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Yingbin Liang, Lifeng Lai, H. Vincent Poor and Shlomo Shamai (Shitz) 3

Abstract

A (layered) broadcast approach is studied for the fading wiretap channel without

the channel state information (CSI) at the transmitter. Two broadcast schemes, based

on superposition coding and embedded coding respectively, are developed to encode

information into a number of layers and use stochastic encoding to keep the correspond-

ing information secret from an eavesdropper. The layers that can be successfully and

securely transmitted are determined by the channel states to the legitimate receiver

and the eavesdropper. The advantage of these broadcast approaches is that the trans-

mitter does not need to know the CSI to the legitimate receiver and the eavesdropper,

but the scheme still adapts to the channel states of the legitimate receiver and the

eavesdropper. Three scenarios of block fading wiretap channels with a stringent delay

constraint are studied, in which either the legitimate receiver’s channel, the eavesdrop-

per’s channel, or both channels are fading. For each scenario, the secrecy rate that

can be achieved via the broadcast approach developed in this paper is derived, and

the optimal power allocation over the layers (or the conditions on the optimal power

allocation) is also characterized. A notion of probabilistic secrecy is also introduced

and studied for scenarios when the eavesdropper’s channel is fading, which character-

izes the probability that a certain secrecy rate of decoded messages is achieved during

one block. Numerical examples are provided to demonstrate the impact of the channel

state information at the transmitter and the channel fluctuation of the eavesdropper

on the average secrecy rate. These examples also demonstrate the advantage of the

proposed broadcast approach over the compound channel approach.
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1 Introduction

Physical layer security is a promising technique for providing security protection against

eavesdropping for wireless networks. As a complement to cryptographic techniques, physical

layer security does not use secret keys, but exploits physical channel randomness for secure

transmissions. Such an approach was first introduced and proven to be successful by Wyner

in [2] via the wiretap channel model, and was further extended to a more general broadcast

scenario by Csiszár and Körner in [3]. More recently, there has been surge in interest in

applying this approach to wireless networks (see the recent monographs [4, 5] for overview

of recent work).

As physical layer security exploits physical channel statistics to achieve secure communi-

cation, successful implementation of this approach depends crucially on the transmitter’s

knowledge about the channel state information (CSI), which determines channel statistics

to the legitimate receiver and to the eavesdropper. Previous studies on physical layer secu-

rity have been mostly focused on scenarios in which the CSI is available to the transmitter

although with some exceptions, e.g., [6–9] and the references mentioned below. However, in

wireless networks, such CSI may not be available to the transmitter possibly due to limited

feedback resources. (The receivers, however, may be able to estimate the channel states,

especially for block fading channels as in this paper.) More specifically to security concerns,

eavesdroppers do not generally have incentive to feed their channel states back to transmit-

ters. Thus, the design of physical layer security under channel uncertainty is essential for

effectively implementing this technique. To design and analyze physical layer security under

channel uncertainty, a reasonable approach is to model a system as the compound wiretap

channel with multiple states and guarantee the transmitted message to be decoded and kept

secure under any channel state, in particular under the worst channel state, as studied in,

e.g., [10–14]. An approach similar to the above is to model the system as an arbitrary varying

channel which has been studied in [15, 16]. However, in order to guarantee the performance

for the worst case which may occur only rarely, the channel resources are not used in an

efficient manner if the actual channel state is better than the worst case. The focus of

this paper is on the design of schemes that achieve as a high secrecy rate as the legitimate

receiver’s channel supports, and as the eavesdropper’s channel permits. Since the channel

state is unknown to the transmitter, the problem we address here is to design communication

schemes that do not exploit channel state realizations but still adapt to the actual channel

state that occurs in order to achieve as good of secrecy performance as possible.

Towards this end, a novel (layered) broadcast approach is especially appealing; this ap-

proach has been introduced for wireless systems without secrecy constraints in [17] to im-

prove efficiency of transmission to a mobile receiver, whose channel state is not known at the

transmitter. This methodology is based on superposition coding first introduced in [18] for

broadcast channels. In this strategy, the transmitter splits the entire message into a number

of components with each component being transmitted via one layer of input. These layers of
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inputs are then combined into one channel input using superposition encoding. The receiver

decodes the layers one after another via successive interference cancelation. The realization

of the channel state of the receiver determines up to which layer the receiver can decode.

More layers of messages can be decoded if the receiver’s channel state is better. Hence, with

a fixed coding scheme that does not require the transmitter to know the receiver’s channel

state, such an approach still offers the receiver to obtain as many layers of messages as its

instantaneous channel state supports. We also note that the notion of the broadcast ap-

proach addressed in [17] has been conceptually extended and streamlined by introducing the

variable-to-fixed channel coding in [19].

In this paper, we generalize the broadcast approach in [17] to the fading wiretap channel,

in which both legitimate receiver and eavesdropper’s channels are time-varying block fading

channels. The channel states are constant over one block and change independently across

blocks. In particular, the CSI, i.e., the instantaneous channel realization, is not known at

the transmitter, and is known only at the corresponding receiver. A delay constraint is

assumed so that messages must be transmitted within one block, i.e., coding across blocks

as in [6] is not allowed. Our goal is to design transmission schemes such that the legitimate

receiver decodes more information as its channel gets better, and out of information decoded

at the legitimate receiver, more information is kept secure from the eavesdropper, as the

eavesdropper’s channel gets worse. We wish to characterize the rate of information that is

decodable at the legitimate receiver and is secure from the eavesdropper. In particular, the

performance measure of interest here is the delay-limited secrecy rate averaged over a long

time range. This is different from the outage performance studied in [20–22], which focused

on the delay-limited rate only over a short time range (say one coherence block).

We first develop two types of broadcast approaches respectively for two simpler fading

channel scenarios in which only one of the channel is fading. These two approaches are

then combined to study the general scenario in which both channels are fading. In the first

scenario, only the legitimate receiver’s channel is fading and the eavesdropper’s channel is

constant. For this scenario, the entire message is split into a number of layers with each layer

employing stochastic encoding [2,3] (also see [4, Section 2.3]) to achieve secrecy. These layers

are then combined using superposition coding. Depending on its channel state, the legitimate

receiver can decode messages up to a certain layer. Since the eavesdropper’s channel is

constant, all layers of messages are guaranteed to be kept secure from the eavesdropper via

the stochastic encoding. We show the secrecy guarantee by computing the equivocation rate

of the messages given the output at the eavesdropper. Based on this approach, we derive the

average secrecy rate over a large number of blocks for a given power allocation across the

layers of messages. We then employ the Euler equation derived in the calculus of variations

to characterize the optimal power allocation to achieve optimal average secrecy rate.

In the second scenario, only the eavesdropper’s channel is fading and the legitimate re-

ceiver’s channel is constant. In contrast to the first scenario, in which layers of messages

are encoded into codewords in different subcodes, here all layers of messages are encoded
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into one codeword in an embedded fashion as in [23]. Each layer of message corresponds

to one index that identifies the codeword. In particular, lower layers of messages serve as

randomization for protecting higher layer of messages from the eavesdropper. Depending on

the eavesdropper’s channel state, down to certain layers of messages are kept secure from the

eavesdropper. We show the secrecy guarantee by computing the equivocation rate of these

layers of messages given the output at the eavesdropper. Since the legitimate receiver’s

channel is fixed, the entire codeword is decodable by the legitimate receiver, and hence all

layers of messages are decodable. Based on this approach, we derive the average secrecy

rate over a large number of blocks. We further show that the secrecy rate achieved this

broadcast approach is the best secrecy rate that the instantaneous channel allows although

the transmitter does not know the eavesdropper’s CSI. The only sacrifice due to no CSI at

the transmitter is that some lower layer messages may not be kept secure from the eaves-

dropper. This is in contrast to the first type broadcast approach developed for the case

when the legitimate receiver has a fading channel, for which all messages transmitted over

the channel are guaranteed to be kept secure from the eavesdropper, but the secrecy rate

achieved may not be optimal.

For the third scenario with both channels to the legitimate receiver and the eavesdropper

undergo fading, we combine the two types of broadcast approaches developed before. In

particular, the entire message is split into layers identified by two-dimensional index pairs

(say along horizonal and vertical index directions). For a given state of legitimate receiver

(i.e., a fixed horizonal index), all layers of messages are encoded via the vertical indices

into one codeword in an embedded fashion via the broadcast approach developed for the

second scenario, and codewords with different horizonal indices are then encoded together

via the broadcast approach developed for the first scenario. Depending on its channel state,

the legitimate receiver can decode messages up to a certain layer indexed by a horizonal

index. Also depending on the eavesdropper’s channel state, messages down to a certain

layer indexed by a vertical index can be kept secure from the eavesdropper. We show the

secrecy guarantee by computing the equivocation rate of the messages given the output at

the eavesdropper for any eavesdropper’s channel state. Thus, the layers of messages that

are both decodable by the legitimate receiver and are kept secure from the eavesdropper

contribute to the secrecy rate. Based on this scheme, we derive the average secrecy rate over

a large number of blocks for a given power allocation across the layers of messages. We also

employ the Euler equation developed in the calculus of variations to characterize necessary

conditions for an optimal power allocation to achieve the optimal average secrecy rate. We

also illustrate the structure of the optimal power allocation via a numerical example.

We note that from the three scenarios mentioned above, it is clear that the broadcast

approach does not guarantee that all transmitted messages are kept secure from the eaves-

dropper for all eavesdropper’s states for the scenarios when the eavesdropper experiences a

fading channel. The actual eavesdropper’s channel state realization determines which layers

of messages are secure, and the probability that such a state occurs determines the proba-

bility of achieving the corresponding secrecy rate. We hence introduce and study a notion
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of probabilistic secrecy, which characterizes the probability that certain layers of decoded

messages are kept secure, i.e., the probability that the corresponding secrecy rate is achiev-

able. Furthermore, probabilistic secrecy also suggests that our broadcast approach protects

different layers of messages unequally with higher layers of messages being more likely to be

secure. Hence, for scenarios in which multiple messages with heterogeneous security demands

need to be simultaneous transmitted over the channel, the messages with higher levels of

security demands should be encoded into layers with larger indices so that these messages

are less likely to be learned by the eavesdropper. We also note that probabilistic secrecy is

different from deterministic secrecy required for the classical wiretap channel [2], the fading

wiretap channels (see, e.g., [6,24,25]), and the compound wiretap channel (see, e.g., [10–14]),

in which all decoded messages by the legitimate receiver are guaranteed to be secure (with

probability one).

We finally provide numerical examples to demonstrate the impact of the CSI at the trans-

mitter and the channel fluctuation of the eavesdropper on the average secrecy rate. These

numerical results suggest that the legitimate receiver’s CSI affects the secrecy rates much

more than the eavesdropper’s CSI. Without the legitimate receiver’s CSI, the transmitter

has to spread its power to accommodate a number of possible state realizations, and such

power spreading reduces the secrecy rate. However, the eavesdropper’s CSI affects mostly

the legitimate receiver’s knowledge about which layers of messages are secure, but does not

affect much the amount of information that is kept secure from the eavesdropper. Another

important factor that affects the secrecy rate is the channel fluctuation (i.e., fading) of the

eavesdropper, which creates opportunities for achieving better secrecy rates.

We finally note that this study is different from the recent study in [26]. This study

applies the conceptual idea of the original broadcast approach in [17] of transmitting layers

of messages, but the actual coding scheme is different from that in [17] by incorporating

stochastic coding either for each layer of messages or in an embedded fashion to guarantee

secrecy for messages. Hence, secrecy is achieved solely via the broadcast approach, and

no further feedback from the legitimate receiver is allowed to assist secrecy achievement.

However, the study in [26,27] uses the original coding scheme in [17] for signal transmission,

which does not guarantee secrecy, and secrecy of messages is achieved by allowing feedback

from the legitimate user.

The organization of the paper is as follows. In Section 2, we introduce our system model.

In Sections 3, 4, and 5, we study three scenarios in more detail. In Section 6, we provide

numerical examples. Finally, in Section 7, we conclude the paper with some comments on

future directions. We note that although the first two scenarios are special cases of the third

scenario, they are presented separately for developing two types of broadcast approaches that

are useful for the general scenario. Including these two scenarios also helps to understand

the combined approach for the third scenario.
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Figure 1: An illustration of the fading wiretap channel.

2 System Model

In this paper, we study the fading wiretap channel (see Fig. 1), in which a transmitter sends a

message to a legitimate receiver and wishes to keep this message secret from an eavesdropper.

Both the legitimate receiver’s and the eavesdropper’s channels are corrupted not only by

additive complex Gaussian noise, but also by multiplicative fading gain coefficients. The

channel input-output relationship for one channel use is given by

Y = HX +W and Z = GX + V (1)

where X is the input from the transmitter, Y and Z are outputs at the legitimate receiver

and the eavesdropper respectively, H and G are fading channel gain coefficients, and the

noise variables W and V are proper complex Gaussian random variables with zero means

and unit variances. The noise variables are independent and identically distributed (i.i.d.)

over channel uses. The fading gain H and G are assumed to experience block fading, i.e,

they are constant within a block and change independently across blocks. The block length

are assumed to be sufficiently long such that one codeword can be successfully transmitted

if properly constructed. The channel input is subject to an average power constraint P over

each block, i.e.,
1

n

n
∑

i=1

E
[

|Xi|
2
]

≤ P (2)

where i denotes the symbol time (i.e., channel use) index, and where n is the blocklength.

It is assumed that the transmitter does not know the instantaneous channel state infor-

mation, and each receiver knows its own channel state. Each message is required to be

transmitted within one block, i.e., the message is transmitted under a delay constraint. The

legitimate receiver is required to decode the transmitted message with a small probability of

error at the end of each block, and the message needs to be kept as secure as possible from

the eavesdropper. The measure of security is based on the equivocation rate given by

1

n
H(W |Zn) (3)

where Zn is the received outputs at the eavesdropper over one block, and hence depends on

the channel state realization of the eavesdropper during this block. The message W is kept
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secure from the eavesdropper during one block if there exists a positive ǫn that approaches

zero as n goes to infinity such that

1

n
H(W |Zn) ≥

1

n
H(W )− ǫn.

In this paper, it is not required that all messages transmitted over the channel be perfectly

secure. However, our performance measure is the secrecy rate, which is the rate of the

messages that are kept secure from the eavesdropper. If all messages transmitted over one

block are viewed as a single message, then our performance measure can be interpreted as the

level of secrecy achieved for this message. Furthermore, we are interested in characterizing

the secrecy rate under the delay constraint, but averaged over a large number of blocks, i.e.,

the average secrecy rate over blocks.

We also introduce the notion of probabilistic secrecy, which characterizes the probability

that a certain secrecy rate of decoded messages can be achieved during a block, i.e., decoded

messages at a certain rate can be kept secure from the eavesdropper. Such a probabilistic

manner arises because the eavesdropper’s channel is random and unknown to the transmitter,

and hence encoding at the transmitter may not guarantee all messages decoded by the

legitimate receiver to be secure from the eavesdropper at any eavesdropper’s state. The

state of the eavesdropper determines which messages are kept secure, and the probability

that such a state occurs determines the probability of achieving the corresponding secrecy

rate.

3 Fading Channel to Legitimate Receiver

In this section, we study the case in which only the legitimate receiver experiences a block

fading channel, i.e., H is a constant over one block and changes independently to another

realization from one block to another. The channel to the eavesdropper is assumed to be a

constant, i.e., G is fixed and is hence known to every node. The transmitter does not know

the instantaneous channel state to the legitimate user, but the legitimate receiver is assumed

to know the channel state. In the sequel, we first develop a layered broadcast approach for

the case with a discrete fading state and then generalize the approach to the case with a

continuous fading state.

3.1 Discrete Legitimate Channel States

We first consider the case in which the legitimate receiver has a finite number of channel

states, i.e., H may take L values, say H1, . . . , HL with |H1| ≤ |H2| ≤ · · · ≤ |HL|. For

this channel, we propose a (layered) broadcast approach, which generalizes the approach

introduced in [17] for the broadcast channel without secrecy constraints. More specifically,

7



the entire message is split into L parts, i.e., L layers of messages denoted by Wl for l =

1, . . . , L.

Definition 1. A secrecy rate tuple (R1, . . . , RL) is achievable if there exists a coding scheme

that encodes the messages W1, . . . ,WL at the rate tuple (R1, . . . , RL) such that for l =

1, . . . , L, the legitimate receiver decodes Wl with a small probability error if its channel real-

ization is Hl, and all messages W1, . . . ,WL are kept secure from the eavesdropper.

The following theorem characterizes secrecy rate tuples that can be achieved by a broadcast

approach.

Theorem 1. For the fading wiretap channel with the legitimate receiver having one of the L

fading states H1, . . . , HL, where |G| < |H1| ≤ |H2| ≤ · · · ≤ |HL|, and with the eavesdropper

having a fixed channel state G, the following secrecy rate tuples (R1, . . . , RL) are achievable:

Rl = log

(

1 +
|Hl|

2Pl

1 + |Hl|2
∑L

k=l+1 Pk

)

− log

(

1 +
|G|2Pl

1 + |G|2
∑L

k=l+1 Pk

)

, l = 1, . . . , L (4)

where Pl denotes the transmission power assigned for transmitting Wl and satisfies the power

constraint
∑L

l=1 Pl ≤ P .

Remark 1. For the case when the legitimate receiver also has a fixed fading state (i.e., the

channel now is the Gaussian wiretap channel), the total secrecy rate of all messages following

from Theorem 1 is optimal. Hence, the broadcast approach that we develop (see the proof of

Theorem 1) is optimal for the Gaussian wiretap channel.

We note that in this degraded setting, since messages decoded by a receiver with a worse

channel state should also be decoded by the receiver with a better channel state, the legit-

imate receiver at the channel state Hl can decode W1, . . . ,Wl if (R1, . . . , RL) is achievable.

Hence, the total rate of the messages that the legitimate receiver at the state Hl can decode

is given by

l
∑

j=1

Rj =
l
∑

j=1

[

log

(

1 +
|Hj|

2Pj

1 + |Hj|2
∑L

k=j+1 Pk

)

− log

(

1 +
|G|2Pj

1 + |G|2
∑L

k=j+1 Pk

)]

=
l
∑

j=1

[

log

(

1 +
|Hj|

2Pj

1 + |Hj|2
∑L

k=j+1 Pk

)]

− log

(

1 +
|G|2

∑l
k=1 Pk

1 + |G|2
∑L

k=l+1 Pk

)

. (5)

We also note that the second term in (4) seems to suggest that the eavesdropper may also

decode the current layer by removing interference caused by the layers that it has decoded.

However, this interpretation is misleading. We will show below that the eavesdropper does

not obtain any information about the messages W1, . . . , WL, i.e., perfect secrecy is achieved

for all layers of messages.

We next provide the proof of the above theorem, which describes the layered broadcast

approach in more detail.
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Figure 2: A codebook for the broadcast approach.

Proof of Theorem 1. We consider a codebook that contains L subcodebooks corresponding

to L layers (see Fig. 2). For each layer l, the subcodebook Cl contains 2
nR̃l codewords xn

l (wl)

indexed by wl = 1, . . . , 2nR̃l, where

R̃l = log

(

1 +
|Hl|

2Pl

1 + |Hl|2
∑L

k=l+1 Pk

)

, (6)

1
n

∑n
i=1 x

2
li(wl) ≤ Pl for wl = 1, . . . , 2nR̃l, and

∑L
l=1 Pl ≤ P . These codewords are divided

into 2nRl bins, where

Rl = log

(

1 +
|Hl|

2Pl

1 + |Hl|2
∑L

k=l+1 Pk

)

− log

(

1 +
|G|2Pl

1 + |G|2
∑L

k=l+1 Pk

)

. (7)

The encoding scheme is described as follows. In order to transmit a message tuple

(w1, . . . , wL), for each l, the message wl is mapped into the wlth bin in the subcodebook

Cl, and one codeword xn
l in the bin is randomly chosen with a uniform distribution over the

entire bin. The final input transmitted over the channel is given by

xn =

L
∑

l=1

xn
l .

Following steps similar to those in [4, Section 2.3], it can be shown that there exists a code-

book as described above such that if this codebook and the encoding scheme as described

above are applied to the Gaussian wiretap channel with the channels to the legitimate re-

ceiver and the eavesdropper respectively being at the state Hl and G, the legitimate receiver

can successfully decodeW1, . . . , Wl with a small probability of error. Furthermore, the eaves-

dropper can successfully decode Xn
l with a small probability of error if it knows W1, . . . ,Wl

for all l = 1, . . . , L. In particular, this property implies that there exists a positive δn which
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approaches zero as n goes to infinity such that

H(Xn
1 |Z

n,W1) ≤ nδn (8)

H(Xn
2 |Z

n,W1,W2) ≤ nδn (9)

...

H(Xn
L|Z

n,W1, . . . ,WL) ≤ nδn. (10)

We next show that all layers of the messages are kept secure from the eavesdropper.

Towards this end, we compute the following equivocation rate:

H(W1, . . . ,WL|Z
n)

= H(W1, . . . ,WL, Z
n)−H(Zn)

= H(W1, . . . ,WL, Z
n, Xn

1 , . . . , X
n
L)−H(Xn

1 , . . . , X
n
L|W1, . . . ,WL, Z

n)−H(Zn)

= H(W1, . . . ,WL, X
n
1 , . . . , X

n
L) +H(Zn|W1, . . . ,WL, X

n
1 , . . . , X

n
L)

−H(Xn
1 , . . . , X

n
L|W1, . . . ,WL, Z

n)−H(Zn)

≥ H(Xn
1 , . . . , X

n
L) +H(Zn|Xn

1 , . . . , X
n
L)−H(Xn

1 , . . . , X
n
L|W1, . . . ,WL, Z

n)−H(Zn). (11)

It is clear from the codebook structure and the encoding scheme that Xn
1 , . . . , X

n
L are

independent and each Xn
l is uniformly distributed over the codewords in the subcodebook

Cl for l = 1, . . . , L. We note that throughout the paper, all messages are assumed to be

uniformly distributed over its alphabet space. Hence,

H(Xn
1 , . . . , X

n
L) = n

L
∑

j=1

R̃j. (12)

Using (8)-(10), we obtain

H(Xn
1 , . . . , X

n
L|W1, . . . ,WL, Z

n) < nǫn (13)
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where ǫn approaches zero as n goes to infinity. We also compute

H(Zn|Xn
1 , . . . , X

n
L)−H(Zn) (14)

≥ n log 2πe−

n
∑

i=1

logVar(Zi)

= n log 2πe−
n
∑

i=1

log 2πe

(

|G|2
L
∑

l=1

Var(Xli) + 1

)

(15)

≥ n log 2πe−

n
∑

i=1

log 2πe

(

|G|2
L
∑

l=1

E[|Xli|
2] + 1

)

≥ n log 2πe− n log 2πe

(

|G|2

n

n
∑

i=1

L
∑

l=1

E[|Xli|
2] + 1

)

(16)

≥ n log 2πe− n log 2πe

(

|G|2
L
∑

l=1

Pl + 1

)

≥ −n log

(

1 + |G|2
L
∑

l=1

Pl

)

(17)

where (15) follows because Xn
1 , . . . , X

n
L are independent, and (16) follows from Jensen’s

inequality. Combining (12), (13) and (17), we obtain

1

n
H(W1, . . . ,WL|Z

n) ≥
L
∑

j=1

R̃j − log

(

1 + |G|2
L
∑

l=1

Pl

)

− ǫn

=
L
∑

j=1

Rj − ǫn

=
1

n
H(W1, . . . ,WL)− ǫn (18)

which implies that perfect secrecy is achieved asymptotically as n approaches infinity.

3.2 Continuous Legitimate Channel State

In this subsection, we generalize our result for the discrete fading channel to the continuous

fading channel. We still assume that only the legitimate receiver’s channel is block fading

and the eavesdropper’s channel is fixed. Hence, the legitimate receiver’s channel gain H can

take continuous values. For each channel state H = h, we let s = |h|2, and use s as an

index for the layer of the message that is intended for the legitimate receiver at the state

h to decode. For each layer s, we assume that the transmitter allocates power ρ(s)ds. We

11
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Figure 3: An illustration of layers of messages.

use Σ(s) to denote the total power allocated to the layers corresponding to better channel

states, i.e., the states ŝ such that ŝ > s. Hence,

Σ(s) =

∫ ∞

s

ρ(x)dx, (19)

and

ρ(s) = −Σ′(s). (20)

The following result on the average secrecy rate follows directly by applying Theorem 1.

Corollary 1. For the fading wiretap channel with the legitimate receiver having a block

fading channel with continuous states and the eavesdropper having a fixed channel state at

G, the average secrecy rate under the delay constraint achieved via a broadcast approach is

given by

R = max
Σ(x)

log e

∫ ∞

|G|2
(1− F (x))

[

−xΣ′(x)

1 + xΣ(x)
+

|G|2Σ′(x)

1 + |G|2Σ(x)

]

dx (21)

where f(·) is the probability density function of the fading state s, and F (·) is the cumulative

distribution function of s.

Proof of Corollary 1. Following from (4), we obtain the following secrecy rate corresponding

to layer s = |h|2. If s > |G|2, then the secrecy rate is given by

dR = log

(

1 +
sρ(s)ds

1 + sΣ(s)

)

− log

(

1 +
|G|2ρ(s)ds

1 + |G|2Σ(s)

)

≈ log e

[

sρ(s)ds

1 + sΣ(s)
−

|G|2ρ(s)ds

1 + |G|2Σ(s)

]

(22)

where the second approximate equation follows because ds approaches zero. If s ≤ |G|2,

then dR = 0.

12



It can be seen that if the legitimate receiver’s channel is at state s, then it can decode

messages corresponding to all layers x if x ≤ s (see Fig. 3). Hence, the total secrecy rate

achievable if the legitimate receiver’s channel is at state s is given by

R(s) = log e

∫ s

|G|2

xρ(x)dx

1 + xΣ(x)
−

|G|2ρ(x)dx

1 + |G|2Σ(x)
. (23)

Averaging the above rate over all fading state realizations of the legitimate receiver’s channel,

we obtain

R =

∫ ∞

|G|2
f(s)R(s)ds (24)

= log e

∫ ∞

|G|2
(1− F (x))

[

xρ(x)

1 + xΣ(x)
−

|G|2ρ(x)

1 + |G|2Σ(x)

]

dx

where f(·) is the probability density function of the fading state s, and F (·) is the cumulative

distribution function of s. The above average rate can be further improved by optimizing

over power allocations ρ(·), or equivalently Σ(·). We can also use (20) to replace ρ(x) in the

final equation for the average rate, which completes the proof.

To obtain the optimal average rate R given in (21) and the corresponding optimal power

allocation function Σ(·), we study the following optimization problem. In particular, we

focus on continuous power allocation functions, i.e., Σ(·) is a continuous function defined

over [0,∞).

max
Σ(x)

∫ ∞

|G|2
S(x,Σ(x),Σ′(x))dx

subject to 0 ≤ Σ(x) ≤ P, Σ′(x) ≤ 0, for x ≥ 0 (25)

where

S(x,Σ(x),Σ′(x)) = (1− F (x))

[

−xΣ′(x)

1 + xΣ(x)
+

|G|2Σ′(x)

1 + |G|2Σ(x)

]

. (26)

The following theorem characterizes the structure of the optimal power allocation function.

Theorem 2. Let

η(x) =
1− F (x)− (x− |G|2)f(x)

xf(x)(x− |G|2)− (1− F (x))|G|2
. (27)

An optimal solution to (25), if one exists, has the following structure. There exist 0 ≤ x1 <

y1 < x2 < y2 < · · · < xn < yn = x0, such that η(x) is strictly decreasing over [xi, yi] for

i = 1, . . . , n, η(x1) = P , η(yn) = η(x0) = 0, η(yi) = η(xi+1) for i = 1, . . . , n− 1, and

Σ∗(x) =



















P 0 ≤ x ≤ x1;

η(x) xi ≤ x ≤ yi, for i = 1, . . . , n;

η(yi) = η(xi+1), yi < x < xi+1, for i = 1, . . . , n− 1;

0 yn = x0 ≤ x.

(28)

13



Remark 2. The functions Σ(x) that satisfy the conditions given in Theorem 2 may not be

unique.

Remark 3. In Theorem 2, yn = x0 may be infinity.

Proof of Theorem 2. It is clear that any optimal Σ∗(x) if one exists must have the following

form:

Σ∗(x) =



















P 0 ≤ x ≤ x1;

a strictly decreasing function xi ≤ x ≤ yi, for i = 1, . . . , n;

a constant, yi < x < xi+1, for i = 1, . . . , n− 1;

0 yn = x0 ≤ x.

(29)

where 0 ≤ x1 < y1 < x2 < y2 < · · · < xn < yn = x0.

The optimization problem (25) is a problem of the constrained calculus of variation. We

thus apply the technique in [28] to provide a necessary condition that Σ∗(x) satisfies. Over the

intervals (x1, y1], [xi, yi] for i = 2, . . . , n−1, and [xn, yn), since Σ
∗(x) is strictly decreasing, it

does not satisfy the inequality constraints in (25) with equality, i.e., it is not on the boundary

of the constraint set. Due to the complementary slackness conditions [28], the following Euler

equation must be satisfied:

SΣ −
d

dx
SΣ′ = 0, (30)

where

SΣ =
∂S(x,Σ(x),Σ′(x))

∂Σ
, and SΣ′ =

∂S(x,Σ(x),Σ′(x))

∂Σ′
.

For the function S(x,Σ(x),Σ′(x)) given in (26), we obtain

SΣ = (1− F (x))

[

x2Σ
′
(x)

(1 + xΣ(x))2
−

|G|4Σ′(x)

(1 + |G|2Σ(x))2

]

SΣ′ = (1− F (x))

[

−x

1 + xΣ(x)
+

|G|2

1 + |G|2Σ(x)

]

d

dx
SΣ′ =

xf(x)

1 + xΣ(x)
−

f(x)|G|2

1 + |G|2Σ(x)

+ (1− F (x))

[

x2Σ
′
(x)− 1

(1 + xΣ(x))2
−

|G|4Σ
′
(x)

(1 + |G|2Σ(x))2

]

.

We substitute the above equations into the Euler equation and obtain

Σ∗(x) = η(x) =
1− F (x)− (x− |G|2)f(x)

xf(x)(x− |G|2)− (1− F (x))|G|2
, (31)

over the intervals (x1, y1], [xi, yi] for i = 2, . . . , n−1, and [xn, yn). This also implies that η(x)

must be strictly decreasing over these intervals. Due to the continuity of Σ∗(x), the values
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of Σ∗(x) over (yi, xi+1) are given by η(yi) = η(xi+1) for i = 1, . . . , n − 1, which also implies

that η(x) must satisfy η(yi) = η(xi+1) for i = 1, . . . , n − 1. Also due to the continuity of

Σ∗(x), η(x1) = P , and η(yn) = η(x0) = 0.

Example 1. In this example, we consider the case when the channel to the legitimate receiver

experiences Rayleigh fading. Hence, s = |H|2 is exponentially distributed, and

f(x) =
1

σ1

e
− x

σ1 and F (x) = 1− e
− x

σ1 , x ≥ 0 (32)

where σ1 is the parameter of the exponential distribution.

Substituting (32) into (27), we obtain

η(x) =
σ1 − x+ |G|2

x(x− |G|2)− σ1|G|2
. (33)

By solving η(x1) = P and η(x0) = 0, we obtain

x0 = σ1 + |G|2, and

x1 =
(P |G|2 − 1) +

√

(P |G|2 − 1)2 + 4P (Pσ1|G|2 + |G|2 + σ1)

2P
. (34)

It is easy to check that |G|2 < x1 < x0. We also note that η(x) is strictly decreasing over

the range [x1, x0], because the numerator of η(x) is decreasing, and the denominator of η(x)

is increasing over the interval [x1, x0]. Since x1 and x0 are both unique solutions to η(x1) = P

and η(x0) = 0, respectively, and η(x) is strictly decreasing over [x1, x0], the optimal Σ∗(x) is

thus given by

Σ∗(x) =











P 0 ≤ x ≤ x1;

η(x) x1 ≤ x ≤ x0;

0 x0 ≤ x.

(35)

Since the above Σ∗(x) is the unique function that satisfies the conditions given in Theorem

2, it is the only possible optimal solution for the power allocation function.

By taking the derivative of Σ∗(x), we obtain

ρ∗(x) = −Σ∗′(x) =
−x2 + 2σ1x− 2σ1|G|2 + 2|G|2x− |G|4

(x(x− |G|2)− σ1|G|2)2
. (36)

By substituting Σ∗(x) and Σ∗′(x) to (21), we can obtain the optimal average secrecy rate

via a broadcast approach for the Rayleigh fading channel. Numerical results are provided in

Section 6.
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4 Fading Channel to Eavesdropper

In this section, we study the case in which only the eavesdropper experiences a block fading

channel, i.e., G is a constant over each block, and changes independently from one block

to another. The legitimate receiver’s channel gain H is assumed to be a constant, and is

thus known to all nodes. As for the case in which only the legitimate receiver’s channel is

fading, it is assumed that the transmitter does not know the instantaneous channel state

to the eavesdropper, but the eavesdropper knows its own channel state. In the rest of this

section, we first study the case with a discrete fading state, and then generalize our result

to the case with a continuous fading state.

4.1 Discrete Eavesdropping Channel States

We first consider the case in which the eavesdropper has a finite number of channel states,

i.e., G may take L values, say G1, . . . , GL with |G1|
2 < |G2|

2 < · · · < |GL|
2 < |H|2. For

this case, we develop a second type of broadcast approach that is different from the one

developed in Section 3. To proceed, we start by splitting the entire message into L layers of

messages W1,W2, . . . ,WL.

Definition 2. A secrecy rate tuple (R1, . . . , RL) is achievable if there exists a coding scheme

that encodes W1, . . . ,WL at the rate tuple (R1, . . . , RL) such that the legitimate receiver can

decode all messages with a small probability of error, and message Wl is kept secure from the

eavesdropper if the eavesdropper’s channel state is Gl for l = 1, . . . , L.

The following theorem characterize achievable secrecy rate tuples via a broadcast approach.

Theorem 3. Consider the fading wiretap channel with the legitimate receiver having a fixed

channel state H and the eavesdropper possibly having one of L fading states G1, . . . , GL with

|G1|
2 < |G2|

2 < · · · < |GL|
2 < |H|2. The following secrecy rate tuples (R1, . . . , RL) are

achievable:

Rl = log
(

1 + |Gl+1|
2P
)

− log
(

1 + |Gl|
2P
)

, for l = 1, . . . , L− 1, and

RL = log
(

1 + |H|2P
)

− log
(

1 + |GL|
2P
)

. (37)

Since the messages that are secure from the eavesdropper with the state Gj are also secure

from the eavesdropper with the state Gl if |Gj| > |Gl|, all Wl, . . . ,WL are secure from the

eavesdropper at the state Gl if (R1, . . . , RL) is achievable. Hence, the total rate of the

messages that are secure from the eavesdropper at the channel state Gl is given by

Rl +Rl+1 + · · ·+RL = log
(

1 + |H|2P
)

− log
(

1 + |Gl|
2P
)

. (38)

It is also clear that the secrecy rate given in (38) achieved by the second type broadcast

approach (described in the proof for Theorem 3) is the best secrecy rate (i.e., the secrecy
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capacity) that the instantaneous channel allows although the transmitter does not know

the eavesdropper’s CSI. The only sacrifice due to no CSI at the transmitter is that some

lower layer messages may not be kept secure from the eavesdropper. This is in contrast to

the first type broadcast approach developed for the case when the legitimate receiver has

a fading channel, for which all messages transmitted over the channel are guaranteed to be

kept secure from the eavesdropper, but the secrecy rate achieved may not be optimal.

We note that although the legitimate receiver does not know the eavesdropper’s channel

state, the broadcast approach still prevents the eavesdropper from knowing certain layers

of information with these layers determined by the eavesdropper’s channel state. However,

without knowing the eavesdropper’s channel state, the legitimate receiver understands only

the probability that certain layers of messages are kept secure, which is referred to as prob-

abilistic secrecy and is studied in the following subsection.

We next provide the details of the proof for Theorem 3, in which the second type broadcast

approach is developed in detail.

Proof of Theorem 3. In contrast to the broadcast approach developed for proving Theorem

1 that employs a subcodebook for each layer of messages, the broadcast approach here

generalizes the embedding code structure proposed in [23] that uses only one codebook.

Each codeword is indexed by a random index and all layers of messages. Depending on the

channel state of the eavesdropper, up to certain layers of messages jointly with the random

index serve as randomness to protect the remaining higher-layer messages. In this way, these

higher-layer messages can be viewed as a vector bin number, and the lower-layer messages

and the random index can be viewed as the index (vector) of the codeword within each bin.

In particular, the entire code can be viewed in an embedded fashion in that each layer of

messages serve as bin numbers with the corresponding bins being embedded into larger bins

indexed by messages one layer higher. We describe this codebook in more detail as follows.

We construct a codebook that contains 2n log(1+|H|2P) codewords xn, which are indexed by

(q, w1, . . . , wL−1, wL) with

q = 1, 2, . . . , 2n log(1+|G1|2P),

w1 = 1, 2, . . . , 2n[log(1+|G2|2P)−log(1+|G1|2P)],

w2 = 1, 2, . . . , 2n[log(1+|G3|2P)−log(1+|G2|2P)],

...

wL−1 = 1, 2, . . . , 2n[log(1+|GL|
2P)−log(1+|GL−1|

2P)],

wL = 1, 2, . . . , 2n[log(1+|H|2P)−log(1+|GL|
2P)]. (39)

Using this codebook, to transmit a message tuple (w1, w2, . . . , wL), the encoder randomly

selects an index q with the uniform distribution and transmits xn(q, w1, w2, . . . , wL). To

connect this approach to the wiretap binning scheme, here, for an eavesdropper’s channel
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state Gl, the codewords in the codebook can be viewed as being assigned to the bins indexed

by (wl, . . . , wL).

Due to the codebook structure specified in (39) and following steps similar to those in [4,

Section 2.3], it can be shown that there exists a codebook with the above structure such that

if this codebook and the above encoding scheme are applied, then the legitimate receiver

can decode Xn, and hence W1, . . . ,WL, with a small probability of error. Furthermore, for

l = 1, . . . , L, if the eavesdropper’s channel state is Gl, then the eavesdropper can decode the

channel input Xn with a small probability of error if it knows Wl, . . . ,WL. We note that this

property implies that there exists a positive δn which approaches zero as n goes to infinity

such that

H(Xn|Zn
1 ,W1, . . . ,WL) ≤ nδn,

H(Xn|Zn
2 ,W2, . . . ,WL) ≤ nδn,

...

H(Xn|Zn
L,WL) ≤ nδn, (40)

where Zl is the channel output at the eavesdropper if its channel state is Gl for l = 1, . . . , L.

From the codebook construction and the above property, it is clear that the legitimate

receiver can decode all layers of messages. It is then sufficient to show that for each channel

state realization Gl, the eavesdropper is kept ignorant of the messages Wl, . . . ,WL for l =

1, . . . , L. Towards this end, we compute the following equivocation rate:

H(Wl, . . . ,WL|Z
n
l )

= H(Wl, . . . ,WL, Z
n
l )−H(Zn

l )

= H(Wl, . . . ,WL, Z
n
l , X

n)−H(Xn|Wl, . . . ,WL, Z
n
l )−H(Zn

l )

= H(W1, . . . ,WL, X
n) +H(Zn

l |Wl, . . . ,WL, X
n)

−H(Xn|Wl, . . . ,WL, Z
n
l )−H(Zn

l )

≥ H(Xn) +H(Zn
l |X

n)−H(Xn|Wl, . . . ,WL, Z
n
l )−H(Zn

l ). (41)

By the codebook construction and encoding scheme, and the fact that the messages are

uniformly distributed, we obtain

H(Xn) = n log
(

1 + |H|2P
)

. (42)

Using (40), we obtain

H(Xn|Wl, . . . ,WL, Z
n
l ) ≤ nδn. (43)
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We also compute

H(Zn
l |X

n)−H(Zn
l )

≥ n log 2πe−
n
∑

i=1

logVar(Zli)

= n log 2πe−

n
∑

i=1

log 2πe
(

|Gl|
2
Var(Xi) + 1

)

≥ n log 2πe−
n
∑

i=1

log 2πe
(

|Gl|
2E[|Xi|

2] + 1
)

≥ n log 2πe− n log 2πe

(

|Gl|
2

n

n
∑

i=1

E[|Xi|
2] + 1

)

≥ n log 2πe− n log 2πe
(

|Gl|
2P + 1

)

≥ −n log(1 + |Gl|
2P ). (44)

Substituting (42), (43), (44) into (41), we obtain

1

n
H(Wl, . . . ,WL|Z

n
l ) ≥ log

(

1 + |H|2P
)

− log(1 + |Gl|
2P )− δn

=

L
∑

j=l

Rj − δn =
1

n
H(Wl, . . . ,WL)− δn (45)

which implies that perfect secrecy is achieved asymptotically as n approaches infinity.

We note that the broadcast approach developed above is different from the original broad-

cast approach [17] and the one developed in Section 3 in that the power is not spread

over layers of messages because one codebook that contain information about all layers of

messages is employed. Furthermore, our scheme generalizes the embedding scheme in [23]

(that treats the scenario with two eavesdropper’s channel states) to the broadcast approach

with multiple-layer embedding to accommodate multiple eavesdropper’s channel states. This

scheme is further extended for the case with infinite number of layers in the following sub-

section. More importantly, our scheme with multiple-layer embedding does not result in

reduction in the secrecy rate due to the single codebook design and no power spreading over

layers.

4.2 Continuous Eavesdropping Channel State

We now generalize the result in the preceding subsection to the case in which the eavesdropper

has a continuous channel state, i.e., the channel gain G takes continuous values. In this case,

the message should be encoded correspondingly to a continuum of layers. For each state

G = g, we let u = |g|2, and use u as an index for the layer of the message that needs to be
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Figure 4: An illustration of the layers of messages that are secure from the eavesdropper.

kept secure from the eavesdropper in the state g. The following result follows directly from

Theorem 3.

Corollary 2. For the fading wiretap channel with the legitimate receiver having a fixed

channel state H and the eavesdropper having a block fading channel, the average secrecy rate

under the delay constraint achieved via a broadcast approach is given by

R = Q(|H|2) log
(

1 + |H|2P
)

−

∫ |H|2

0

q(u) log(1 + uP )du (46)

where q(·) and Q(·) are the probability density function and cumulative distribution function

of |G|2, respectively.

We note that the above rate R can be easily computed numerically.

Proof of Corollary 2. Following from (38), the total secrecy rate when the eavesdropper’s

channel state is u = |G|2 is given as follows (see Fig. 4):

R(u) =

{

log (1 + |H|2P )− log(1 + uP ), if u < |H|2

0, otherwise.
(47)

Averaging the above rate over all eavesdropper’s channel state realizations, we obtain

R =

∫ |H|2

0

q(u)R(u)du

=

∫ |H|2

0

q(u)
[

log
(

1 + |H|2P
)

− log(1 + uP )
]

du (48)

= Q(|H|2) log
(

1 + |H|2P
)

−

∫ |H|2

0

q(u) log(1 + uP )du, (49)

which concludes the proof.
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Based on the above proof, we now characterize probabilistic secrecy for this scenario, i.e.,

the probability that a given secrecy rate R is achievable, denoted by Pr(R). It is clear from

(47) that if R is greater than the maximum rate log (1 + |H|2P ) decodable at the legitimate

receiver, Pr(R) = 0. Otherwise, in (47), we set R(uR) = R to obtain

uR =
2log(1+|H|2P)−R − 1

P

which is the best eavesdropper’s state such that messages with the rate R are still secure.

Since these messages are also secure for any eavesdropper’s state u ≤ uR, Pr(R) should

be equal to Pr{u ≤ uR}, which is Q(uR), i.e., the cumulative probability distribution of u

evaluated at uR. In summary, Pr(R) is given by

Pr(R) =

{

Q (uR) for R ≤ log (1 + |H|2P ) ;

0 otherwise.

5 Fading Channels to Both Legitimate Receiver and

Eavesdropper

In this section, we study the general case, in which both the legitimate receiver and the

eavesdropper experience block fading channels, i.e., H and G are constant over each block,

and change independently to other realizations from one block to another. It is assumed that

the transmitter knows neither the instantaneous channel state to the legitimate receiver nor

the channel state to the eavesdropper, but the legitimate receiver and the eavesdropper know

their corresponding channel states. As in the previous sections, we start with the case when

the channel gains have finite numbers of states. We then study the case with continuous

channel states.

5.1 Discrete Legitimate and Eavesdropping Channel States

We first consider the case in which both the legitimate receiver and the eavesdropper have

finite numbers of channel states, i.e., H and G take one of H1, . . . , HL values and one of

G1, . . . , GK values, respectively, where |H1| < · · · < |HL| and |G1| < · · · < |GK |. For each

1 ≤ l ≤ L, we use Kl to denote the largest index of the state level of G that is below Hl,

i.e., Kl = max|Gk|≤|Hl| k. We develop a broadcast approach that combines the two broadcast

approaches developed in Sections 3 and 4. We first split the entire message into a number

of components Wl[1,Kl] for 1 ≤ l ≤ L, where Wl[1,Kl] denotes Wl1, . . . ,WlKl
.

Definition 3. A secrecy rate tuple {Rl[1,Kl]}l=1,...,L is achievable if there exists a coding

scheme that encodes the messages Wl[1,Kl] at the rates Rl[1,Kl] for 1 ≤ l ≤ L such that if the

legitimate receiver’s channel is at Hl and the eavesdropper’s channel is at Gk for 1 ≤ l ≤ L
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and 1 ≤ k ≤ Kl, then the legitimate receiver decodes the message Wlk and the eavesdropper

is kept ignorant of the message Wlk.

The following theorem characterizes achievable secrecy rate tuples via a broadcast ap-

proach.

Theorem 4. For the fading wiretap channel with the legitimate receiver having one of

L fading states H1, . . . , HL with |H1| < · · · < |HL| and the eavesdropper having one of

K fading states G1, . . . , GK with |G1| < · · · < |GK |, the following secrecy rate tuples

(R1,[1,K1], . . . , RL[1,KL]) are achievable:

Rlk =























log

(

1 +
|Gk+1|

2Pl

1+|Gk+1|2
∑L

j=l+1
Pj

)

− log

(

1 + |Gk|
2Pl

1+|Gk|2
∑L

j=l+1
Pj

)

, for 1 ≤ l ≤ L,

1 ≤ k ≤ Kl − 1

log

(

1 + |Hl|
2Pl

1+|Hl|2
∑L

j=l+1
Pj

)

− log

(

1 +
|GKl

|2Pl

1+|GKl
|2
∑L

j=l+1
Pj

)

, for 1 ≤ l ≤ L, k = Kl

(50)

where Pl denotes the transmission power assigned to state l and satisfies the power constraint
∑L

l=1 Pl ≤ P .

We note that since the messages that are decodable by the legitimate receiver at any state

Hj can also be decoded by the legitimate receiver at the state Hl if |Hj| < |Hl|, the legitimate

receiver at the state Hl can decode all messages W1[1,K1], . . . ,Wl,[1,Kl] for l = 1, . . . , L. And

since the messages that are secure from the eavesdropper with any state Gj are also secure

from the eavesdropper with the state Gk if |Gj | > |Gk|, all W1[k,K1], . . . ,WL[k,KL] are secure

from the eavesdropper at the state Gk.

We also note that similarly to the case in which only the channel to the eavesdropper is

fading, employment of the broadcast approach does not require that the legitimate receiver

know the channel state to the eavesdropper. However, without knowing the eavesdropper’s

channel state, the legitimate receiver understands only the probability that certain layers of

messages are kept secure, which is studied in the following subsection as probabilistic secrecy.

Proof of Theorem 4. The basic idea combines the two types of broadcast approaches devel-

oped in Sections 3 and 4. The details are as follows.

We consider a codebook that contains L subcodebooks corresponding to L layers of the le-

gitimate receiver’s channel. For each layer l, the subcodebook Cl contains 2
n log

(

1+
|Hl|

2Pl

1+|Hl|
2
∑L

j=l+1
Pj

)
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codewords xn
l indexed by (ql, wl1, wl2, . . . , wlKl

), where

ql = 1, 2, . . . , 2
n log

(

1+
|G1|

2Pl

1+|G1|
2
∑L

j=l+1
Pj

)

,

wl1 = 1, 2, . . . , 2
n

[

log

(

1+
|G2|

2Pl

1+|G2|
2
∑L

j=l+1
Pj

)

−log

(

1+
|G1|

2Pl

1+|G1|
2
∑L

j=l+1
Pj

)]

,

wl2 = 1, 2, . . . , 2
n

[

log

(

1+
|G3|

2Pl

1+|G3|
2
∑L

j=l+1
Pj

)

−log

(

1+
|G2|

2Pl

1+|G2|
2
∑L

j=l+1
Pj

)]

,

...

wl(Kl−1) = 1, 2, . . . , 2
n

[

log

(

1+
|GKl

|2Pl

1+|GKl
|2

∑L
j=l+1

Pj

)

−log

(

1+
|GKl−1|

2Pl

1+|GKl−1|
2
∑L

j=l+1
Pj

)]

,

wlKl
= 1, 2, . . . , 2

n

[

log

(

1+
|Hl|

2Pl

1+|Hl|
2
∑L

j=l+1
Pj

)

−log

(

1+
|GKl

|2Pl

1+|GKl
|2

∑L
j=l+1

Pj

)]

. (51)

The encoding scheme is given as follows. To transmit a set of messages w1[1,K1], . . . , wL,[L,KL],

for each l = 1, . . . , L, the transmitter randomly and uniformly selects ql, and ql together with

wl[1,kl] determines a codeword xn
l (ql, wl1, . . . , wlKl

). The input transmitted over the channel

is then given by

xn =

L
∑

l=1

xn
l (ql, wl1, . . . , wlKl

).

Following steps similar to those in [4, Section 2.3], it can be shown that there exists a

codebook as described above such that if the legitimate receiver has the channel state Hl,

then it can decode Xn
1 , . . . , X

n
l , and hence the messages W1[1,K1], . . . ,Wl[1,Kl], with a small

probability of error, and if the eavesdropper’s channel is at Gk, then the eavesdropper can

successfully decode Xn
l with a small probability of error if it knows Wl[k,Kl] and Xn

1 , . . . , X
n
l−1,

for l = 1, . . . , L. More formally, this property implies that there exists a positive δn which

approaches zero as n goes to infinity such that for k = 1, . . . , K,

H(Xn
1 |Z

n
k ,W1[k,K1]) ≤ nδn

H(Xn
2 |Z

n
k ,W2[k,K2], X

n
1 ) ≤ nδn

...

H(Xn
L|Z

n
k ,WL[k,KL], X

n
1 , . . . , X

n
L−1) ≤ nδn (52)

where Zn
k denotes the channel output received by the eavesdropper if its channel state is Gk.

From the codebook construction, it is clear that if the legitimate receiver has a chan-

nel realization Hl, it can decode Xn
1 , . . . , X

n
l , and hence the messages W1[1,K1], . . . ,Wl[1,Kl].

It is then sufficient to show that if the eavesdropper is in the state Gk, the messages

W1[k,K1], . . . ,WL[k,KL] are kept secure from the eavesdropper. Towards this end, we com-
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pute the following equivocation rate:

H(W1[k,K1], . . . ,WL[k,KL]|Z
n
k )

= H(W1[k,K1], . . . ,WL[k,KL], Z
n
k )−H(Zn

k )

= H(W1[k,K1], . . . ,WL[k,KL], Z
n
k , X

n
1 , . . . , X

n
L)

−H(Xn
1 , . . . , X

n
L|W1[k,K1], . . . ,WL[k,KL], Z

n
k )−H(Zn

k )

= H(W1[k,K1], . . . ,WL[k,KL], X
n
1 , . . . , X

n
L) +H(Zn

k |W1[k,K1], . . . ,WL[k,KL], X
n
1 , . . . , X

n
L)

−H(Xn
1 , . . . , X

n
L|W1[k,K1], . . . ,WL[k,KL], Z

n
k )−H(Zn

k )

≥ H(Xn
1 , . . . , X

n
L) +H(Zn

k |X
n
1 , . . . , X

n
L)

−H(Xn
1 , . . . , X

n
L|W1[k,K1], . . . ,WL[k,KL], Z

n
k )−H(Zn

k ). (53)

Following from the codebook construction and the encoding scheme, it is clear that

Xn
1 , . . . , X

n
L are independently and uniformly distributed over their corresponding subcode-

books. Hence, we obtain

H(Xn
1 , . . . , X

n
L) = n

L
∑

l=1

log

(

1 +
|Hl|

2Pl

1 + |Hl|2
∑L

j=l+1 Pj

)

. (54)

Using (52), we obtain

H(Xn
1 , . . . , X

n
L|W1[k,K1], . . . ,WL[k,KL], Z

n
k ) < nǫn (55)

where ǫn approaches zero if n goes to infinity. Following the steps in (14)-(17), we obtain

H(Zn
k |X

n
1 , . . . , X

n
L)−H(Zn

k ) ≥ −n log

(

1 + |Gk|
2

L
∑

j=1

Pj

)

. (56)

Hence,

1

n
H(W1[k,K1], . . . ,WL[k,KL]|Z

n
k )

≥
L
∑

l=1

log

(

1 +
|Hl|

2Pl

1 + |Hl|2
∑L

j=l+1 Pj

)

− log

(

1 + |Gk|
2

L
∑

j=1

Pj

)

− ǫ

=

L
∑

l=1

[

log

(

1 +
|Hl|

2Pl

1 + |Hl|2
∑L

j=l+1 Pj

)

− log

(

1 +
|Gk|

2Pl

1 + |Gk|2
∑L

j=l+1 Pj

)]

− ǫ (57)

where the last step applies

log

(

1 + |Gk|
2

L
∑

j=1

Pj

)

=

L
∑

l=1

log

(

1 +
|Gk|

2Pl

1 + |Gk|2
∑L

j=l+1 Pj

)

Comparing equation (57) with the rates of the messages given in (51), we conclude that

perfect secrecy is achieved asymptotically as n approaches infinity.
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Figure 5: An illustration of the layers of messages that are decodable at the legitimate
receiver and secure from the eavesdropper.

5.2 Continuous Channel States

We now generalize our result in the preceding subsection to the case in which the channel

states take continuous values. For each channel state pair (H,G) = (h, g), we let (s, u) =

(|h|2|, |g|2), and use (s, u) to index layers of messages. For each layer s, we assume that the

transmitter allocates power ρ(s)ds, and we use Σ(s) to denote the total power allocated to

the layers with better channel states, i.e., the states ŝ such that ŝ > s. Hence,

Σ(s) =

∫ ∞

s

ρ(x)dx (58)

and

ρ(s) = −Σ′(s). (59)

Following from Theorem 4, we obtain the following result on the average secrecy rate.

Corollary 3. For the fading wiretap channel with both the legitimate receiver and the eaves-

dropper having block fading channels with continuous channel states, the average secrecy rate

under the delay constraint achieved via a broadcast approach is given by

R = max
Σ(x)

log e

∫ ∞

0

dx(1− F (x))Σ′(x)

[

−xQ(x)

1 + xΣ(x)
+

∫ x

0

du
uq(u)

1 + uΣ(x)

]

(60)

where F (·) and Q(·) are cumulative distribution functions for s and u, respectively.

Proof of Corollary 3. Consider the case when the legitimate receiver and the eavesdropper

have the channel states (s, u) = (|h|2, |g|2). Following from (50), if s > u, then the rate of

the messages that can be decoded by the legitimate receiver at the state s while being kept

secure from the eavesdropper at the state u is given by

dR = log

(

1 +
sρ(s)ds

1 + sΣ(s)

)

− log

(

1 +
uρ(s)ds

1 + uΣ(s)

)

≈ log e

[

sρ(s)ds

1 + sΣ(s)
−

uρ(s)ds

1 + uΣ(s)

]

(61)
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where the second equation follows because ds approaches zero. If s ≤ u, then dR = 0. Since

all messages corresponding to the legitimate receiver’s state x such that x < s can be decoded

by the legitimate receiver at state s, the total rate of the messages that can be decoded by

the legitimate receiver at the state s and also be kept secure from the eavesdropper at the

state u is given by

R(s, u) = log e

∫ s

u

[

xρ(x)

1 + xΣ(x)
−

uρ(x)

1 + uΣ(x)

]

dx (62)

if s > u, and R(s, u) = 0 if s ≤ u. An illustration of the layers of messages that contribute

to the secrecy rate R(s, u) is depicted in Fig. 5.

Averaging the above rate over all fading state realizations of the legitimate receiver’s

channel and the eavesdropper’s channel, we obtain

R =

∫ ∞

0

ds

∫ s

0

duf(s)q(u)R(s, u)

= log e

∫ ∞

0

du

∫ ∞

u

dsf(s)q(u)

∫ s

u

dx

[

xρ(x)

1 + xΣ(x)
−

uρ(x)

1 + uΣ(x)

]

= log e

∫ ∞

0

duq(u)

∫ ∞

u

dxρ(x)

[

x

1 + xΣ(x)
−

u

1 + uΣ(x)

]
∫ ∞

x

dsf(s)

= log e

∫ ∞

0

duq(u)

∫ ∞

u

dx(1− F (x))ρ(x)

[

x

1 + xΣ(x)
−

u

1 + uΣ(x)

]

= log e

∫ ∞

0

dx(1− F (x))ρ(x)

[

x

1 + xΣ(x)

∫ x

0

duq(u)−

∫ x

0

du
uq(u)

1 + uΣ(x)

]

= log e

∫ ∞

0

dx(1− F (x))ρ(x)

[

xQ(x)

1 + xΣ(x)
−

∫ x

0

du
uq(u)

1 + uΣ(x)

]

, (63)

where F (·) and Q(·) are cumulative distributions for s and u, respectively. The average

rate R given above can be further improved by optimizing over all possible power allocation

functions ρ(·), or equivalently, over all possible cumulative power allocation functions Σ(·).

We can also use (59) to replace ρ(x) with −Σ′(x), which concludes the proof.

As in Section 4, we can also characterize the probability that a given secrecy rate R is

achievable, denoted by Pr(R). By setting u = 0 in (62), we obtain the following total rate

of the messages that the legitimate receiver at the state s can decode:

R(s) = log e

∫ s

0

xρ(x)

1 + xΣ(x)
dx.

We set R(sT ) = R, and can numerically obtain sT , which represents the lowest state of the

legitimate receiver that can decode the messages at the rate R. If s < sT , the probability

of achieving the secrecy rate R when the legitimate receiver’s state is in s is zero, i.e.,

Pr(R|s) = 0. Otherwise, for any state s ≥ sT , we characterize the probability that the given

secrecy rate R is achievable. Towards this end, we set R(s, uR) = R in (62), and then fix s
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and solve the equation to obtain uR(s), which is a function of s. Such uR(s) exists because

R(s, u) in (62) is monotonic as a function of u, and can be found numerically. It is clear that

uR(s) is the best eavesdropper’s state such that messages with the rate R are secure. Since

these messages are also secure in any eavesdropper’s state û ≤ uR(s), Pr(R|s) = Q(uR(s)).

Thus, the total probability Pr(R), which is the probability that the messages with the given

rate R are secure from the eavesdropper, can be obtained by averaging P (R|s) over all states

s ≥ sT , and is given by

Pr(R) =

∫ ∞

sT

f(s)Q(uR(s))ds.

From the legitimate receiver’s point of view, since it knows its own channel state, the con-

ditional probability P (R|s) = Q(uR(s)) characterizes the probability to achieve a certain

secrecy rate R at the current block with the state s = |H|2.

In order to obtain the optimal average secrecy rate R given in (60), we need to solve the

following optimization problem:

max
Σ(x)

∫ ∞

0

S(x,Σ(x),Σ′(x))dx

subject to 0 ≤ Σ(x) ≤ P, Σ′(x) ≤ 0, for x ≥ 0; (64)

where

S(x,Σ(x),Σ′(x))

= (1− F (x))Q(x)
−xΣ′(x)

1 + xΣ(x)
+ (1− F (x))Σ′(x)

∫ x

0

uq(u)

1 + uΣ(x)
du. (65)

Theorem 5. An optimal solution to (64), if one exists, has the following structure. There

exist 0 ≤ x1 < y1 < x2 < y2 < · · · < xn < yn = x0, and a function η(x), such that η(x)

satisfies

(1− F (x))Q(x)

(1 + xη(x))2
=

xf(x)Q(x)

1 + xη(x)
− f(x)

∫ x

0

uq(u)

1 + uη(x)
du (66)

and is strictly decreasing over [xi, yi] for i = 1, . . . , n, η(x1) = P , η(yn) = η(x0) = 0,

η(yi) = η(xi+1) for i = 1, . . . , n− 1, and an optimal Σ∗(x) is given by

Σ∗(x) =



















P 0 ≤ x ≤ x1;

η(x) xi ≤ x ≤ yi, for i = 1, . . . , n;

η(yi) = η(xi+1), yi < x < xi+1, for i = 1, . . . , n− 1;

0 yn = x0 ≤ x.

(67)

Proof. The argument is similar to that for proving Theorem 2. Hence, we here provide

only details for obtaining the Euler condition (66). Due to the complementary slackness

conditions, over the intervals (x1, y1], [xi, yi] for i = 2, . . . , n − 1, and [xn, yn), since Σ∗(x)
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does not satisfy the inequality constraints with equality, i.e., it is not on the boundary of

the constraint set, then the following Euler equation must be satisfied:

SΣ −
d

dx
SΣ′ = 0. (68)

For the function S(x,Σ(x),Σ′(x)) given in (65), we obtain

SΣ =(1− F (x))Q(x)
x2Σ

′
(x)

(1 + xΣ(x))2
+ (1− F (x))Σ′(x)

∫ x

0

−u2q(u)

(1 + uΣ(x))2
du

SΣ′ =(1− F (x))Q(x)
−x

1 + xΣ(x)
+ (1− F (x))

∫ x

0

uq(u)

1 + uΣ(x)
du

d

dx
SΣ′ = [−f(x)Q(x) + (1− F (x))q(x)]

−x

1 + xΣ(x)
+ (1− F (x))Q(x)

−1 + x2Σ′(x)

(1 + xΣ(x))2

− f(x)

∫ x

0

uq(u)

1 + uΣ(x)
du+ (1− F (x))

xq(x)

1 + xΣ(x)

− (1− F (x))

∫ x

0

u2q(u)Σ′(x)

(1 + uΣ(x))2
. (69)

We substitute the above equations into the Euler equation and obtain the condition given

in (66).

Example 2. Consider the case when the channels to the legitimate receiver and the eaves-

dropper experience independent Rayleigh fading, i.e., s and u are exponentially distributed

as characterized by:

f(x) =
1

σ1
e
− x

σ1 and F (x) = 1− e
− x

σ1 , x ≥ 0, (70)

q(x) =
1

σ2

e
− x

σ2 and Q(x) = 1− e
− x

σ2 , x ≥ 0. (71)

where σ1 and σ2 are parameters for the exponential distributions of s and u, respectively.

The Euler condition (66) now becomes

1− e
− x

σ2

(1 + xΣ(x))2
−

x(1 − e
− x

σ2 )

σ1(1 + xΣ(x))
+

1

σ1σ2

∫ x

0

ue
− u

σ2

1 + uΣ(x)
du = 0. (72)

Consider the case with σ1 = σ2 = 1. Following from the above condition, if Σ(x0) = 0, then

x0 satisfies

2− 2e−x0 − x0 = 0

whose root can be computed numerically and is equal to

x0 = 1.5936.
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Figure 6: An optimal function Σ(x) for the Rayleigh fading channel with P = 10dB and
σ1 = σ2 = 1.

Using the condition (72), it is easy to find a Σ∗(x) function that satisfies the necessary

condition given in Theorem 5. We plot the function Σ∗(x) in Fig. 6 for the case with the

power P = 10dB and σ1 = σ2 = 1. We note that this function Σ∗(x) is strictly decreasing

over the interval [x1, x0], which suggests that the optimal solution is unique if it exists.

This example also demonstrates the impact of probabilistic secrecy, under which we achieve

a positive secrecy rate under delay constraints for certain channel state realizations as demon-

strated in Section 6. However, under a deterministic secrecy constraint that requires all

transmitted messages be secure from the eavesdropper, zero secrecy rate can be achieved for

any block. Even over a large number of blocks, the secrecy rate is zero under a determinis-

tic secrecy constraint if the legitimate receiver and the eavesdropper have the same channel

statistics whereas the secrecy rate is positive under probabilistic secrecy for the same scenario

as for the above example.

6 Numerical Results

In this section, we provide numerical examples to demonstrate the impact of the CSI at the

transmitter on the average secrecy rate. We also compare the average secrecy rates for the

three scenarios studied in the paper.

We first study scenario 1 as studied in Example 1, in which only the legitimate receiver’s

channel is fading with the Rayleigh distribution and the eavesdropper’s channel is constant.

The distribution of s = |H|2 is exponential with the parameter σ1 = 2, i.e., p(s) = 1
σ1
e−s/σ1 .

The eavesdropper’s channel state is at |G|2 = 0.5. In Fig. 7, we plot the average secrecy

rates achieved via the broadcast approach and compare them with the rates achievable

when the legitimate receiver’s CSI is known at the transmitter and the eavesdropper. With

the legitimate receiver’s CSI at the transmitter, the average secrecy rate (which is also the

capacity) can be obtained by averaging the secrecy rate for each channel state over the state

29



0 2 4 6 8 10 12 14
0

0.5

1

1.5

2

SNR (dB)
A

ve
ra

ge
 S

ec
re

cy
 R

at
e 

U
nd

er
 th

e 
D

el
ay

C
on

st
ra

in
t (

bi
ts

/c
ha

nn
el

 u
se

)

 

 

With CSI at transmitter
Without CSI at transmitter

Figure 7: Comparison of rates for scenario 1: only the channel to the legitimate receiver is
fading

distribution and optimizing over all possible power allocation over the channel states as given

below

R̄ = max
P (s):Es[P (s)]≤P

∫ ∞

|G|2

[

log (1 + sP (s))− log
(

1 + |G|2P (s)
)]

ρ(s)ds (73)

where the optimizing power allocation can be obtained by using the Lagrangian multiplier

method as in [22, 24].

It is clear from Fig. 7 that the knowledge of the legitimate receiver’s CSI provides a great

advantage to achieve better secrecy rates. Due to the lack of the CSI, the transmitter’s

power is spread over many layers of messages in order to accommodate possibly occurring

channel states. However, when the CSI is available, the transmitter spends all its power for

the particular state realization at each coherence block. In this way, the CSI helps to use the

transmitter’s power more efficiently. We also note that if one adopts the compound channel

approach [13] that requires secrecy no matter which legitimate receiver’s state occurs, then

the secrecy rate for this example is zero. Hence, the broadcast approach greatly improves the

achievable secrecy rate although the transmitter does not have the CSI. We also note that for

this scenario, if there is no delay constraint, even if the transmitter does not know the CSI, it

can exploit the statistics of the legitimate receiver’s channel to achieve a better secrecy rate.

Here, the channel statistics help to avoid power spreading whereas the broadcast approach

inherently degrades the rates due to power spreading over layers.

We then study scenario 2, in which only the eavesdropper’s channel is fading with the

Rayleigh distribution and the legitimate receiver’s channel is constant. The distribution of

u = |G|2 is exponential with the parameter σ2 = 0.5, i.e., p(u) = 1
σ2
e−u/σ2 . The legitimate

receiver’s channel state is at |H|2 = 2. In Fig. 8, we plot the average secrecy rates achieved via

the broadcast approach and compare them with the rates achievable when the eavesdropper’s

CSI is known at the transmitter. With the eavedropper’s CSI at the transmitter, the average
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Figure 8: Comparison of rates for scenario 2: only the channel to the eavesdropper is fading

secrecy rate (which is also the capacity) under the delay constraint is given by

R̄ = max
P (u):Eu[P (u)]≤P

∫ |H|2

0

[

log
(

1 + |H|2P (u)
)

− log (1 + uP (u))
]

q(u)du (74)

where the optimizing power allocation can be obtained by using the Lagrangian multiplier

method as in [22, 24].

It is clear from Fig. 8 that the rates corresponding to the two cases are very close, sug-

gesting that the knowledge of the eavesdropper’s CSI does not provide much advantage to

achieve better secrecy rates. This is not surprising, as we have seen in Section 4 that the

broadcast approach already achieves the maximum possible secrecy rate for each block. The

small gap between the two rates is because with the CSI, the transmitter can adapt its

power allocation over the channel states to achieve a better rate. Another role that the CSI

plays is that with the CSI the transmitter guarantees secrecy for all transmitted messages,

whereas without the CSI the transmitter does not guarantee secrecy for all transmitted

messages, and the legitimate receiver knows only the probability that a certain secrecy rate

is achievable without the eavesdropper’s CSI. We further note that the secrecy rate that

can be achieved using the compound channel approach is zero for this example due to the

assumption that all transmitted messages must be secure no matter which eavesdropper’s

state occurs. Therefore the broadcast approach adopted here again significantly improves

the secrecy rate. However, unlike the first scenario and the compound channel approach,

the broadcast approach developed here does not guarantee the secrecy of the entire message

and achieves only probabilistic secrecy.

We now study scenario 3 as studied in Example 2, in which both the channel to the

legitimate receiver and the channel to the eavesdropper are fading. The distributions of

s = |H|2 and u = |G|2 are independent and are both exponential with the parameters σ1 = 2

and σ2 = 0.5, i.e., p(s) = 1
σ1
e−s/σ1 and p(u) = 1

σ2
e−u/σ2 , respectively. In Fig. 8, we plot the

average secrecy rates achieved via the broadcast approach and compare them with the rates

achievable when both channels’ CSI is known at the transmitter and the eavesdropper. With

the CSI at the transmitter, the average secrecy rate (which is also the capacity) under the
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Figure 9: Comparison of rates for scenario 3: the channels to both the legitimate receiver
and the eavesdropper are fading

delay constraint is given by

R̄ = max
P (u,s):Es,u[P (s,u)]≤P

∫ ∞

0

ds

∫ s

0

duρ(s)q(u) [log (1 + sP (s, u))− log (1 + uP (s, u))] (75)

where the optimizing power allocation can be obtained by using the Lagrangian multiplier

method as in [22, 24]. From our understanding of scenarios 1 and 2, the gap between the

rates corresponding to the two cases is mainly due to the lack of the legitimate receiver’s

CSI which results in the transmitter’s power being spread over states. Similar to scenario 2,

the secrecy rate that can be achieved using the compound channel approach is zero for this

example. Therefore the broadcast approach adopted here again improves the secrecy rate

although the entire message may not be fully kept secure.
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Figure 10: Comparison of rates for the three scenarios

We finally compare the average secrecy rates for the three scenarios in Fig. 10, all of which

do not have the CSI at the transmitter. It is clear from the figure that scenario 2 has the best

rate, and scenario 3 has a better rate than scenario 1. It is easy to understand that scenario

3 has worse rates than scenario 2 because the transmitter’s power is spread over the states

due to no knowledge of the legitimate receiver’s CSI. However, it may seem counter-intuitive
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that scenario 3 has better rates than scenario 1. This is due to the fact that when the

eavesdropper’s channel is fading, there is a good chance that its state is below the channel

average, and such channel fluctuation facilitates achievement of a better secrecy rate and

overcomes the effect of no eavesdropper’s CSI at the transmitter. Therefore, the two major

factors that affect the secrecy rate are the knowledge of the legitimate receiver’s CSI and

the channel fluctuation of the eavesdropper. The knowledge of the eavesdropper’s CSI only

weakly affects the secrecy rate.

7 Conclusion

In this paper, we have studied a (layered) broadcast approach for fading wiretap channels. We

have developed two broadcast approaches for the cases when either the legitimate receiver’s

or the eavesdropper’s channel is fading, respectively, and have combined these two approaches

for the general cases when both nodes’ channels are fading. For each case, we have obtained

the average secrecy rate achieved under the delay constraint by using the broadcast approach

and have derived the optimal power allocation across layers. We have also introduced a

notion of probabilistic secrecy, and characterized the probability that a given secrecy rate is

achievable for the valid scenarios when the eavesdropper’s channel is fading. Moreover, we

have provided numerical examples to demonstrate how the CSI at the transmitter and the

channel fluctuation of the eavesdropper affect the average secrecy rate. Several directions

are interesting to explore in the future. For the case with a delay constraint, it is of interest

to explore the broadcast approach jointly with a key-based technique recently proposed

in [29]. It is also of interest to study the broadcast approach for the case with a relaxed

delay constraint, in which coding over a few blocks is allowed. Some ideas in [30] may be

further explored for the case with a secrecy constraint. Moreover, it is of great importance

to evaluate the penalty incurred by delay constraints, in particular, a stringent one-block

constraint, by comparing the secrecy rate under a delay constraint and the ergodic secrecy

rate.
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