretization must involve at least two points per wave-
length. The restriction imposed by this requirement manifests
itself at large frequencies since at lower frequencies the dis-
cretization is controlled by the necessity to accurately repre-
sent the boundary. Thus, two basic regimes for the FMM
BEM are usually recognized in acoustic simulations: the
low-frequency regime and the high-frequency regime. These
regimes can be characterized by some threshold value (kD).
of the parameter kD, where k is the wavenumber and D is the
computational domain size. For each of these regimes the
computational complexity of the FMM exhibits a different
behavior.'

1. Low-frequency regime

In the low-frequency regime, kD <(kD),., the per itera-
tion step cost of the FMM is proportional to N and not very
much affected by the value of kD. Here, the most efficient
representation is in terms of spherical multipole wavefunc-
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tions, and the translation schemes are based on the rotation-
coaxial translation-backrotation (RCR) decompositions,lz’13
which have O(p®) complexity. Here p? is the number of
terms in the multipole expansion (p in this regime can be
constant). Alternately one may use the low-frequency expo-
nential forms,m’15 which have the same complexity, but with
a different asymptotic constant. The method of function rep-
resentation based on sampling of the far-field signature
function'® is not stable in this region due to exponential
growth of terms in the multipole-to-local translation kernel.

2. High-frequency regime

In the high frequency regime, kD > (kD). and the value
of kD heavily affects the cost. Since the wavenumber k is
inversely proportional to wavelength and, in practice, five to
ten points per wavelength are required for accuracy, for a
surface-based numerical method (such as the BEM) the prob-
lem size N scales as O(kD)?, while for volumetric problems
(e.g., for many scatterers distributed in a volume) N scales as
O(kD)?. For this regime, the size of the wavefunction repre-
sentation, which is O(p?), must increase as the levels go up
in the hierarchical space subdivision, with p proportional to
the size of the boxes at a given level.'? Because of this, the
complexity of the FMM is heavily affected by the complex-
ity of a single translation. It was shown'? that O(p?) schemes
(such as the RCR scheme) result in an overall complexity of
the FMM O(kD)? for simple shapes and O((kD)? log(kD))
for space-filling surfaces. The use of translation schemes of
O(p*) and O(p>) complexities in this case provides the over-
all complexity of the FMM that is slower than the direct
matrix-vector product. Where FMM with translation
schemes of such complexity have been used with the BEM
(e.g., see Ref. 7), one must recognize that the software is
only usable in the low-frequency regime.

To reach the best scaling algorithm in the high-
frequency regime, translation methods based on representa-
tions that sample the far-field signature function'® are neces-
sary. The translation cost in this case scales as O(p?), while
at least O(p? log p) additional operations are needed for the
spherical filtering necessary for numerical stabilization of the
procedure. In this case the overall FMM complexity will be
O((kD)?log® (kD)) (a=1) for simple shapes and O((kD)?)
for space-filling shapes.

3. Switch in function representations

As discussed above, different representations are appro-
priate for low and high kD. However, even for high kD prob-
lems, since the FMM employs a hierarchical decomposition,
at the fine levels, the problems behave as a low kD problem.
Indeed at the fine levels, parameter ka, where a is a repre-
sentative box size, is smaller than (kD),, and translations
appropriate to the low-frequency regime should be used. For
coarser levels, ka is large and the high-frequency regime
should be used, and a combined scheme in which the spheri-
cal wavefunction representation can be converted to signa-
ture function sample representation is needed. Such a switch
was also suggested and tested recently in Ref. 17. The
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present scheme, however, is different from that of Ref. 17
and does not require interpolation/anterpolation.

4. Comparison with volumetric methods

Similarly volumetric methods, such as the finite-
difference time domain (FDTD) method for the wave equa-
tion, have the requirement that to resolve a simulation they
need several points per wavelength. Thus for a problem on a
domain of size kD, in three dimensions we have N~ (kD),
with this restriction being controlling at higher frequencies.
Fast iterative methods, e.g., based on multigrid solve these
systems in constant number of iterations and for a cost of
O(N*?) per time step. So for a problem with M time steps,
we have O(MN*3)=0(M(kD)*) complexity for the volumet-
ric methods (this is based on the discussion in Ref. 18). In
contrast a fast multipole accelerated BEM, which is precon-
ditioned with a preconditioner requiring a constant number
of steps and is solved at M frequencies, can achieve solution
in O(M(kD)?log (kD)) or O(M(kD)?) steps. However, in
terms of programming ease the FDTD and finite element TD
methods are much easier to implement, and the precondition-
ers developed for them work better. Further they are easier to
generalize to nonisotropic media. Their difficulty in handling
infinite domains has been largely solved via perfectly
matched layer methods. Accordingly, despite the advantages
provided by integral equation approaches for the Helmholtz
equation, volumetric approaches are popular.

C. lterative methods and preconditioning

Preconditioning can be very beneficial for fast conver-
gence of Krylov subspace iterative methods. Preconditioning
for boundary element matrices is, in general, a lesser studied
issue than for finite-element- and finite-difference-based dis-
cretizations. From that theory, it is known that for high wave-
numbers preconditioning is difficult and an area of active
research. Many conventional preconditioning strategies rely
on sparsity in the matrix, and applying them to dense BEM
matrices requires computations that have a formal time or
memory complexity of O(N?), which negates the advantage
of the FMM.

One strategy that has been applied with the FMBEM is
the construction of approximate inverses for each row based
on a local neighborhood of the row. If K neighboring ele-
ments are considered, then constructing this matrix has a cost
of O(NK?), and there is a similar cost to applying the pre-
conditioner at each step.S’4 However such local precondition-
ing strategies appear to work well only for low wavenum-
bers. Instead in this paper the use of a low accuracy FMM
itself as a preconditioner by using a flexible generalized
minimal residual (fGMRES) proc:e:dure19 is considered. This
novel preconditioner appears to work reasonably at all wave-
numbers considered and stays within the required cost.

Ill. FORMULATION AND PRELIMINARIES
A. Boundary value problem

Consider the Helmholtz equation for the complex valued
potential ¢,
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Vih+krp=0, (1)

with real wavenumber k inside or outside finite three dimen-
sional (3D) domain V bounded by closed surface S, subject
to mixed boundary conditions

2 66) + B0 = 70, g(x) = 23,

)

o] +|8#0, xe5.

Here and below all normal derivatives are taken, assuming
that the normal to the surface is directed outward to V. For
external problems ¢ is assumed to satisfy the Sommerfeld
radiation condition

lim{r(i—(f—ik(b)] =0, r=Ix. (3)

This means that for scattering problems ¢ is treated as the
scattered potential.

Note then that there should be some constraints on sur-
face functions a(x), B(x), and y(x) for existence and unique-
ness of the solution. Particularly, if « and (3 are constant, this
leads to the Robin problem, which degenerates to the Dirich-
let or Neumann problem. For =0 the case of a “sound-soft”
boundary is obtained, and for =0 the “sound-hard” bound-
ary case is obtained.

B. Boundary integral equations

The BEM uses a formulation in terms of boundary inte-
gral equations whose solution with the boundary conditions
provides ¢(x) and g(x) on the boundary and subsequently
determines ¢(y) for any domain point y. This can be done,
e.g., using Green’s identity

*ply)=Llg]-M[o], ye&S. (4)

Here the upper sign in the left hand side should be taken for
the internal domain, while the lower sign is for the external
domain (this convention is used everywhere below), and L
and M denote the following boundary operators:

Llq]= f q(x)G(x,y)dS(x),
S

(5)
JdG(x,y)

M[¢]= L ¢(X)T(X)dS(X),

where G is the free-space Green’s function for the Helmholtz
equation

etkr

47r

Gxy)=—_—, r=[x-yl. (6)

In principle, Green’s identity can be also used to provide
necessary equations for determination of the boundary values
of ¢(x) and g(x), as in this case for smooth S one obtains

+3¢(y) =Llqg]-M[¢]. yeS, (7)

The well-known deficiency of this formulation is related to
possible degeneration of the operators L and (M —%) at cer-
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tain frequencies depending on S, which correspond to reso-
nances of the internal problem for sound-soft and sound-hard
boundaries.”**' Even though the solution of the external
problem is unique for these frequencies, Eq. (7) is deficient
in these cases. Moreover, for frequencies in the vicinity of
the resonances, the system becomes poorly conditioned nu-
merically. On the other hand, when solving internal problems
(e.g., in room acoustics), the nonuniqueness of the solution
for the internal problem has a physical meaning, as there are
resonances.

In any case, Eq. (7) can be modified to avoid the artifact
of degeneracy of boundary operators when solving the cor-
rectly posed problems (1)—(3). This can be done using dif-
ferent techniques, including direct and indirect formulations,
introduction of some additional field points, etc. A direct
formulation based on the integral equation combining
Green’s and Maue’s identities, which is the method proposed
by Burton and Miller®® for sound-hard boundaries, is used.
The Maue identity is

+3q(y)=L'[q]-M'[¢]. yeS, (8)
where

_— IG(x,y)

L[‘I]‘LQ(X) on(y) ds(x),

©)

a9 IG(X,y)
M'[¢]= ) L B(x) ) dS(x).

Multiplying Eq. (8) by some complex constant N\ and sum-
ming with Eq. (7), one obtains

+3[é(y) + Ag(y)]= (L +NL")[g] - (M +\M")[]. (10)

Burton and Miller™ proved that it is sufficient to have
Im(N\) # 0 to guarantee the uniqueness of the solution for the
external problem.

C. Combined equation

Using the boundary conditions, the system of equations
(2) and (10) can be reduced to a single linear system for
some vector of elemental or nodal unknowns [ ],

Algl=c, (1

which is convenient for computations. The boundary opera-
tor A and functions ¢ and ¢ can be constructed following
standard BEM procedures. They can be expressed as
Al = (L+NL)[u'T= (M +NM")[u] 7 5(u+\u'),
(12)
c=(L+NL)[b']-(M+\M")[b] F 5(b+\b'),

where u and u’ are related to the unknown ¢, and b and b’
are related to the knowns. For example, for the Neumann
problem u=¢, u' =0, while b’ =¢ and b=0.

D. Discretization

Boundary discretization leads to approximation of
boundary functions via finite vectors of their surface samples

194  J. Acoust. Soc. Am., Vol. 125, No. 1, January 2009

and integral operators via matrices acting on these vectors.
For example, if the surface is discretized by a mesh with M
panels (elements), S;, and N vertices, X), and integrals over
the boundary elements are computed, one obtains

M
Llg)x{") =2 | ¢x)Gxx{")dS(x)
I'=17Sr

M
~ > Lypqp, 1=1,....M,
I'=1
(13)

qr = q(Xjf)), Lll’ = J G(XsX§C))dS(X)3

S[/

where x;,” is the center of the /'th element, and for compu-

(0
I
tations of matrix entries L;» one can use well-known quadra-
tures, including those for singular integrals.ﬂ’22 The above
equation is for the case of panel collocation, while analogous
equations can be derived for vertex collocation. Similar for-
mulas can be used for other operators. Note that to accurately
capture the solution variation at the relevant length scales,
the discretization should satisfy kr,,,<<1, where r,,,, is the
maximum size of the element. In practice, discretizations
that provide several elements per wavelength usually achieve
an accuracy consistent with the other errors of the BEM. The
above method of discretization with collocation either at the
panel centers or vertices was implemented and tested. Dis-
cretization of the boundary operators reduces problem (11) to
a system of linear equations.

E. lterative methods

Different iterative methods can be tried to solve Eq.
(11), which has a nonsymmetric dense complex valued ma-
trix A. Any iterative method requires computation of the
matrix-vector product A[x], where [x] is some input vector.
The method used in the present algorithm is the f{GMRES
method,'® which has the advantage that it allows use of ap-
proximate right preconditioner, which in its turn can be com-
puted by executing of the internal iteration loop using un-
preconditioned GMRES.” Choice of the preconditioning
method must be achieved for a cost that is O(N) or smaller.
This flexibility is exploited in the present algorithm.

IV. USE OF THE FAST MULTIPOLE METHOD

The main idea of the use of the FMM for the solution of
the discretized boundary integral equation is based on the
decomposition of operator A,

A =Asparse + Agenses (14)

where the sparse part of the matrix has only nonzero entries
Ay; corresponding to the vertices X; and x;, such that |x;
- j| <r,, where r. is some distance usually of the order of
the distance between the vertices, whose selection can be
based on some estimates or error bounds, while the dense
part has nonzero entries A;; for which |xl—xj| =r,. The use of
the FMM reduces the memory complexity of the overall
product to O(N) and the computational complexity to o(N?),
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which can be O(N), O(Nlog?N), B=1, or O(N%), a<2,
depending on the wavenumber, domain size, effective di-
mensionality of the boundary, and translation methods
used."?

A. FMM strategy

The use of the FMM for the solution of boundary inte-
gral equations brings a substantial shift in the computational
strategy. In the traditional BEM the full system matrix must
be computed to solve the resulting linear system either di-
rectly or iteratively. The memory needed to store this matrix
is fixed and is not affected by the accuracy imposed on the
computation of the surface integrals. Even if one uses
quadratures with a relatively high number of abscissas and
weights to compute integrals over the flat panels in a con-
stant panel approximation, the memory cost is the same, and
the relative increase in the total cost is small, as that cost is
dominated by the linear system solution.

If one chooses, as done by previous authors using the
FMM accelerated BEM (see, e.g., Refs. 5 and 7), to compute
nonsingular integrals very accurately in the FMM using ex-
pansions of Green’s function, such as

Gx) =ik, X R"(x-x)s"(x-xY), (15)

n=0 m=-n

where R and S are the spherical basis functions for the
Helmholtz equation, then from Eq. (13) the expressions for
the matrix entries may be obtained as

o0 n

Ly=2

n=0 m=-n

crsr(xl - x\9),

(16)
Cr =ik f R"(x —x)dS(x).
S

I

As the sum is truncated for maximum n=p—1, then there are
p? complex expansion coefficients per element. If this p is
the same as the truncation number for the FMM, this requires
substantial memory to store Mp? complex values.

A different strategy is proposed here. To reduce the
memory consumption, one should use schemes where the
integrals are computed at the time of the matrix-vector prod-
uct and only at the necessary accuracy. In the case of the use
of higher-order quadratures, one is faced then with a well-
known dilemma to either compute integrals in the flat panel
approximation with higher-order formulas or just increase
the total number of nodes (discretization density) and use
lower-order quadrature. In the case of use of the FMM with
“on the fly” integral computations, the computational com-
plexity will be almost the same for both ways, while the
latter way seems preferable, as it allows the function to vary
from point to point and employs better approximation for the
boundary (as the vertices are located on the actual surface
and variations of the surface normal are accounted for bet-
ter).

Therefore, in the case of the use of the FMM, one can
try to use the following approximation, at least in the far-
field (the dense part), for the nonsingular integrals:
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L= SjG(Xj,Xl), M= Sj%(xj,xl),
J

#G
—é,nj(xj»xl)7 (17)

! (9 !

Lj=1,...,N, Xﬁﬁxj,

where in the case of panel collocation, s; are the panel areas,
x; are the centers of panels, and n; is the normal to the
panels. In the case of vertex collocation, these quantities are
appropriately modified. For the treatment of the singular in-
tegrals (x;=X;), a method described later is used.

For near-field computations, these formulas could be
used with a fine enough discretization for the nonsingular
integrals, although one may prefer to use higher-order
quadrature. Several tests, using for near-field integral repre-
sentation Gauss quadratures of varying order (in the range of
1-625 nodes per element), showed that approximation (17)
used for near field provides fairly good results for good
meshes.

B. FMM algorithm

The Helmholtz FMM algorithm employed for matrix-
vector products is described in Refs. 12 and 24, with modi-
fications that allow use of different translation schemes for
low and high frequencies. Particulars of the algorithm are
that a level-dependent truncation number p; is used and that
rectangularly truncated translation operators are employed
for multipole-to-multipole and local-to-local translations.
These are performed using the RCR-decomposition and re-
sult in O(p?) single translation complexity. The RCR-
decomposition is also used for the multipole-to-local transla-
tions for levels with ka; < (kD).., where q; is the radius of the
circumsphere of a box on level [. For levels corresponding to
ka,= (kD),, the multipole expansions are converted to
samples of the signature function at a cost of O(p?), and then
diagonal forms of the translation operator O(p?) are used,
and in the downward pass at some appropriate level conver-
sion of the signature function to the local expansion of the
required length at a cost of O(p?) is used. This procedure
automatically provides filtering to ensure that the representa-
tion has the correct bandwidth. It must be noted that conver-
sions from multipole to local expansions are required only
once per box since consolidation of the translated functions
is performed in terms of signature functions. This amortizes
the O(p?) conversion cost and makes the scheme faster than
the one based on the RCR-decomposition for the same accu-
racy. The algorithm, in this part, is thus close to the one
described in Ref. 17. The difference is that interpolation/
anterpolation procedures are unnecessary here. Also, for low-
frequency translation the RCR-decomposition for the
multipole-to-local translation is used and found to be as ef-
ficient as the method based on conversion into exponential
forms for moderate p. Particulars of the present implementa-
tion include a precomputation of all translation operators,
particularly translation kernels, so during the run time of the
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Cheng et al (2006) Present

FIG. 1. (Color online) Illustration comparing the wideband FMMs of Cheng
et al. (Ref. 17) and that presented in this paper for a problem in which the
FMM octree has four levels and in which the high-low frequency switch
threshold occurs between levels 2 and 3. The left hand side for each algo-
rithm shows the FMM upward pass, while the right hand side shows the
FMM downward pass. Each box represents various steps for that level, such
as multipole expansion (S), local expansion (R), far-field signature function
samples (F), and exponential form for each coordinate direction (E). The
“glued” boxes mean that for a given box at that level the two types of
expansions are constructed. S|S, R|R, S|R, E|E, and F|F denote translation
operators acting on the respective representations. Sp and Sp™! denote for-
ward and inverse spherical transform, S|E and E|R are the respective con-
version operators. F|F+i and F|F+f mean that the translation is accompa-
nied by use of an interpolation or filtering procedure.

procedure, which is performed many times for the iterative
process, only simple arithmetic operations (additions and
multiplications) are executed.

1. Comparison of algorithms

Figure 1 illustrates the present 3D Helmholtz FMM al-
gorithm (on the right) and also compares it with that pro-
posed in Ref. 17. These algorithms have in common the
separation of the high- and low-frequency regions where dif-
ferent translation methods are used. It is seen that the present
algorithm at high frequencies implements the idea used in
the algorithm]7 for lower frequencies, while instead of con-
version to the exponential form the spherical transform is
used to convert the multipole expansion to the signature
function representation and back. The signature function rep-
resentation is omnidirectional and, in contrast to the expo-
nential forms, does not require additional data structures and
multiple representations (since translations for this represen-
tation are different in each coordinate direction). Also, this
approach is valid for the values of p are necessary for the
high-frequency region. However, despite the use of these ef-
ficient techniques, the present algorithm has a formal trans-
lational scaling O(p?) since in the high-frequency region for
the multipole-to-multipole S| and local-to-local R|R opera-
tors the spherical function representations are used.

2. Data structure

The version of the FMM used in this paper employs an
octree-based data structure, when the computational domain
is enclosed into a cube of size D X D X D, which is assigned
to level 0, and further the space is subdivided by the octree to
the level [,,,. The algorithm works with cubes from level 2
to . For generation of the data structure, we use hierar-
chical box ordering based on the bit interleaving and pre-
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compute lists of neighbors and children, which are stored
and used as needed. The FMM used skips “empty” boxes at
all levels.

3. Level-dependent truncation number

Each level is characterized by the size of the expansion
domain, which is the radius a; of the circumsphere of the
boxes at level /. Selection of the truncation number in the
algorithm is automated based on an expression of the form
pi=p(ka;, €, ), where € is the prescribed accuracy and & the
separation parameter [we used 5=2 (see the justification in
Ref. 12)]. A detailed discussion and theoretical error bounds
can be found elsewhere (see e.g., Refs. 12 and 25). Particu-
larly, the following approximation combining low- and high-
frequency asymptotics for monopole expansions can be
utilized:

| log e(1 - 57132

Po= log & ’

3 log 1/€)?3
pu=kas B10e 1% = S . (18)
pP= (p?o +pﬁi)1/4'

It is also shown in Ref. 12 that for the use of the rectangu-
larly truncated translation operators the principal term of the
error can be evaluated based on this dependence. The nu-
merical experiments show that the theoretical bound fre-
quently overestimates the actual errors, so some corrections
can be also applied. The software developed here, in its au-
tomatic setting, computes p, and py; and—if it happens that
P—Pni>>ps(€), where p, is some number dictated by the
overall accuracy requirements—uses p=py;+p.(€); other-
wise, Eq. (18) is used. In fact, we also had some bound for
p..(€) depending on ka to avoid blowout in computation of
functions at extremely low ka.

As previously mentioned, an automatic switch was
implemented from the RCR-decomposition to the diagonal
forms of the translation operators based on criterion kg
= (kD),.. The parameter (kD), was based on the error bounds
(18) and was selected for the level at which p—py;<p,.. (we

used p,.,.=2). This is dictated by the estimation of the thresh-

old at which the magnitude of the smallest truncated term in
the translation kernel (26) starts to grow exponentially (see
Ref. 12).

Figure 2 illustrates the dependence provided by Eq. (18).
We note that FMM with coarse accuracy like e=1072 can be
used for efficient preconditioning. We also can remark that
function representation via the multipole expansions and
use of the matrix-based translations (such as RCR-
decomposition) is not the only choice, and in Refs. 14 and 17
a method based on diagonalization of the translation opera-
tors, different from Ref. 16, was developed. This method,
however, requires some complication in data structure (de-
composition to the x-, y-, and z-directional lists) and is effi-
cient for moderate to large truncation numbers. As we men-
tioned, the truncation numbers in the low-frequency region
can be reduced (plus the BEM itself has a limited accuracy
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resentations are used.

due to flat panel discretization). In this case the efficiency of
the matrix-based methods, such as the RCR-decomposition,
has comparable or better efficiency. Indeed, function repre-
sentations via the samples of the far-field signature functions
are at least two times larger, which results in larger memory
consumption and reduction of efficiency of operations on
larger representing vectors.

4. Multipole expansions

Expansions over the singular (radiating) spherical basis
functions S'(r) in forms (15) and (16) can be applied to
represent the monopole source or respective integrals. In
these formulas the singular and regular solutions of the
Helmbholtz equation are defined as

S, (x) = h,(kr)Y,/(0,¢),  R;(x) =j,(kr)Y,/(60,¢),
(19)
n=0,1,2, ...,

m=-n,...,n,

where in spherical coordinates r=r(sin 6 cos ¢,sin 0sin ¢,
cos #) symbols h,(kr) and j,(kr) denote spherical Hankel
(first kind) and Bessel functions, and Y'(6, ¢) the spherical
harmonics,

2n+1(n—|m)! .
Y"(6,¢) = (= 1) /ﬁ%ﬂiﬂl(cos o),

(20)

n=0,1,2,..., m=-n,...,n,

and P|,:"|(,u,) are the associated Legendre functions consistent
with that in Ref. 26, or Rodrigues’ formulas

n m m, dm
Py(w = (= 1)"(1 = p?)"*——P,(w), n=0, m=0,
du
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dn
2"l du”

Py(p) = (W-1", n=0, 1)
where P,(u) are the Legendre polynomials.

In the boundary integral formulation also normal deriva-
tives of Green’s function should be expanded (or integrals of
these functions over the boundary elements). These expan-
sions can be obtained from expansions of the type of Eqgs.
(15) and (16) for the monopoles by applying appropriately
truncated differential operators in the space of the expansion
coefficients,'? which are sparse matrices and so the cost of
differentiation is O(p?). Indeed if {C”} are the expansion
coefficients of some function F(r) over basis S)'(r), while

{ézl} are the expansion coefficients over the same basis of
function n-VF(r) for unit normal n=(n,,n,,n,), then

SO O B g in,) (b C"
Cn =5[(nx+ln}')(bn anll_ IC +1)+(nx_my)(bn Cwn—l1

n+l n+l
m—1 ~m—1 m ~m m m
- bn+1 Cn+] )] + nz(an Cn+1 - an—lcn—l)’

m=0,*1,*2,..., ml+1,..., (22)

n=|m

i

where a) and b are the differentiation coefficients,

o em \/(n+1+m)(n+1—m)

— f 2 9
n = 2n+1)(2n+3) or n= |m
ar=p'=0 forn<|m,
(23)
Y
by = (n=m=1)(n=m) for 0 <m <n,
2n-1)2n+1)
Y
b =— (n—m = in—m) for —n<=m<0.

" 2n-1)2n+1)

5. Translations

Translations of the expansions can be also thought of as
applications of matrices to the vectors of coefficients. If
translation occurs from level [ to I’ (I’=I-1 for the multipole
to multipole, or S|S-translation, I’=/ for the multipole to
local, or S|R—translation, and [/’ =[+1 for the local to local, or
R|R—translation), then plz, translated coefficients relate to the
p,2 original coefficient via the plz, X pl2 matrix. Even for pre-
computed and stored matrices, this requires O(p*) opera-
tions, which is unallowable cost for the translation if using
with BEMs.'? Several methods to reduce this cost are well
known. Particularly use of the RCR-decomposition of the
(S|S)(t)=(R|R)(t) matrices

(R|R)(t) =Rot™!(t/1)(R|R)(t)Rot(t/1), (24)

where t is the translation vector, r=|t|, and Rot(t/?) is the
rotation matrix—which expresses coefficients in the rotated
reference frame, whose z-axis is collinear with t, while
(R|R)(#) is the coaxial translation operator (along axis
z)—reduces the cost of application of all operators to O(p?).
As the geometry of the problem is specified, all these matri-
ces can be precomputed for a cost of O(p?) operations using
recursions'>'? and can be stored. We note also that the rect-

Gumerov and Duraiswami: Fast multipole method boundary element method 197



angular truncation operators Rot(t/¢) and Rot™!(t/f) act on
the vectors of length p,2 and plz,, respectively, and produce
vectors of the same size, while (R|R)() acts on a vector of
size P12 and produces a vector of size plz,. Therefore, there is
no need for any interpolation or filtering as this is embedded
into the decomposition. A similar decomposition is applied to
the (S|R)(s) matrix for low frequencies, which provides a
numerically stable low-frequency procedure [for levels cor-
responding to ka;<(kD),].

For levels with ka;=(kD),, we use the following de-
composition of the translation matrix (S|R)(t):

(SIR)(t) = Sp~'A(t)Sp, (25)

where Sp can be thought of as a matrix of size N;X p,z,
which performs transform of the expansion coefficients to N,
samples of the far-field signature function (spherical trans-
form), A(t) is a diagonal translation matrix of size N;X N,,
and Sp~! is a matrix of size p,2 X N,, which provides a trans-
form back to the space of the coefficients. The number of
samples depends on the truncation number, and it is suffi-
cient to use N;=(2p;—1)(4p;,—3), where the grid is a Carte-
sian product of the 2p,—1 Gauss quadrature abscissas with
respect to the elevation angle —1=<pu=cos #<1 and 4p,-3
equispaced abscissas with respect to the azimuthal angle O
< <2 This grid also can be interpreted as a set of points
on the unit sphere {s;}. The entries of the diagonal matrix
A,(t) are

2p;2

S;-t

Ajj(t)= 2 i”(2n+1)hn(kt)Pn<‘tL>, j=1,...,N,
n=0

(26)

which is a diagonal form of the translation operator.16 The
bandwidth of this function, 2p;,—2, provides that decomposi-
tion (25) of the pl2 X P12 translation matrix (S|R)(t) is exact.””
Note that for a given grid (which is the same for all transla-
tions at level [), the cost of computation of A (t) for each
translation vector t is O(p?). In the present implementation,
all these entries are precomputed and stored, so no compu-
tations of A(t) are needed during the run part of the algo-
rithm. The precomputation part may be sped up by employ-
ing a data structure, which eliminates computations of A ;(t)
for repeated entries s;-t/t and kt for all translations and, in
fact, allows a substantial reduction in the cost of the present
part of the algorithm.

The operator Sp can be decomposed into the Legendre
transform with respect to w=cos 6 followed by the Fourier
transform with respect to ¢ (e.g., see Refs. 12, 17, and 27). If
performed in a straightforward way, each of them requires
O(p?) operations. Despite the fact that there exist algorithms
for fast Legendre transform and the fast Fourier transform
(FFT) can be employed, which reduces the cost of applica-
tion of operator Sp to O(p?logp) or so, for moderate p
straightforward methods are much more efficient. Note that
the major cost (about 90%) comes from the Fourier trans-
form, so if the FFT is applied efficiently, this speeds up the
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procedure. Furthermore, the operator Sp~! can be decom-
posed into the inverse Fourier transform, diagonal matrix of
the Legendre weights, and inverse Legendre transform. The
cost of this procedure is the same as that for the computation
of the forward transform.

As mentioned earlier, since the same transforms Sp and
Sp~' should be applied to all expansions at a given level, we
can make Eq. (25) more efficient than the RCR-
decomposition by first applying the transform Sp to all box
expansions at a given level, then performing all diagonal
translations and consolidations, and, finally, applying trans-
form Sp~! to all boxes.

6. Evaluation of expansions

Finally we mention that for the computation of the BEM
operators L' and M', the normal derivative of computed
sums at the evaluation point should be taken. As the expan-
sions are available for the sources outside the neighborhood
of the evaluation points, this can be performed by the appli-
cation of the differentiation operator in the coefficient space
[see Eq. (22)].

7. Simultaneous matrix-vector products

For an efficient iterative solution of Eq. (10), the FMM
can be used to compute in one run the sum of four matrix-
vector products together,

2 + )\EI = (Ldense + )\Léense) [q] - (Mdense + )\Méense)[(b]’
(27)

for input vectors g and ¢. Also, if needed, results for the
parts 2 and X’ can be separated (e.g., for the application of
Green'’s identity alone for the computation of the potential at
internal domain points). The dense parts of the matrices cor-
respond to decomposition (14) and, in the case of use of a
simple scheme [Eq. (17)] are the matrices with eliminated
diagonals.

V. COMPUTATION OF SINGULAR ELEMENTS

Despite the fact that there exist techniques for the com-
putation of the integrals over the singular or nearly singular
elements (e.g., with increasing number of nodes and element
partitioning or using analytical or semianalytical formulas),
these methods can be costly, and below we propose a tech-
nique for the approximation of such integrals, which is con-
sistent with the use of the FMM and BEM. This technique is
similar to the “simple solution” technique used by some au-
thors to compute the diagonal elements for the BEM for
potential problems and for elasticity,28 except that it is up-
dated with the use of the FMM, and to the case of the Helm-
holtz equation.

Let {x;} be a set of points sampling the surface, and U}
be a sphere of radius € centered at x; and Sf=SN U. The
surface operators can be decomposed as
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Llo]= f o(x)G(x,y)dS(x)
5

+ J a(x)G(x,y)dS(x) = Lio] + Lol
S\S4(y.€
8G(X y)

") P

M[O‘]:f o(x)
5
dG(x,y)

+ L\sf(y . o(x) on(x) dsS(x) = M;[(,]_,_ Mj[ ol.

(28)

Note that for small enough € we have the following approxi-
mations of the integrals:

Liol=gli(y). Miol= om;(y), (29)
where functions lf(y) and mje(y) are regular inside the do-
main. Thus, they can be approximated by a set of some basis
functions, which satisfy the same Helmholtz equation. To
construct such a set and approximation, consider Green’s

identity for a function, which is regular inside the finite do-
main (internal problem),

= L[Z"’] ML), (30)

where y=1 for points inside the domain, y=1/2 for points
on the boundary, and y=0 for points outside the domain.
Consider the following test functions:

lﬂ(X) — eil<s~x ,
31)

J . .
q(x) = _(;p(x) =n(x) - Ve * = ikn(x) - se’**, |s|=1,
n

which represent plane waves propagating in any direction s.
For these functions from Egs. (28)—(30), one obtains

mi(y) = ikn; - $)IE(y) = S NkLT(n - )]
~ M[e*] = yy)e™. (32)
Lets,,...,s, be four different unit vectors provided that
functions e*seX o=1,... .4, are linearly independent. Then
denoting

wja(y) = eiks'xl{iklj[(n . Sa)eiksa'x] — M[eiksa-x]
— YW, nja=n;-sa, (33)

one obtains

mi(y) = ikn l5(y) = wjo(y), a=1,....4. (34)

Obviously the surface operators L'[o] and M'[o] can be
similarly decomposed as
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L'lo]=L;Ta]+ Z;[O‘], M'[o]=M;Ta]+ 1\71;[0'],
(35)

Lol = ol <(y).

Note that these operators are employed only for points on the
boundary, and the forms for internal and external problems
are either the same or related via a sign change. Thus one can
use Maue’s identity (8) for the internal problem. In this case
using test functions (31), Egs. (32)—(34) can be modified as
follows:

m;(y) = ikn;ol <(y) = 0],(y),

M;To]= am;(y).

a=1,....,4,
(36)
!, (y) = e {ikL'[(n - s,

— Yaly)e®se},

zks x] M [e:ks x]

Fik(n(y) - s4),

Then for the chosen set of directions, solution will be pro-
vided by the previous equations with me(y) Ii(y), and

w;,(y), replaced with m'f(y) l'f(y) and o (y) respectlvely

The small 4 X2 lmear systems for each [Egs. (34) and
(36)] can be solved via least squares, and as noted above the
FMM provides four simultaneous matrix-vector multiplica-
tions, and so four matrix-vector products via the FMM («
=1,...,4) are sufficient to get all diagonals.

Yaly) = yes.

A. Discretization

The above formulas obviously provide expressions for
the diagonal elements of matrices
Ly=15(x), Mj=mj(x), Lj=Lx),
(37)
ijzmj (xj), j=1,...,N

In fact, for the solution of the boundary integral equation,
only quantities L; +)\L and M;;+\M ;; are needed. So for
given \ the storage can be reduced twice. Also combinations
L+ )\L and M; +)\M can be computed instead using the
same method as descrlbed above.

VI. NUMERICAL EXPERIMENTS

The BEM/FMM was implemented in FORTRAN 95 and
was parallelized for symmetric multiprocessing architec-
tures, such as modern multicore PCs, using OpenMP. The
results reported below were obtained on a four core PC [Intel
Core 2 Extreme QX6700 2.66 GHz processor with 2
X 4 Mbytes L2 Cache and 8 Gbytes random access memory
(RAM)] running Windows XP-64. Parallelization requires
the replication of data among threads and is controlled by the
size of the cache. In this implementation, to reduce the size
of the stack only the sparse matrix computations and the
S| R-translations using the RCR-decomposition (i.e., opera-
tors employed for levels finer than the high-low-frequency
switch level) were parallelized. Such a parallelization strat-
egy was found to be efficient enough (overall parallelization
efficiency was about 80%-95%) and enabled computations
for kD’s up to 500. For kD <200 more data can be placed on
the available stack, and a complete parallelization with effi-
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FIG. 3. (Color online) Typical BEM computations of the scattering problem.
The graph shows comparison between the analytical solution (38) and BEM
solution for the vicinity of the rear point of the sphere for ka=30.

ciency close to 100% was obtained. However, the results
reported here use the partial parallelization to enable a uni-
form comparison of the results obtained over a wide range of
kD’s.

A. Scattering from a single sphere

The example of an incident plane wave off a single
sphere is valuable for tests of the performance of the method
since an analytical solution is available in this case. For the
incident field ¢"(r)=¢**T, where s is the unit vector collin-
ear with the wave vector, the solution for the total (incident
plus scattered field) for impedance boundary conditions can
be found elsewhere, e.g., in Ref. 12,

ip .

i < @n+Di"P(s-s') i ~
(ka)2,§) 1! (ka) + (ia/k)h,(ka)” dn tiog| =0,

¢|S(S') =

(38)

where « is the sphere radius, s’ is a unit vector pointing to
the location of the evaluation surface point, and o is the
boundary admittance, which is zero for sound-hard surfaces
and infinity for sound-soft surfaces. Depending on this, one
may have for the scattered field a Neumann, Dirichlet, or
Robin problem.

The following were varied in the simulations: k, discreti-
zation, parameter N in Eq. (10), the boundary admittance,
tolerance, and parameters controlling the FMM accuracy and

performance. A typical computational result is shown in Fig.
3.

1. Preconditioning

The best preconditioners found were right precondition-
ers that compute the solution of the system A;=c; at the jth
step using unpreconditioned GMRES (inner loop) and low
accuracy FMM with lower bounds for convergence of itera-
tions. For example, if in the outer loop of the fGMRES the
prescribed accuracy for the FMM solution was 10~ (actual
achieved accuracy was ~107°) and the iterative process was
terminated when the residual reaches 1074, for the inner pre-
conditioning loop we used FMM with prescribed accuracy of
0.2 (actual accuracy was ~5 X 1073) and the iterative process
was terminated at a residual value of 0.45. The inner loop
solution was much faster than the outer loop, as it is stopped
after fewer iterations, and the matrix-vector product was sev-
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FIG. 4. Left: The absolute error in the residual in the unpreconditioned
GMRES (triangles) and in the preconditioned {GMRES (circles) as a func-
tion of the number of iterations (outer loop for the fGMRES). Right: the
relative computational cost to achieve the same error in the residual for
these methods (1 cost unit=1 iteration using the unprecoditioned method).
Computations for sphere; ka=50 for mesh with 101 402 vertices and
202 808 elements, and N\=6 X 107%.

eral times faster (lower truncation numbers). The precondi-
tioner reduced by an order of magnitude the number of itera-
tions in the outer loop, more than compensating for the
increased cost of inner iterations. Beyond the benefit of im-
proved time, this also has the benefit of reduced memory for
large problems. This is because in the GMRES or f{GMRES
K vectors of length N must be stored, where K is the dimen-
sionality of the Krylov subspace. The iterative process be-
comes slower if K is restricted, and GMRES is restarted
when K vectors have been stored. Hence it is preferable to
achieve convergence in N;,, =< K iterations. In the case of the
GMRES-based preconditioner, the storage memory is of or-
der (K+K')N, where K’ is the dimensionality of the Krylov
subspace for preconditioning. Since both K and K’ are much
smaller than the K required for unpreconditioned GMRES,
the required memory for solution is reduced substantially.

Figure 4 shows the convergence of the unpreconditioned
GMRES and the preconditioned fGMRES with the FMM-
based preconditioner as described above. The computations
were made for a sound-hard sphere of radius a, whose sur-
face was discretized by 101 402 vertices and 202 808 trian-
gular elements for the relative wavenumber ka=50. The pre-
conditioned iteration converges three times faster in terms of
the time required. The matrix-vector product via the low ac-
curacy FMM in preconditioning was approximately seven
times faster than that computed with higher accuracy in the
outer loop (1.4 s versus 9.75 s). The overall error of the ob-
tained solution was slightly below 5X 107 in the relative
L>-norm.

2. Spurious modes

The test case for the sphere is also good to illustrate the
advantage of the Burton—-Miller formulation over the formu-
lation based on Green’s identity. According to theory,zo’29 the
Green’s identity formulation may result in convergence to a
solution, which is the true solution plus a nonzero solution of
the internal problem corresponding to zero boundary condi-
tions at the given wavenumber. Such solutions are not physi-
cal since the solution of the external scattering problem is
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unique, and, therefore, they manifest a deficiency of the nu-
merical method based on the Green’s identity.

For a sphere any internal solution can be written in the
form

$"(r) = 2 jukr) X BTY™(6,¢), (39)
n=0

m=—-n

where (r, 6, ¢) are the spherical coordinates of r and B! are
arbitrary constants. The set of zeros of the functions j,(ka)
provides a discrete set of values of ka for which ¢™|¢=0,
even though ¢™ is not identically zero inside the sphere. The
minimum resonant k can be obtained from the first zero of
Jo(ka), which is ka=m. We conducted some numerical tests
with Burton—Miller and Green’s formulations for a range of
ka (0.01 <ka=<50) for different resonant values of ka.

Figure 5 provides an illustration for case ka=3m
~9.424 778, which is the third zero of jy(ka). When the
Burton-Miller formulation is used with some N with Im(\)
#0, a solution consistent with Eq. (38) is obtained, while
when computations are performed using Green’s formula a
wrong solution with the additional spurious modes is
achieved. We checked that in this case the converged solu-
tion can be well approximated (o=0) by

i < 2n+1)i"P,(s-s')
(ka)% h! (ka)

Pls(s") =B+ , (40)

where B is some complex constant depending on the initial
guess in the iterative process. This shows that, in fact, the
zero-order harmonic of the solution, corresponding to the
resonating eigenfunction, failed to be determined correctly,
which is the expected result. Note that such solutions appear
when iterative methods are used, where degeneration of the
matrix operator for some subspace does not affect conver-
gence in the other subspaces. If the problem is solved di-
rectly, the degeneracy or poor conditioning of the system
matrix would result in a completely wrong solution.
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In the nonresonant cases, the Green’s formulation pro-
vided a good solution, while normally the number of itera-
tions was observed to increase as ka comes closer to a reso-
nance. For large ka (40 or more), computations using
Green’s identity become unstable, which is explainable by
density of the zeros of j,(ka). For the Burton—Miller formu-
lation, the empirically found value of the parameter N was

x:%’, 7 e [0.01,1]. (41)
For the case above 7=0.03 provides good results, while for
ka<<1 the number of iterations increases compared to the
Green’s identity, and when there are certainly no resonances,
Green’s identity can be recommended. Increase in this pa-
rameter usually decreases the accuracy of computations since
more weight is put on the hypersingular part of the integral
equation, while decrease in the parameter for large ka leads
to an increase in the number of iterations. For 7<<0.01 the
Burton—Miller integral equation shows the problems of spu-
rious modes.

3. Performance

For the FMM, the characteristic scale is usually based
on the diagonal (maximum size) of the computational do-
main, D, and kD is an important dimensionless parameter.
Further, one can compute the maximum size of the boundary
element, which for a triangular mesh is the maximum side of
the triangle, d. This produces another dimensionless param-
eter, kd. For a fixed body of surface area S~ D?, the number
of elements in the mesh is of the order N~ S/d*~D?*/d*. A
formal constraint for discretizations used for an accurate so-
lution of the Helmholtz equation is d/A,<<1, where A,
=2/ k is the acoustic wavelength. In practice this condition
can be replaced with kd <y, where y is some constant of
order 1, so there are not less than 277/ y mesh elements per
wavelength. This number usually varies in range of 5-10.
This shows that the total number of elements should be at
least N~ D?/d’> = (kD)?/ x*=0((kD)?).

Figure 6 shows the results of numerical experiments for
scattering from a sound-hard sphere, where we fixed param-
eter y=0.94 for kD =20, which provided at least six ele-
ments per wavelength and increased the number of elements
proportionally to (kD)?> (the maximum case plotted corre-
sponds to kD=500 where the mesh contains 1 500 002 ver-
tices and 3 000 000 elements). Additional data on some tests
showing the relative error in the L,-norm, €,, and peak
memory required for the problem solution for the current
implementation are given in Table I. Note that in all cases the
relative error in the L.-norm was less or about 1%. For kD
<3, which we characterize as very low-frequency regime,
we used a constant mesh with 866 vertices and 1728 ele-
ments. Also for this range N was set to zero, while for other
cases \ was computed using Eq. (41) with =0.03. The time
and memory required for computations substantially depend
on the accuracy of the FMM, tolerance for convergence, and
settings for the preconditioner. The prescribed FMM error
for the outer loop was 107, which, in fact, provides accuracy
about 107¢ in the L,-norm. This was found from the tests,
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FIG. 6. Wall clock time and the number of iterations for solution of scat-
tering problem from a sound-hard sphere in range 0.1<kD=<500. The
curves that fit the time to the data at high frequencies were obtained using
least squares.

where the actual FMM error was computed by comparisons
with the straightforward (“exact”) method at 100 check
points. The prescribed accuracy for the preconditioner was
4.5 % 1072, which also substantially overestimates the actual
accuracy. Tolerance for convergence for the outer loop was
107*, while that for the inner loop was 0.45, where the num-
ber of iterations was limited by 11. The memory required
depends on the dimensionalities of the Krylov subspaces for
the outer and inner loops, which were set to 35 and 11,
respectively, while the convergence for all cases was within
20 outer iterations, so the memory, in fact, can be reduced.
Additional acceleration can be obtained almost for all cases
by the storage of the near-field data [matrix Ay, Eq. (14)].
However, based on the RAM (8 Gbytes) this works only for
N <5X10°. To show a scaling without jumps, such a storage
was not used, and the sparse matrix entries were recomputed
each time as the respective matrix-product was needed.

a. Computational complexity scaling. The total time re-
quired for the solution of the problem is scaled approxi-
mately as O((kD)>#), while the times for the matrix-vector
multiplication in the outer and in the inner iteration loops of
the preconditioned fGMRES scale, respectively, as
O((kD)*?) and O((kD)*>%*). A standard least squares fit for
the data at kD> 10 was used.

These results require some analysis and explanation
since the theoretical expectation of the matrix-vector com-
plexity for the current version of the FMM is O((kD)3).
There are several different reasons that the algorithm is
scaled better. First, we note that the complexity of the sparse
matrix-vector product, which in a well-balanced algorithm

takes a substantial part of the computational time, is scaled
as O(N), i.e., as O((kD)?). Second, for high-frequency com-
putations a switch between the high-frequency and low-
frequency representations always happens. As soon as the
low-frequency part is limited by condition ka;<(kD),,
where (kD), depends on the prescribed accuracy only, the
computational cost for this part becomes proportional to the
number of occupied boxes in the low-frequency regime. This
number is O(B,max), where B, is the number of occupied
boxes at the finest level [/,,,, which for simple shapes is
O(N)=0((kD)?). Therefore, the low-frequency part for the
fixed prescribed accuracy can be executed in O((kD)?) time.
Therefore, all the O((kD)?) scaling comes only from the
high-frequency part. However, here the most expensive part
related to the S|R-translations is performed using the diago-
nal forms with complexity O((kD)?), while the asymptotic
constant related to the S|S- and R|R-translations and spheri-
cal transform is relatively small. Profiling of the algorithm
shows that sparse matrix-vector multiplication and
S|R-translations in the low-frequency part contribute up to
90% to the complexity in the range of kD’s studied. Adding
all these facts together, we can see that the FMM for prob-
lems solved is rather the O((kD)?) algorithm, and small ad-
dition to power 2 is due to O((kD)?) operations with much
smaller asymptotic constant.

According to the above discussion, the complexity of the
FMM can be estimated as

Time = A(kD)> + B(kD)?, (42)

where A and B are some constants. The least squares fit of
high-frequency data on the matrix-vector multiplication in
the outer loop with Eq. (42) is as good as fit O((kD)>1?),
shown in Fig. 6, and provides B/A=1.39 X 103. This number,
indeed, is large, and it actually shows that only at kD> 103
the high-frequency asymptotical behavior can be reached for
the prescribed accuracy of 107*. For the low accuracy pre-
conditioner used, this ratio becomes even smaller (B/A
=1.75 X 10%), which justifies its applicability even for higher
kD’s.

The overall algorithm scaling as O((kD)**) now is not
surprising since the factor O((kD)%?) can be ascribed to the
(slowly) increasing number of iterations. Indeed, Fig. 6
shows that the number of iterations in the outer loop grows
slowly.

b. Memory complexity scaling. Theoretically, the
memory required to solve the problem should be scaled as
O(N)=0((kD)?). Due to different possibilities for memory
management and optimizations, plus realization of trade-off
option memory versus speed and limited resources, the ac-
tual scaling can deviate from the theoretical one. Table I

TABLE I. Error, memory, and FMM-BEM solution wall clock time for some test cases with a spherical scatterer with known analytical solution.

kD 0.0001 0.01 1 20 50 100 200 300 400 500

N 866 866 866 2402 1.5x10* 6% 10* 2.4%10° 54%10° 9.6X10° 1.5% 10°
£ 33X1075  33x10°  1.1xX10%  54X107%  225X10%  4.1X10* 534x10*  3.6X10* 492x10* 3.2x1073
Memory, Mbyte 20 20 32 63 268 461 1144 2861 3755 4748
Time, s 0.438 0.406 0.656 7.59 53.6 327 1990 5150 10 400 19 100
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TABLE II. Results from some recent FMM and FMM accelerated BEM publications operating in the high-
frequency regime. The performance of the FMM and the FMM-BEM reported in this paper is comparable or

superior (see Tables I and IV). Data not reported are indicated with a “-7;

«

for the FMM only (Ref. 17) the

values reported can be considered as those applying to one iteration of the solution procedure.

Ref. kD N N/ (kD)? Memory Error Time Iteration Remarks
10 435 1046 528 5.53 4800 >107° 54 267 - Scattering
9 126.64 98 304 6.13 1487 0.03 24 325 59 Internal
9 126.64 49 152 3.06 799.6 0.03 11 848 58 Internal
17 544 646 143 2.09 549 1073 672 n/a FMM only
17 544 619 520 2.09 1111 1076 1832 n/a FMM only

shows that in the implementation used for this paper, the
memory required grows slower than O((kD)?) in the range
studied. Certainly, it should be scaled not less than O((kD)?)
at larger kD since at least several vectors of size N should be
stored. The table provides some data, which show that com-
putation of a million size problem with kD ~ 500 is reachable
on desktop PCs or workstations.

¢. Comparison with recent publications. As discussed
previously two regimes can be recognized in FMM-BEM
simulations, the low and high-frequency regimes. Tables II
and III indicate some results from papers published in the
past few years. The data here should be compared with those
presented in Table I where data for the present code are
given. Looking first at the high-frequency regime, there ap-
pear to be three relevant papers (Refs. 9, 10, and 17). Refer-
ence 17 only has a FMM matrix-vector product, and a de-
tailed comparison of the present algorithm and the one of
that paper was provided in Sec. IV. As mentioned previously,
the size of the discretization N in a BEM simulation should
be at least O(kD)?, although more points may be necessary if
the geometry is complex. In each case the comparison is
quite favorable for the present code.

The results of the best performing FMM BEM solver'”
which appeared during the time when this paper was under
review, is compared with the present work. In this paper the
authors provide data on test cases for scattering from a
sphere, so a comparison was possible. In this case a Robin
problem (2) with a=1 and B=-1/(10-10i) was solved for a
sphere of radius a=20N (kD=435). The incident field was
generated by a source located at (0,0, 10a). Unfortunately
there were no data on the iteration process used, and the only
notice was that the process converged to the residual 107>,
So the same parameters were used for the present test case.
Further, a mesh containing 1 046 528 panels was used. Since
this mesh was not available, a mesh of similar size that could

be generated was used. This mesh contained 1 130 988 tri-
angles and 565 496 vertices. Another mesh tried contained
2 096 688 panels and 1 048 346 vertices. In the cited paper
Green’s identity was used, while in the present study the
combined Eq. (12) with N from Eq. (41) is used. An increase
in 7 from the value of 0.03 used for the solution of the
Neumann problem to a value of 1.2 improved convergence
for the Robin problem. The results are shown in Table IV.

It is seen that the present algorithm performed one order
of magnitude faster, while the memory consumption was of
the same order. Of course, the present algorithm was paral-
lelized and executed on a four core machine, compared to the
one core serial implementation of the Multilevel Fast Multi-
pole Algorithm. However, even assigning a perfect parallel-
ization factor of 4, we see that the same problem can be
solved several times faster. The speed-up of the present al-
gorithm can be related to several issues, one of which is the
preconditioning and use of the combined equation instead of
Green’s identity. For the largest case reported in Table IV,
the present iteration took 23 outer loop iterations, for which
matrix-vector multiplication took about 61 s/iteration, while
for the inner loop, which was in any case limited by 11
iterations, the matrix-vector product took about
27 s/iteration.

As far as low-frequency computation comparisons are
concerned, comparisons were performed against Refs. 4, 7,
and 9. Here again Table I shows that the present code has
performance that is comparable or better. Here it is seen that
some of the simulations reported in the literature have dis-
cretizations that are much finer than what may have been
required by the problem.

B. More complex shapes

Many problems in acoustics require computations for
substantially complex shapes, which include bioacoustics,

TABLE III. Results from some recent FMM and FMM accelerated BEM publications operating in the low-
frequency regime. The performance of the FMM and the FMM-BEM reported in this paper is comparable or
superior (see Table I). The parameter N/(kD)> represents how overdiscretized the problem is vis-a-vis the

restrictions imposed by the frequency.

Ref. kD N N/(kD)> Mem Time Iteration  Time/Iteration Remarks

9 16 1536 6.13 4800 28 5 5.6 Internal room

9 16 98 304 6.13 1487 14 5 2.8 Internal room
14 0.9375 45 056 51263 41962 452 92.2 Internal L-shape
14 0.9375 704 801 25.1 21 1.19 Internal L-shape
7 3.464 200000 16 668 8000 External scattering
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TABLE IV. Comparison of solution times and memory at kD=435 reported
in Ref. 10 and the present study.

No. of elements N (unknowns) T (s) M (Gbyte)
10 1046 528 1046 528 54 267 4.8
Present (case 1) 1130988 565 496 3820 2.7
Present (case 2) 2 096 638 1048 346 7762 2.8

human hearing, sound propagation in dispersed media, en-
gine acoustics, and room acoustics. Many such cases are re-
ported in the literature: e.g., scattering off aircraft,'” off
animals,"” off engine blocks,” and off many scattering
ellipsoids.7 The present algorithm was tested on many such
cases to show that the iteration process is convergent for
these cases and that solutions can be obtained on bodies with
thin and narrow appendages. Figure 7 provides an idea on
the sizes and geometries that were tested. Note that modeling
of complex shapes requires surface discretizations, which are
determined not only by the wavelength-based conditions y
<2 but also by the requirements that the topology and
some shape features should be properly represented. Indeed
even for a solution of the Laplace equation (k=0), the
boundary element methods can use thousands and millions
of elements that just properly represent the geometry. Usu-
ally the same mesh is used for multifrequency analysis, in
which case the number of elements is fixed and selected to
satisfy criteria for the largest k required. In this case the
number of elements per wavelength for small k can be large.
Also, of course, discretization plays an important role in the
accuracy of computations. So if some problem with complex
geometry should be solved with high accuracy, then the num-
ber of elements per wavelength can be again large enough.
The last geometry illustrated in Fig. 7 is similar to the
case studied in Ref. 7 for kD=3.464. Here the performance
and accuracy were studied for a range of kD from 0.35 to
175 (ka=0.01-5, where a is the largest axis of an ellipsoid).
The surface of each ellipsoid was discretized with more than
1000 vertices and 2000 elements to provide an acceptable
accuracy of the method even for low frequencies. The con-
vergence for the Neumann, Dirichlet, and Robin problems
was very fast (just a few iterations) for small ka, where, as
discussed above, the use of low-frequency FMM is neces-
sary. The convergence was not affected by the increase in the
number of nodes, although for accuracy better discretizations

N
N

= 54,945 N
=109,882 N

= 65,539 N
=132,072 N

= 520,192
= 1,038,336

vert’ vert vert

elem elem elem

FIG. 7. (Color online) Examples of test problems solved with the present
version of the BEM: human head-torso, bunny models (7.85 and 25 kHz
acoustic sources located inside the objects, kD=110 and 96, respectively),
and plane wave scattering by 512 randomly oriented ellipsoids (kD=29).
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FIG. 8. Solution (the upper curve) and error (the lower curve) in the bound-
ary condition at each vertex for the case of the ellipsoids in Fig. 7.

are preferred. As a test solution we used an analytical solu-
tion when a source was placed inside one of the ellipsoids,
and surface values and normal derivatives were computed at
each vertex location analytically. For larger discretizations
that were used, we were able to achieve ~1% relative errors
in strong norm (L,,) for the range of parameters used.
Figure 8 shows an absolute relative error at each vertex,
(BEM) (an)
o=t T N (43)
[
where gbga“) and ¢EBEM) are the analytical and BEM solutions,
and |¢§an)| is the modulus of the solution. The maximum
error here was max (¢;)=1.58%, which is usually acceptable
for physics-based problems and engineering computations.

C. Computational challenges and drawbacks

Despite the fact that the present algorithm can run cases
in a wide range of kD up to 500, the numerical stability for
larger kD is still a question. This mostly relates to the com-
putation of matrix S|S- and R|R-translation operators at
higher frequencies via the RCR-decomposition. Particularly
we should use different recursions for the computation of
entries of the rotation operators from those that were accept-
able for lower truncation numbers than those described in
our earlier paper13. Such recursions are available (see p. 336
in Ref. 12) and stable if recursive backpropagation is used.
An analysis shows that recursive computation of coaxial
translation operators can be also unstable at larger frequen-
cies, and this subject requires additional consideration, which
is beyond the present paper.

In terms of practical use of the algorithm, it is still a
research question: how to improve preconditioning. For ex-
ample, the current preconditioner worked well for the exter-
nal Neumann problem in automatic settings, while the solu-
tion of Robin or mixed problems showed a slow-down of the
convergence, and there was a need for intervention and tun-
ing of the 7 parameter and number of inner loop iterations
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and accuracy to improve convergence. Further research on
the convergence of the iterative method is necessary.

VIl. CONCLUSION

A version of the FMM accelerated BEM is presented,
where a scalable FMM is used both for dense matrix-vector
multiplication and preconditioning. The equations solved are
based on the Burton—Miller formulation. The numerical re-
sults show scaling consistent with the theory, which far out-
performs conventional BEM in terms of memory and com-
putational speed. Realization of a broadband FMM for
efficient BEM requires different schemes for the treatment of
low- and high-frequency regions and switching from multi-
pole to signature function representation. The tests of the
methods for simple and complex shapes show that it can be
used for an efficient solution of scattering and other acousti-
cal problems encountered in practice for a wide range of
frequencies.
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