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A BROADER VIEW OF BROWNIAN NETWORKS

BY J. MICHAEL HARRISON

Stanford University

This paper describes a general type of stochastic system model that
involves three basic elements: activities, resources, and stocks of material.
A system manager chooses activity levels dynamically based on state
observations, consuming some materials as inputs and producing other
materials as outputs, subject to resource capacity constraints. A generalized
notion of heavy traffic is described, in which exogenous input and output
rates are approximately balanced with nominal activity rates derived from
a static planning problem. A Brownian network model is then proposed as
a formal approximation in the heavy traffic parameter regime. The current
formulation is novel, relative to models analyzed in previous work, in that
its definition of heavy traffic takes explicit account of the system manager’s
economic objective.

1. Introduction. Brownian networks are a class of stochastic system models
that provide crude but relatively tractable representations for problems of dynamic
resource allocation. Such dynamic control problems arise in a wide range of
economic and technological settings, from telecommunications and computing
to manufacturing and service operations. Roughly speaking, Brownian networks
are appropriate as approximate models of systems where the ambient mode of
operation is characterized by balanced, high-volume flow of work or material, with
inventories and backlogs fluctuating over time as a result of stochastic variability.
In addition to their generality and relative tractability, Brownian networks have
the virtue of mathematical elegance, requiring a minimum of data and having a
compact mathematical description.

On the other hand, optimal control policies for Brownian networks often require
subtle interpretations. To develop intuition in that regard, it is customary at
this stage in the development of the subject to speak of Brownian networks as
approximations for models of more conventional type, rather than just accepting
them as system models in their own right. To be specific, Brownian networks arise
as “heavy traffic” approximations for conventional stochastic system models, and
Williams [2, 10] has described (in slightly different words) the following five levels
of formulation and analysis to guide potential users of Brownian networks:

(a) Formulate a conventional stochastic system model, with an associated
dynamic control problem.
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(b) Identify a limiting parameter regime that formalizes the notion of heavy
traffic.

(c) Formulate a Brownian network model, with an associated Brownian
control problem that plausibly represents the “heavy traffic limit” of the original
control problem.

(d) Solve the Brownian control problem and “interpret” that solution, trans-
lating it into a proposed control policy for the original system.

(e) Show that the proposed policy is “asymptotically optimal” in the heavy
traffic limit, its limiting performance being that associated with the optimal
solution of the Brownian control problem.

Contributions of this paper. Focusing exclusively on levels (a)–(c) of the
analytical hierarchy just described, but addressing them in roughly reverse order,
this paper extends the general theory of Brownian networks, or Brownian network
models, that was initiated in [4], then developed further in [6] and [8]. To be more
precise, this paper continues to develop one of the two themes in [6], as follows.

In [6] it was argued that Brownian networks may serve as approximations for
a broad class of stochastic processing networks, which include as a special case
the multiclass queuing networks that were emphasized in [4]. Here we generalize
that argument by removing the restriction to “open” processing networks that was
imposed in [6]. That is, the theory developed in this paper includes processing
systems with exogenous outputs as well as exogenous inputs and systems where all
flows are endogenous, including “closed” processing networks. This broadening
of the application domain for Brownian networks is not only important from a
practical standpoint but also aesthetically pleasing. A related contribution of this
paper is to generalize somewhat the economic structure that has been considered
previously in conjunction with Brownian networks [4, 6, 8].

The most important contribution of this paper is to generalize the notion of
heavy traffic that was developed in [6] as the setting for Brownian network
approximations. The key element of this generalized treatment is the explicit
consideration of costs and revenues, in addition to physical data, in the analysis.
An illustrative parallel-server system will be described (see Section 3) that is in
heavy traffic according to the definition proposed here, but not according to the
definition used in earlier works.

The contributions described above are modeling contributions, rather than hard
mathematical results, because the central conclusions are supported only by formal
limits of the kind used in [4] and [6]. That is, this paper provides nonrigorous
arguments intended to elucidate the proper formulation and proper interpretation
of Brownian network models. A second major theme in [6], which will not be dealt
with here, concerned the reduction of a Brownian control problem to its equivalent
workload formulation. The generalized definition of a Brownian network proposed
in this paper requires a corresponding generalization of that theory, but after the
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deficiencies of extant theory have been explained, the task of formulating a remedy
will be reserved for future research.

As stated above, the theory of Brownian networks developed here is more
general in several important ways than what was described in [4] and [6], but it
is also more restrictive in one regard: we assume a bounded state space throughout
the main development, explaining afterward the potential complications that may
arise if that restriction is lifted. The bounded state space assumption is by no means
essential, but if it is relaxed, other restrictions on the model data must be introduced
(see Section 9), and associated technicalities tend to distract attention from the
main ideas.

Structure of the paper. First, the generalized definition of a Brownian network
is laid out in Section 2, with relatively little in the way of justification or interpreta-
tion. The generic interpretation of the Brownian network as a limit of conventional
system models is developed in Sections 3–6, following an expositional path sim-
ilar to the one in [6]. Notation introduced originally in Section 2 will be reused
in Sections 3 and 4, in order to establish correspondences between elements of
the Brownian network model and elements of the conventional model that it ap-
proximates. The exposition begins with consideration of a deterministic planning
problem in Section 3, which provides the means of articulating a balanced load-
ing assumption that is one essential ingredient for justifying a Brownian network
model. The static planning problem considered here has profit maximization, or
value maximization, as its objective, whereas the corresponding static optimiza-
tion problem considered in [6] had as its objective the minimization of a uniform
upper bound on resource utilization.

The static planning model of Section 3 is expanded into a full-blown stochastic
processing network in Section 4, and then Section 5 explains how the Brownian
model laid out in Section 2 can be viewed as a formal limit of that more conven-
tional stochastic network model. To be more precise, Section 5 explains how a
Brownian network with zero drift can be viewed as the limit of conventional sto-
chastic processing networks that satisfy exactly the balanced loading assumption
articulated in Section 3. That argument is extended in Section 6, which explains
how a Brownian network with nonzero drift arises as the formal limit of conven-
tional models that satisfy our balanced loading assumption in a suitable approxi-
mate sense. Sections 4–6 are written with two distinct but complementary goals in
mind: the first is to explain in concrete terms how a Brownian network approxi-
mation can be formulated for a given conventional model in the relevant parameter
regime; the other is to support such approximations by means of formal limiting
arguments.

Because virtually all of the arguments developed in Sections 3–6 have precise
analogs in [6], most of that paper’s lengthy introduction serves equally well to
frame the issues addressed here. Also, [6] contains a number of concrete examples,
some of them quite elaborate, which illustrate the problems and special structures
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that have motivated the development of Brownian network theory up to now.
Section 7 of this paper analyzes a parallel-server example, introduced originally
in Section 3, that has a somewhat different character: as noted earlier, its data
do not conform to the notion of heavy traffic advanced in [6] but do satisfy the
assumptions imposed in this paper.

In Section 8, certain observations made in conjunction with the parallel-server
example are recast in a more general setting. There we focus on the class of
stochastic processing networks in which each activity consumes the capacity of at
most one resource (most network models that one encounters in the published
literature have this property), showing how that special structure simplifies both
heavy traffic analysis and its interpretation.

Section 9 contains a brief discussion of the generalized Brownian network
model laid out in Section 2. Given the restrictions we impose on its data, the
model is shown to pass a first and most obvious test of internal consistency. Other
foundational questions are also posed, but their resolution is left to later work.
Additional issues that would arise with an unbounded state space are described,
and those issues are connected with the limiting arguments presented in Section 5.

As suggested earlier, the expositional sequence just described is not what one
might naturally expect: in particular, Sections 2–4 of this paper address the first
three levels of the analytical hierarchy (a)–(e) in roughly reverse order. Readers
who are new to the subject matter may find it easiest to just skim Section 2 initially
and then refer back to it as necessary.

Notation and terminology. All vectors should be envisioned as column
vectors; the transpose of a vector v is denoted v′. The scalar product of two
vectors u and v is denoted u · v as usual. When we say that a multidimensional
stochastic process X = {X(t), t ≥ 0} is a (θ,�) Brownian motion, this means that
the associated drift vector is θ , the associated covariance matrix is �, and the
initial state is X(0) = 0 almost surely. At some points the more compact notation
BM(θ,�) is used for that same process. All continuous-time stochastic processes
used in this paper will be assumed to have paths that are right-continuous with
finite left limits (RCLL). Let Dn[0,∞) denote the space of RCLL functions from
[0,∞) into R

n (here n is a positive integer), endowed with the usual Lindvall–
Skorohod J1 topology (cf. Section 16 of Billingsley [1]). The symbol “⇒” is
used to denote convergence in distribution for stochastic processes whose paths
lie in Dn[0,∞). Given a real-valued function f (·) defined on [0,∞) and a real
constant a, the statement “f (t) ∼ at as t → ∞” is understood to mean that
t−1f (t) → a as t → ∞; when f (·) and a are vector valued or matrix valued,
such statements are understood componentwise.

2. Generalized description of a Brownian network. Let m, n, and p be
positive integers. Let X = {X(t), t ≥ 0} be an m-dimensional (θ,�) Brownian
motion with respect to a given filtration on a fixed probability space (cf. page 47
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of Karatzas and Shreve [9]). (In general, the filtration can be bigger than that
generated by the Brownian motion X, but {X(t)− θt, t ≥ 0} must be a martingale
relative to the filtration and thus the filtration does not contain information about
future increments of X.) All stochastic processes discussed in this section are
understood to be defined on that same filtered probability space. In addition to
θ and �, the data of our Brownian network model include an m × n matrix R,
a p × n matrix K , an m-vector z, a compact and convex subset S of R

m that has a
nonempty interior, a continuous function h :S → R, and an n-vector v. Later in the
paper, various additional assumptions will be made about these data (see Sections
3, 4 and 6).

An admissible control for the Brownian network model is an n-dimensional
process Y = {Y (t), t ≥ 0} that is adapted to the given filtration and also satisfies the
additional restrictions specified in the next paragraph. The five relationships that
define the Brownian network model, or Brownian system model, are as follows:

Z(t) = z + X(t) + RY(t) for all t ≥ 0,(1)

U(t) = KY(t) for all t ≥ 0,(2)

Z(t) ∈ S for all t ≥ 0,(3)

U(·) is nondecreasing with U(0) ≥ 0(4)

and

ξ(t) =
∫ t

0
h(Z(s)) ds + v · Y (t) for all t ≥ 0.(5)

General interpretations of the model data, and of the processes Z, U and ξ defined
in terms of Y by means of (1), (2) and (5) will be developed in the sections that
follow. For the time being we simply call Z(t) the “state of the system at time t .”
Thus (1) describes a system where state dynamics are linear in the chosen control Y
and are subject to Brownian noise.

From the perspective of conventional stochastic control theory, a notable feature
of our Brownian network model is that components of the control Y are not
required to be monotone or even of bounded variation. However, in addition to
being adapted, an admissible control Y must have RCLL sample paths and must
satisfy (3) and (4).

In most Brownian network models studied to date, the state space S appearing
in (3) has been the nonnegative m-dimensional orthant, but that case is ruled out
by our restriction to compact S. Of course, a compact state space is intrinsic to
closed network models of the kind discussed in Section 6 of [8], and there are
also many natural problems where an optimal policy confines Z to a compact
region, even though no a priori bounds on Z are specified. Also, one might
argue that the restriction to bounded state space is of no practical importance, but
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the unbounded case is of interest theoretically, because it includes the Brownian
analogs of most classical queuing control problems; the possible extension of our
theory to unbounded S will be discussed briefly in Section 9.

The quantity ξ(t) defined by (5) is interpreted as the cumulative “cost” incurred
by the system manager up to time t . This wording is intended to convey the notion
that smaller values of ξ(·) are always preferable, but to obtain a complete problem
formulation one obviously must specify a concrete objective. For example, one
might strive to minimize expected cost over a particular finite time horizon, or
minimize expected discounted cost over an infinite time horizon, but the specific
objective will be largely irrelevant for our purposes. The economic structure
reflected in (5) is more general than what has been considered in previous
treatments of Brownian networks [4, 6, 8]. In particular, previous formulations
have assumed, either implicitly or explicitly, that the second term v · Y (t) actually
depends on the control Y only through the monotone process U defined by (2).
Here we argue that the more general case described by (5) is well motivated by
applications, and equivalent workload formulations are more subtle and complex
in the general case (see Section 9).

3. A static planning problem. Proceeding exactly as in Section 2 of [6],
but modifying notation slightly, we consider a processing system with � different
resources that consume and produce m distinct materials (or stocks, or job classes)
by means of n different processing activities. To be more precise, we consider here
a static planning problem associated with a deterministic fluid model of such a
system (cf. Sections 2 and 3 of [7]). The underlying fluid model will not be spelled
out, because it is not actually needed in the mathematical development here, but it
is implicitly referred to at several points in the text.

Let us denote by Rij the average amount of material i consumed per unit of
activity j , with a negative value interpreted to mean that activity j is a net producer
of material i. The m × n input–output matrix R will eventually appear in the
fundamental system equation (1) of our Brownian network model.

Next, let Akj be the amount of resource k capacity consumed per unit of
activity j , and let qk be the quantity of resource k capacity available per unit
of time. It might be, for example, that resource k is a group of interchangeable
machines, that capacity of resource k is expressed in machine hours, that time is
measured in weeks, and that one unit of activity j corresponds to producing one
output ton of a given product. Then Akj would be the number of machine hours
consumed per output ton produced, and qk would be the number of machine
hours available per week. The � × n capacity consumption matrix A = (Akj ) is
nonnegative, and it will ultimately be incorporated in the matrix K that appears
in (2) of our Brownian network model. All components of q are assumed to be
strictly positive.

The next element of our static planning problem is an m-vector λ, each
component of which may be either positive, negative or zero. If λi is positive, it
represents the average rate at which material i is automatically supplied by external
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sources (i.e., λi represents an exogenous input rate), and if λi is negative, then |λi |
represents the average rate at which the system manager is committed to provide
material i as an output. More will be said about the vector λ of exogenous flow
rates in the next section, where a more detailed model of dynamic system control
is introduced.

The last of the data for our static planning problem is an n-vector v of net “value
rates” associated with the various processing activities. That is, we assume that a
unit of activity j generates vj units of “value” on average, with a negative value
interpreted as a net “cost.” The case where v = 0 is of considerable interest (in
fact, most previous work on Brownian networks has focused on this case), and it
is not excluded in the general development to follow.

Ignoring stochastic variability associated with processing activities and with
exogenous inflows and outflows, and thus ignoring all congestion-related and
backlog-related costs, a system manager might plausibly seek a solution to the
following static planning problem: find an n-vector x of average activity rates
(each component xj is expressed in units of activity per unit of time) so as to

maximize v · x(6)

subject to the constraints

Rx = λ, Ax ≤ q and x ≥ 0.(7)

In the static planning problem (6) and (7), one seeks to maximize the net rate
at which value is generated by processing activities, subject to three sets of
constraints. The constraints embodied in Rx = λ require that exogenous inputs
be processed to completion, and that exogenous output requirements be satisfied,
without inventories or deficits of any materials developing. The constraints
embodied in Ax ≤ q require that the capacity limitations of all resources be
respected, and finally, all activity levels must be nonnegative. The balanced loading
assumption referred to in Section 1 is the following.

ASSUMPTION 1. The static planning problem (6)–(7) has a unique optimal
solution x∗, and moreover Ax∗ = q .

Hereafter x∗ will be called the system manager’s nominal processing plan. This
name reflects the fact that x∗ is derived from a naive or idealized planning model
in which stochastic variability is suppressed. In the presence of such variability, it
may be desirable for actual activity rates to vary around the nominal rates x∗

j (see
Section 4), depending on system status.

Assumption 1, which plays a central role in our formulation of a Brownian
network approximation, says that all resource capacities are exhausted under
the nominal processing plan x∗. When v = 0, Assumption 1 amounts to the
following: there exists a unique vector x∗ satisfying all of the constraints in (7),
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FIG. 1. A parallel-server example.

and moreover, that vector satisfies Ax∗ = q . That is, there exists only one program
of average activity levels which processes all exogenous inputs and meets all
exogenous output requirements, and that program uses all available capacity. For
open processing networks of the kind treated in [6], Bramson and Williams [3]
have shown that this is equivalent to the heavy traffic assumption imposed in
Section 2 of that paper.

As an example, consider the static planning problem associated with the
queuing system portrayed in Figure 1, which is closely related to one studied
earlier in [5]. As usual in queuing theory, we imagine that units of flow are discrete;
those units will be called “jobs” and processing resources will be called “servers.”
Here we have � = 2 servers (represented by the circles in Figure 1) and m = 2
job classes that are stored in separate buffers (represented by the open-ended
rectangles in Figure 1) as they await processing.

For each job class i = 1,2 the average arrival rate λi , expressed in jobs per
hour, is as shown in Figure 1. There are a total of n = 6 processing activities in
our parallel-server example, the first four of which are portrayed in Figure 1. (The
numbering of activities is arbitrary, of course.) Each activity j = 1, . . . ,4 consists
of a particular server processing jobs from a particular buffer, the associated
average service rate being µj jobs per hour (see Figure 1). With activity levels
expressed in server hours, one may alternatively say that µ1, . . . ,µ4 each represent
an average rate of material flow per unit of activity. For each server k = 1,2
the capacity available per time unit is qk = 1, which means that there is a full
server hour available per clock hour. The decision variables x1, . . . , x4 in our
static planning problem (6)–(7) each represent the average number of hours that
a particular server devotes to processing jobs from a particular buffer per hour, or
equivalently, the fraction of that server’s capacity devoted to that buffer.
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In addition to the processing activities described above, there are two activities
that we use to represent input control capabilities: activities 5 and 6 correspond
to the system manager ejecting jobs from buffers 1 and 2, respectively, which
we assume can be done at any time without penalty. However, such disposal is
irreversible, and thus it deprives the system manager of whatever value might have
been derived from processing the jobs ejected. We express activity levels for the
two disposal activities directly in number of jobs ejected, so the average rate of
material consumption per unit of activity is 1 in both cases, simply as a matter of
definition. On the other hand, no capacity constraints will be associated with the
disposal activities (i.e., no upper bounds are imposed on the instantaneous activity
rates), and so any number of ejections can be enforced in any given time interval,
provided that state space constraints are respected; see Section 7 for the details of
model specification.

Input control capabilities of the kind just discussed are realistic in many
contexts, and they are easily accommodated within the modeling framework
developed in this paper, as in the framework developed earlier in [6]. Brownian
approximations for network models with input control capabilities have been
discussed explicitly in Section 9 of [4] and Section 5 of [8].

Using the format prescribed at the beginning of this section, we summarize the
data for the static planning problem associated with our parallel-server example as
follows:

R =
[

1 0 1
2 0 1 0

0 1 0 3 0 1

]
, A =

[
1 0 0 1 0 0
0 1 1 0 0 0

]
, q =

[
1
1

]
, λ =

[
1.1
0.8

]
.(8)

If activities 4–6 were deleted from this parallel-server model (i.e., if server 1
were unable to process class 2 jobs and neither job class could be ejected), and if
we were to further take v = 0, then the definition of “heavy traffic” advanced in [6]
would be satisfied as follows: by devoting all server 1 capacity to class 1, twenty
percent of server 2 capacity to class 1, and eighty percent of server 2 capacity
to class 2, the system manager can achieve average processing rates that match
the average input rates, but there is no way to process these inputs using strictly
less than all available capacity. With activity 4 available, it is possible to process
the exogenous inputs and still have capacity left over, so the system pictured in
Figure 1 does not satisfy the heavy traffic assumptions set out in [6].

With regard to system economics, let us suppose that each activity j = 1, . . . ,4
generates value at an average rate of yj hundred dollars per service completed,
where y1 = 1, y2 = 1, y3 = 2 and 0 < y4 < 1

2 . For each of these activities, then,
the average value generated per unit of activity (i.e., per server hour devoted to the
activity) is vj = yjµj hundred dollars. Assuming that there is neither direct cost
nor direct benefit associated with activities 5 and 6, we then have the value rate
vector

v = (1,1,1, v4,0,0)′ where 0 < v4 < 3/2.(9)
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The situation described here with regard to value rates is commonplace: economic
benefits are often most naturally associated with output quantities, but for the
purpose of reckoning capacity consumption, one wants to express activity levels
as input quantities like server hours; thus the value rate vj per unit of activity is
best viewed as a derived or computed quantity, not as a primitive data element.

Given the inequality 0 < v4 < 3/2 in (9), readers may verify that the unique
optimal solution of our static planning problem (6)–(7) is

x∗ = (
1, 8

10 , 2
10 , 0, 0, 0

)′
.(10)

Moreover, Ax∗ = q , so Assumption 1 is satisfied. That is, the value-maximizing
nominal processing plan x∗ in (10) uses all available capacity. There do ex-
ist alternative plans that process all inputs without using all available capac-
ity, but they generate less value. For example, readers may verify that x =
( 6

10 , 0, 1, 4
15 , 0, 0 )′ is feasible, satisfying all the constraints in (7), and it gives

server 1 a utilization rate of 13
15 . (This becomes the value-maximizing feasible so-

lution if one takes v4 > 3
2 .)

Let us return now to the general setting. Preparing the way for later develop-
ments, we denote by b the number of activities j such that x∗

j > 0, calling these
basic activities, and we number activities so that the basic ones are 1, . . . , b. As
in [6], activities b + 1, . . . , n will be called nonbasic, and the matrices R and A

will be partitioned as follows:

R = [HJ ] and A = [B N ],(11)

where H and B both have b columns. Thus H and B are the submatrices of
R and A, respectively, that correspond to basic activities.

4. A balanced stochastic processing network. In this section we describe a
general stochastic processing network (SPN), or stochastic network model. It can
be viewed as an enriched version of the deterministic fluid model that implicitly
underlies our static planning problem (6)–(7); in particular, the SPN also has
� resources, m distinct materials, and n processing activities. Further discussion
of this modeling framework can be found in the companion paper [7], which
emphasizes connections with other model classes that one encounters in applied
probability, economics and operations research.

In describing the SPN, we take as given matrices and vectors (R, A, λ, q , v)
that satisfy the various assumptions imposed in Section 3. (As readers will see
shortly, each of these model elements has essentially the same interpretation as
before.) We enrich the previous model by associating stochastic variability with
both the exogenous flows and the endogenous processing activities described in
Section 3. Such variability causes surpluses and deficits of materials to develop
over moderate time spans, which motivates the system manager to vary activity
levels dynamically, depending on observed system status.
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We shall generalize in certain ways the model formulation developed in
Section 5 of [6], which was itself a generalization of the multiclass queuing
network model developed in [4]. For the most part, notation agrees with that
used in [6]. The caveats expressed in Section 5 of [6], concerning the stylized
nature of that paper’s model formulation, all apply equally well here. In particular,
readers should recognize that more complex variations of the model described
below would plausibly yield the same Brownian network (1)–(5) as their natural
diffusion approximation.

Altering slightly the notation used in [4] and [6], we take as given a collection of
mutually independent, m-dimensional elemental flow processes E = {E(t), t ≥ 0}
and Fj = {Fj(t), t ≥ 0} for j = 1, . . . , n. The ith component of the vector
Fj(t) is denoted Fij (t). We interpret Ei(t) as the cumulative exogenous input
of material i up to time t , with a negative value indicating a net removal of
material i by exogenous processes. For i = 1, . . . ,m and j = 1, . . . , n we interpret
Fij (t) as the cumulative amount of material i consumed by the first t units of
activity j undertaken, with a negative value indicating net production rather than
net consumption.

We denote by Qi(t) the inventory of material i (or quantity of material i) on
hand at time t . Imagining that each material i is stored in a dedicated buffer, the
m-dimensional process Q = {Q(t), t ≥ 0} will be called both an inventory process
and a buffer contents process at various points in the text below. Depending on the
application context, negative inventories may be allowed in order to represent net
deficit conditions.

The static activity rates xj encountered in Section 3 must now be generalized to
dynamic control policies, or dynamic resource allocation policies, and following
the practice established in [4, 6], we express such policies in terms of cumulative
activity levels. That is, a dynamic control policy takes the form of a nondecreasing,
n-dimensional stochastic process T = {T (t), t ≥ 0} with components T1, . . . , Tn.
Further requiring that T (0) = 0, we interpret Tj (t) as the cumulative amount of
activity j undertaken up to time t , so the m-dimensional inventory process Q

corresponding to policy T is given by

Q(t) = Q(0) + E(t) −
n∑

j=1

Fj (Tj (t)), t ≥ 0,(12)

where Q(0) is a given initial inventory vector, assumed deterministic for
simplicity.

Given a nonnegative � × n capacity consumption matrix A as in Section 3, we
require that the dynamic control policy T satisfy

A
(
T (t) − T (s)

) ≤ q(t − s) for 0 ≤ s < t < ∞,(13)

which means simply that the total amount of resource k capacity allocated during
any time interval (s, t] must be less than or equal to the amount that is available
during that interval (k = 1, . . . , l).
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To give the vector λ and matrix R precise meaning in our stochastic network
context, we define m-dimensional centered processes Ê, F̂1, . . . , F̂n by setting

Êi(t) = Ei(t) − λit for i = 1, . . . ,m and t ≥ 0,(14)

and

F̂ij (t) = Fij (t) − Rij t for i = 1, . . . ,m, j = 1, . . . , n and t ≥ 0,(15)

and then assume that Ê, F̂1, . . . , F̂n each satisfy a functional central limit theorem
(FCLT); this is Assumption 2, which appears in Section 5. To repeat, the defining
role of λ and R for our purposes is as centering constants in the aforementioned
FCLTs. As in Section 3, we denote by x∗ the optimal solution of the static planning
problem (6)–(7), calling x∗ our nominal processing plan.

Next, we take as given a large parameter r > 0 that serves to define performance
relevant units of measurement, in a sense to be explained shortly. This is used to
define an m-dimensional scaled buffer contents process Z via

Z(t) = r−1Q(r2t), t ≥ 0.(16)

The last two elements of our stochastic processing network description are a
compact and convex subset S of R

m with a nonempty interior and a continuous
function h mapping S into R. The state space S enters our formulation as follows:
the dynamic control policy T must be chosen to ensure that (almost surely)

Z(t) ∈ S for all t ≥ 0.(17)

Of course, (17) is a restriction on the chosen control policy T (·); the activities
available to the system manager are assumed to be such that controls satisfying
(17) do exist. The scaled process Z expresses buffer contents as multiples of r ,
and it is implicit in (17) that these units of measurement are the relevant ones for
purposes of describing system status. Also, the scaling of time embodied in (16)
anticipates our eventual focus on time spans of order r2 for purposes of evaluating
system performance.

The holding cost function h and value rate vector v enter our model through the
following definition: the cumulative net value realized by the system manager up
to time t is

V (t) = v · T (t) − r−1
∫ t

0
h
(
r−1Q(s)

)
ds, t ≥ 0.(18)

The first term on the right-hand side of (18) is the total value generated by
processing activities up to time t (see Section 3), and the second term is a
quantification of inventory holding costs (i.e., congestion-related costs) over the
same time span. The factor of r−1 appearing in the argument of h(·) reflects
again the notion that buffer contents are most naturally expressed as multiples
of r , and the multiplicative factor of r−1 appearing outside the integral reflects
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an assumption that congestion-related costs are of lower order than the value
derived from processing activities (except when v = 0). Readers will see that this
order-of-magnitude separation in the model’s two economic elements is crucial for
our theory.

It is natural to focus on the difference between V (t) and the maximum
cumulative value (v · x∗)t that would be achievable in the deterministic model
of Section 3. Accordingly, let

V̂ (t) = (v · x∗)t − V (t), t ≥ 0.(19)

Assuming that time spans of order r2 are the ones of interest, we shall hereafter
express system performance by means of the scaled process

ξ(t) = r−1V̂ (r2t), t ≥ 0,(20)

calling ξ the system manager’s cumulative cost process. That name is potentially
misleading, of course, because ξ(t) includes both congestion-related costs and
value degradation relative to a deterministic ideal, but it does communicate
effectively the notion that smaller values of ξ(·) are desirable.

Proceeding as in Section 5 of [6], but with some small changes in notation, we
define an n-dimensional process Y of scaled deviation controls via

Y (t) = r−1(
x∗r2t − T (r2t)

)
, t ≥ 0.(21)

The basic idea behind this definition is to express the system manager’s chosen
activity levels Tj (t) for the time interval [0, t] as decrements from the nominal
activity levels x∗

j t for that same interval, but then we apply the same scaling of
time and “space” that appears in (16).

Of course, T completely determines Y and vice versa, but Y is the more
convenient representation of the system manager’s control policy for our purposes.
Now set

p = � + n − b,(22)

and define a p × n matrix K via

K =
[
B N

0 −I

]
.(23)

Comparing (23) with (11), one sees that the first � rows of K are the capacity
consumption matrix A, and the negative identity matrix −I appearing in (23) has
dimension n − b, which is the number of nonbasic activities in our static planning
problem. Now let

U(t) = KY(t), t ≥ 0.(24)

Of course, a control policy T must meet certain restrictions if it is to be
deemed “admissible.” The next paragraph lists several admissibility requirements
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that are obvious in light of our network model’s intended interpretation. Later,
toward the end of Section 5, it will be argued that other “obvious” restrictions
on control policies do not actually need to be expressed in a Brownian network
approximation; for that reason, they will not be incorporated in the mathematical
development below. Similarly, in describing the SPN to be approximated by a
Brownian network, we make no attempt to explain in precise mathematical terms
what is meant by a “nonanticipating” control policy. Instead, we leap directly to
the obvious definition of nonanticipating controls when writing out the Brownian
network’s definition.

Our first admissibility restriction on a control policy T is that the p-dimensional
process U derived from it by means of (21) and (24) satisfies the following
requirement:

U(·) is nondecreasing with U(0) = 0.(25)

To understand the content of (25), first recall that Ax∗ = q by Assumption 1.
Combining this with (21), (11), (23) and (24), we see that the first � components
of the vector U(t) equal

r−1[
Ax∗r2t − AT (r2t)

] = r−1[
r2qt − AT (r2t)

]
.

Thus the requirement that U1(·), . . . ,U�(·) be nondecreasing is equivalent to (13),
and one has U1(0) = · · · = U�(0) = 0 because T (0) = 0. Next, recall that x∗

b+1 =
· · · = x∗

n = 0 (i.e., activities b + 1, . . . , n are nonbasic in our static planning
problem), so the last n − b components of U(·) are r−1Tb+1(r

2·), . . . , r−1Tn(r
2·).

Thus, the last n − b components of (25) simply articulate the requirement that
cumulative activity levels for nonbasic activities be nondecreasing.

Of course, (24) is identical to the definition (2) that appears in our specification
of the Brownian network model. However, for reasons explained in the next
section, the analog of (25) in our Brownian network model is (4), where the
requirement U(0) = 0 is weakened to U(0) ≥ 0. In the next section we also
explain why the Brownian model need not have any element which expresses the
requirement that cumulative activity levels for basic activities be nondecreasing.

Again proceeding as in Section 5 of [6], we express our basic system
equation (12) in a form suggesting its Brownian analog (1). Given an admissible
control policy T , let

X(t) = r−1

[
Ê(r2t) −

n∑
j=1

F̂j

(
Tj (r

2t)
)]

, t ≥ 0,(26)

where the centered flow processes Ê and F̂j are defined by (14) and (15). Let us
now define the m-vector

z = r−1Q(0).(27)
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Using the definition (21) of Y , and recalling that Rx∗ = λ (see Section 3), readers
can verify that

r−1[
r2λt − RT (r2t)

] = RY(t),(28)

and hence that (12) is equivalently expressed as

Z(t) = z + X(t) + RY(t), t ≥ 0.(29)

Also, by combining (16) with (18)–(21), readers can verify that

ξ(t) =
∫ t

0
h(Z(s)) ds + v · Y (t), t ≥ 0.(30)

This section has described a stochastic system model of conventional type, re-
using notation that appeared earlier in Section 2 in order to establish correspon-
dences between the conventional and Brownian models. That is, the processes
X,Y,U and ξ appearing in the Brownian model (1)–(5) correspond to the
processes denoted by those same letters in this section, and to form a Brownian
approximation for a given stochastic processing network, the data R,K,v, z, S

and h of the Brownian model are set equal to the elements of the conventional
model denoted by those same letters in this section. What has not been explained
thus far is how one determines the drift vector θ and covariance matrix � for the
vector Brownian motion X appearing in (1). For that purpose, let us define

X̃(t) = r−1

[
Ê(r2t) −

n∑
j=1

F̂j (x
∗
j r2t)

]
, t ≥ 0,(31)

observing that X̃ is identical to the process X defined above via (26), except
that the actual activity levels Tj (r

2t) appearing in (26) are replaced by the cor-
responding nominal activity levels x∗

j r2t in (31). Readers will see shortly that, in
the parameter regime where a Brownian approximation is appropriate, the only
interesting control policies are those whose chosen activity levels deviate little
from the nominal choices, in a certain sense; see (46) in the next section. The
process X in (26) and (29) is then well approximated by X̃, and assuming that
each of our elemental flow processes E, F1, . . . ,Fn satisfies a functional central
limit theorem, it will be argued immediately below that X̃ is well approximated by
a Brownian motion with drift vector θ = 0 and the covariance matrix � specified
in (35); these are the parameters to be used in our Brownian network approxima-
tion.

5. The driftless Brownian network as a formal limit. To support or
motivate the Brownian approximation described immediately above, we introduce
a thought experiment in which r → ∞ but all other model elements remain fixed.
In particular, the holding cost function h, the state space S, the scaled initial state z

and the data (R, A, λ, q , v) for our static planning problem (6) and (7) do not
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depend on r . However, readers should bear in mind that the scale parameter r

enters the economic structure of our model through (18). The balanced loading
condition articulated as Assumption 1 in Section 3 remains in force.

Throughout this section, to indicate a process or quantity that depends on r we
attach a superscript r to notation established earlier in Section 4. To justify the
approximation of X̃ by a Brownian motion, it is assumed that each elemental flow
process satisfies a functional central limit theorem (FCLT), as follows. Let

Ẽr(t) = r−1Ê(r2t) and F̃ r
j (t) = r−1F̂j (r

2t) for j = 1, . . . , n.(32)

ASSUMPTION 2. There exist covariance matrices �0,�1, . . . ,�n such that, as
r → ∞,

Ẽr ⇒ BM(0,�0) and F̃ r
j ⇒ BM(0,�j ) for each j = 1, . . . , n.(33)

Recall that E,F1, . . . ,Fn were assumed to be mutually independent in Sec-
tion 4. Moreover, from the definition (31) one has that

X̃r (t) = Ẽr(t) −
n∑

j=1

F̃ r
j (x∗

j t), t ≥ 0.(34)

Thus it follows directly from (33) that

X̃r ⇒ BM(0,�) as r → ∞, where � = �0 + x∗
1�1 + · · · + x∗

n�n.(35)

Our formal argument to support the Brownian approximation described in
Section 3 begins by considering system behavior under “fluid” scaling; we
want to establish certain first-order conclusions about effective control strategies
before addressing system behavior under Brownian scaling. Let there be given
an admissible control strategy T r for each r > 0, and then define a fluid-scaled
version of T r as follows:

τ r(t) = r−2T r(r2t), t ≥ 0.(36)

To simplify argumentation, let us assume that there exists some process τ

(necessarily nondecreasing and right-continuous) such that

τ r ⇒ τ as r → ∞.(37)

(This restriction to families of policies that are convergent under fluid scaling
simplifies discussion substantially. A complete and rigorous limit theory to justify
the proposed Brownian approximation would have to deal with nonconvergent
families as well, but that and other potential complexities are simply ignored in the
current treatment.) We now define a fluid-scaled version of the cumulative value
process V r as follows:

νr(t) = r−2V r(r2t), t ≥ 0.
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From the definitions (18) and (16) of V and Z, respectively, one has that

νr (t) = v · τ r(t) − r−1
∫ t

0
h
(
Zr(s)

)
ds, t ≥ 0.(38)

The holding cost function h is bounded over the state space S of Zr , so we have
the following limit theorem for the fluid-scaled cumulative value process νr :

νr ⇒ v · τ as r → ∞.(39)

We define fluid-scaled versions of the elemental flow processes E, F1, . . . ,Fn as
follows:

er(t) = r−2E(r2t) and f r
j (t) = r−2Fj(r

2t)(40)

for r > 0, t ≥ 0 and j = 1, . . . , n. The FCLTs assumed in (33) imply that
r−1Ẽr ⇒ 0 and r−1F̃ r

j ⇒ 0 (j = 1, . . . , n) as r → ∞. Denoting by Rj the j th
column of R, one can restate this conclusion as follows:

er ⇒ e and f r
j ⇒ fj for j = 1, . . . , n(41)

as r → ∞, where

e(t) = λt and fj (t) = Rj t for j = 1, . . . , n.(42)

From the fundamental system equation (12) and the definitions (16) and (27), one
has the following relationships among fluid-scaled processes for the r th system
model,

r−1Zr(t) = r−1z + er(t) −
n∑

j=1

f r
j

(
τ r
j (t)

)
.(43)

Recall from (17) that any admissible control strategy for the r th model must keep
Zr within the bounded state space S. Neither S nor z depends on r , so the left-hand
side of (43) and the first term on the right-hand side both converge weakly to the
zero process as r → ∞. Combining this with (37) and (41)–(43), then rearranging
terms and recalling that Rj is by definition the j th column of our input–output
matrix R, we use the continuity of e, f1, . . . , fn and the random change of time
theorem (see [1], page 151) to arrive at the following identity:

Rτ(t) = λt for all t ≥ 0.(44)

The boundedness of our state space S is crucial for this identity, because it
insures that r−1Zr ⇒ 0; see Section 9 for further discussion of the boundedness
assumption. As a companion to (44), it follows directly from the capacity
constraint (13) that

Aτ(t) ≤ qt for all t ≥ 0.(45)

Moreover, τ (·) ≥ 0, so for any fixed t > 0 the vector xt := t−1τ (t) satisfies all the
constraints (7) of the static planning problem discussed in Section 3. In the case
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v = 0, where Assumption 1 says that x∗ is the only vector satisfying (7), this means
that xt = x∗ and hence τ (t) = x∗t for arbitrary t > 0; then by the right-continuity
of τ one has τ (0) = 0 as well. If v 
= 0, then Assumption 1 says that v · x∗ ≥ v · xt ,
or equivalently, v · τ (t) ≤ (v · x∗)t , with equality holding only if τ (t) = x∗t .

Thus we find that, among all processes τ which are achievable as weak limits
in (37), there is one that uniquely maximizes (in a pathwise sense) the limiting
fluid-scaled cumulative value process in (39), namely, τ ∗(t) := x∗t for all t ≥ 0.
Accordingly, attention will hereafter be restricted to families of control policies T r

such that

τ r ⇒ τ ∗ as r → ∞.(46)

Assuming that (46) holds, it follows from the FCLTs in (33) and the
definition (26) of X that Xr converges weakly to the same limit as does X̃r

in (35). That is, under any family of policies worthy of economic consideration, the
process X appearing in our main system equation (29) converges in distribution as
r → ∞ to the corresponding process X in (1).

From this point onward, the heuristic justification of our proposed Brownian
network approximation proceeds exactly as in [4] or [6]: in Section 4 we have
seen that (1)–(5), which define the Brownian network model, simply repeat
the corresponding relationships (29), (24), (17), (25) and (30) for our original
stochastic processing network, except for one rather minor discrepancy.

The discrepancy is that (25) requires U(0) = 0, whereas the corresponding
relationship (4) in the Brownian model imposes the weaker restriction U(0) ≥ 0.
As in Section 5 of [6], one can explain or defend this “relaxation” in the following
way. Given the scaling that is used in the definition (21) of Y , components of
the process U defined by (24) can increase at rate r in the original stochastic
processing network, and as r → ∞ that restriction becomes inconsequential. That
is, as r → ∞ the system manager is able to approximate ever more closely a
nonzero initial value for Y , and hence also for U , at t = 0. However, if the system
manager chooses to do that, the initial “impulse control” Y (0) must be such that
U(0) = KY(0) ≥ 0.

In a similar fashion, there is no restriction in the Brownian model (1)–(5) corre-
sponding to the requirement that cumulative activity levels Tj (·) be nondecreasing
for the basic activities j = 1, . . . , b in our original stochastic processing network.
For those j one has x∗

j > 0, so the corresponding deviation control Yj obtained
from a nondecreasing choice of Tj via (21) may either increase or decrease as
a function of time. The requirement that Tj be nondecreasing corresponds to a
bound of order r on the rate of decrease for Yj , again because of the scaling used
in (21), and that restriction on the rate of decrease becomes inconsequentially weak
as r → ∞.

Another issue deserving comment concerns our restriction to adapted con-
trols Y in the Brownian network model (1)–(5). Of course, this is intended to
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capture the notion that control policies in the original stochastic processing net-
work must be suitably nonanticipating, meaning that activity levels up to time t

depend only on information available at t . That requirement was not given formal
expression in Section 4, and as in [4] and [6], no attempt will be made here to
justify the obvious way it has been represented in the Brownian model.

6. Relaxing the assumption of perfect balance. In this section we generalize
both the Brownian network approximation proposed in Section 4 and the formal
limiting argument advanced in Section 5 to support it, extending the discussion to
systems that satisfy Assumption 1 only in an approximate sense. This progression
is similar to the standard treatment of heavy traffic theory for a single-server
queueing system: denoting by ρ the system’s traffic intensity parameter, most
authors first assume that ρ = 1, and then make extensions to the case where ρ

is near 1. Of course, the traffic intensity parameter of a single-server queue need
not be near 1, and in similar fashion, the assumptions embedded in this section,
which make precise the idea of approximate balance in a stochastic processing
network, need not be staisfied by an arbitrary model.

The viewpoint adopted here is that we have at the outset a single stochastic
processing network, referred to as the original model, and our central concern
is to specify a Brownian network approximation for it. Only after a concrete
approximation has been specified will we consider formal limits.

Formulating a reference model. Let there be given an original model, not
necessarily satisfying Assumption 1 but having all the structure described in
Section 4, with exogenous flow rate vector λ and input–output matrix R that
enter as centering terms in (14) and (15), respectively, and with resource capacity
vector q . To generalize the earlier assumption of perfect balance (Assumption 1
of Section 3), we consider a reference model that is identical to the original one
in all regards except that its capacity vector is q∗ rather than q . One typically has
a certain amount of discretion in choosing or specifying q∗ (i.e., the reference
model is not unique), and we shall impose four assumptions or restrictions related
to that choice. Readers will see that these restrictions concern the original model’s
parameter values and, in a small way, its structure as well. No method will be
proposed here for systematically mapping a given original model into a suitable
reference model, although it may be possible to develop such methods.

Our first assumption regarding the choice of a reference model is that all
components of q∗ are strictly positive. Second, q∗ must be close to q (see below
for elaboration). Third, q∗ must be chosen so that the reference model satisfies
Assumption 1 of Section 3. That is, if we substitute q∗ for q , then the static
planning problem (6)–(7) has a unique solution x∗, and moreover, Ax∗ = q∗.
Exactly as in Section 3, we number activities so that x∗

1 , . . . , x∗
b are strictly positive

and x∗
b+1 = · · · = x∗

n = 0, and we partition R and A as in (11), so that H and B

each have b columns. In particular, then, B is the � × b submatrix of A whose
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columns correspond to basic activities. Also, setting p = � + n − b, we define the
p × n matrix K via (23) as before.

Our fourth assumption or requirement related to the choice of q∗ is that the
submatrix B has full row dimension � (i.e., the rows of B are linearly independent).
This very mild assumption is satisfied by virtually all model structures of practical
interest, regardless of how q∗ is chosen. In particular, as readers will see in
Section 8, it is automatically satisfied by the familiar class of models where each
activity consumes the capacity of exactly one resource. Given that B has full row
dimension, let us denote by B† a fixed right inverse (i.e., a b × � matrix satisfying
BB† = I ); it will be shown later in this section that which right inverse one chooses
is unimportant, because two different choices of B† lead to Brownian network
approximations that are effectively equivalent. Now define y ∈ R

b by setting

y = B†(q − q∗),(47)

extend y to an n-vector via

yb+1 = · · · = yn = 0,(48)

and then define a nominal processing plan x for the original model (as distinct
from the nominal processing plan x∗ for the reference model) by taking

x = x∗ + y.(49)

Of course, if q − q∗ is sufficiently close to 0, then (47)–(49) guarantee that x − x∗
is close to 0 as well. We require in particular that q −q∗ be small enough to ensure
that x1, . . . , xb are all strictly positive. From (47)–(49) and the definition of B we
have

Ax = Ax∗ + Ay = q∗ + (q − q∗) = q.(50)

That is, the vector x of average activity rates has been constructed so as to precisely
consume all available capacity in our original model. A modified parallel-server
example will be discussed at the end of Section 7 in order to illustrate the new
ideas related to reference models that have been introduced in this section.

In choosing a reference model, one wants a balanced stochastic processing
network (i.e., one whose first-order data satisfy Assumption 1) that is close to
the original model, that has the same basic structure, and differs from the original
model in a relatively simple way. With an eye toward the last two of those criteria,
we have required here that the reference model differ from the original one only
by small changes in the resource capacities q1, . . . , q�. In contrast, the reference
models considered in Section 5 of [6] were allowed to differ from the original
model only by changes in the vector λ of average exogenous flow rates. (Under
this approach, the first-order data R, A, q and v are identical for the original and
reference models, but the vector λ in the original model can be replaced by a
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nearby vector λ∗ in the reference model.) Upon careful consideration, however,
one sees that the latter approach to reference model formulation is unsatisfactory:
to find a reference model that satisfies Assumption 1 and is close to the original
one, without any change in the input–output matrix R or the resource capacity
vector q , one may need to change the basic structure of the exogenous flows; for
example, it may be necessary to create nonzero exogenous flows in the reference
model where the original one has zero flow. Such distortions of the original model
structure can be avoided in the framework proposed here: that is, having assumed
all resource capacities qk to be strictly positive, one can “perturb” any or all of
them without changing the model’s character, and having allowed such capacity
perturbations, there is no need to allow changes in the exogenous flow rates λi as
well.

The heavy traffic parameter regime. Proceeding exactly as in Section 4,
we assume that there is given in conjunction with the original model a large
parameter r that enters the model’s state space constraints and economic structure
via (16)–(18). Sharpening the requirement that q∗ be “close to” q , we define
γ ∈ R

� via

γ = r(q∗ − q),(51)

and then require that all components of γ have moderate absolute magnitude. For
future purposes let

θ = r(λ − Rx).(52)

Recalling that Rx∗ = λ (because Assumption 1 is satisfied when q∗ is substituted
for q), and using (47)–(49) plus the definition (11) of H , readers can verify that

θ = HB†γ.(53)

In addition to the heavy traffic assumptions already articulated (r is large and
γ1, . . . , γ� are moderate), we continue to impose Assumption 2 of Section 5; that
is, the elemental flow processes E, F1, . . . ,Fn satisfy FCLTs with associated cen-
tering vectors λ, R1, . . . ,Rn and associated covariance matrices �0, �1, . . . ,�n,
respectively.

Brownian network approximation. The system of definitions and representa-
tions developed in Section 4 remains exactly as before up to the definition (21)
of Y , in which we now substitute for x∗ the vector x defined by (47)–(49). That is,
in defining the scaled deviation control Y (t) we express the chosen activity levels
as deviations from nominal activity levels for our original model. Then, defining
U(·) in terms of Y (·) by means of (24) as before, the restriction (25) on admissible
controls is again appropriate because of (48) and (50). Also, readers can verify that
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the process X appearing in our basic system equation (29) is now given by

X(t) = r−1

{
Ê(r2t) −

n∑
j=1

F̂j

(
Tj (r

2t)
)} + θt,(54)

where θ is defined via (52), or equivalently, via (53). That is, our earlier
definition (26) of X(t) is altered only by the addition of a “drift term” θt .

In Sections 4 and 5 it was argued that, in the heavy traffic parameter regime,
one can effectively restrict attention to control policies T whose fluid-scaled
version τ is well approximated by τ ∗(t) := x∗t , t ≥ 0, for purposes of computing
the distribution of X. That argument is essentially unchanged in the current context
(see below), so exactly as before, we approximate the first term on the right-hand
side of (54) by BM(0,�), where

� = �0 + x∗
1�1 + · · · + x∗

n�n(55)

as in (35). Equivalently stated, the process X is well approximated by BM(θ,�)

under any policy worthy of consideration. Thus we arrive at an approximating
Brownian network model that is exactly as described in Section 4 except for two
factors: first, the Brownian motion X appearing in (1) has a nonzero drift vector θ

given by formula (52) or (53), and second, the nominal processing plan x∗, which
appears in formula (55) for the Brownian network’s covariance matrix, is derived
from a reference model whose specification involves some degree of discretion
(i.e., x∗ is not uniquely determined by data of the original model).

Invariance to choice of a right inverse for B . It is obvious from (53) that the
drift vector θ for our Brownian network approximation depends on the choice of
a right inverse B†. However, two different choices of the right inverse B† give
rise to equivalent Brownian network approximations, as the next three paragraphs
explain. Roughly, the argument is as follows: the only role of the right inverse B†

is in determining the nominal processing plan x for our original model, and by
changing the nominal processing plan, one simultaneously changes both the drift
vector θ of the approximating Brownian network and the baseline relative to which
the scaled deviation control Y is defined; when one considers the ultimate meaning
or interpretation of the scaled deviation control, those two changes precisely
cancel one another. Working through this argument provides a good review of the
Brownian network’s construction and the use for which it is intended.

Consider two different choices for the right inverse B†. These give rise to two
different values y and y̌ in (47), and hence to two different choices x = x∗ + y and
x̌ = x∗ + y̌ for the nominal processing plan in our original model. From (50) we
have that Ax = Ax̌ = q , and components b + 1, . . . , n of both x and x̌ are 0, so the
definition (23) of K gives us

K(x − x̌) = 0.(56)
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Now consider the approximating Brownian network that results from our first
choice x for the nominal processing plan, using the notation in Section 2 to
describe it. In particular, the letter Y is used to denote a generic control, and
according to (52) the drift vector of X is θ = r(λ − Rx). Now suppose we make
the change of variable Y̌ (t) = Y (t) − r(x − x̌)t , so that Y (t) = Y̌ (t) − r(x̌ − x)t .
Substituting that expression for Y (t) into the main system equation (1) we obtain,
after simplification,

Z(t) = X̌(t) + RY̌ (t) for all t ≥ 0,(57)

where X̌(t) = X(t) + (θ̌ − θ)t and θ̌ = r(λ − Rx̌). Moreover, from (56), we have
that KY̌ (t) = KY(t), so the process U defined by (2) can equally well be written
as

U(t) = KY̌ (t) for all t ≥ 0.(58)

Finally, let us define a new “cumulative cost process” ξ̌ by means of (5) with Y̌ in
place of Y , observing that the difference between ξ and ξ̌ is a deterministic process
and is therefore uncontrollable.

Thus substitution of the generic control Y̌ for Y has brought us to precisely the
same approximating Brownian network that would have been obtained if we had
chosen x̌ rather than x as our nominal processing plan: a control Y (t) is optimal
for the Brownian model based on x if and only if Y̌ (t) = Y (t) − r(x − x̌)t is
optimal for the Brownian model based on x̌. That is appropriate, of course, because
values for Y (t) represent scaled deviations from the nominal time allocations
T (t) = xt , whereas values for Y̌ (t) represent scaled deviations from the nominal
time allocations Ť (t) = x̌t .

The Brownian network as a formal limit. For purposes of limit theory it is
natural to take as given a fixed reference model whose data satisfy Assumption 1
exactly, as in the development above, and to consider a parametric family of
stochastic processing networks indexed by r → ∞ and such that the data of these
networks approach those of the reference model in a suitable sense. Accordingly,
we fix the reference model described earlier in this section, carrying forward all
of the assumptions and all of the notation laid out there. To generate a parametric
family in a parsimonious fashion, but consistent with the approximation procedure
specified above, we take as given a moderate vector γ ∈ R

� and then set

qr = q∗ − r−1γ for large r > 0.(59)

In the obvious way, we take qr to be the resource capacity vector in the model with
scale parameter r ; in all other respects that “r th model” is identical to the reference
model. Of course (59) simply reproduces the relationship (51) that appeared in
conjunction with our approximation procedure, so one of the models generated by
(59) is our original one. As in Section 5, a superscript r will be used to denote a
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quantity or process associated with the r th model in our parametric family. Recall
from (53) that the drift parameter θ appearing in (54) satisfies θ = HB†γ . Thus,
because we view γ as fixed (i.e., independent of r), θ does not depend on r ; it will
therefore be written without a superscript r below.

As we let r → ∞ in the parametric family of models just described, we
conclude exactly as in Section 5 that only policies T r satisfying

r−1T r(r2·) ⇒ τ ∗(·) as r → ∞(60)

are of interest. As before, (60) together with Assumption 2 of Section 5 implies a
FCLT for the process

Xr(t) = r−1

{
Ê(r2t) −

n∑
j=1

F̂j

(
T r

j (r2t)
)} + θt(61)

that appears in the basic system equation (29) for our r th model. That is, Xr ⇒
BM(θ,�) as r → ∞, where � is given by (55).

7. Parallel-server example. Consider again the parallel-server model por-
trayed in Figure 1, where we have m = 2 job classes, n = 6 processing activities
(actually, activities 5 and 6 might better be described as “nonprocessing activi-
ties”) and � = 2 servers. The following discussion of that example builds on the
first-order analysis presented in Section 3. In particular, the data required for our
static planning problem are specified by (8) and (9), and so the nominal process-
ing plan x∗ is given by (10). Setting r = 10, let us suppose that the holding cost
function has the form

h(z) = a1z
2
1 + a2z

2
2 where a1, a2 > 0.(62)

Recall that in Section 3 we implicitly adopted $100 as our monetary unit: that
is, the value rates vj in (9) were said to be in units of hundreds of dollars per
server hour. Similarly, let h(z) be expressed in hundreds of dollars per hour. Then
(62) and (18) together say the following with respect to inventory holding cost:
when components of the inventory vector z are expressed in tens of jobs, the
associated holding cost rate is 10h(z) dollars per hour.

Elemental flow processes and covariance matrix �. With regard to stochastic
structure, let us assume for simplicity that all interarrival and service time
distributions are exponential and that the various arrival and service processes
are mutually independent as well. With this assumption, the two components of
the exogenous arrival process E are independent Poisson processes, while each
of the two-dimensional primitive processes F1, . . . ,F4 has one component that
is a Poisson process and one component that is identically zero. Of course, the
theory developed here would apply equally well with general interarrival and
service time distributions, with arrivals of the two classes correlated, and with
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other complications as well, but the case considered here makes for particularly
simple calculations. In particular, with the assumptions made here it follows from
the FCLT for Poisson processes that Assumption 2 (see Section 5) is satisfied, and
the asymptotic covariance matrix � in (35) is

� = diag(2λ1,2λ2).(63)

To model the “disposal activities” numbered 5 and 6 in the parallel-server
example, one can take F5 and F6 to be the following deterministic processes:
F15(t) = F26(t) = t and F25(t) = F16(t) = 0 for all t ≥ 0. This specification is
consistent with the last two columns of the input–output matrix R in (8). Because
the last two columns of A in (8) contain only 0, the capacity constraint in (13)
does not impose any limitation on how rapidly T5(·) and T6(·) can increase. In fact,
those two components of the system manager’s control policy T (·) can even have
instantaneous (positive) jumps; such jumps correspond to instantaneous ejection of
jobs, in whatever numbers the system manager may desire, precisely as intended.

Other data of the approximating Brownian network model. For concreteness
we take z = 0 to be the initial state. Given that activities 4–6 are nonbasic in
the static planning problem, the general definition (23) of K specializes in this
example to

K =




1 0 0 1 0 0
0 1 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


 .

The nondecreasing process U(·) defined by (2) in the Brownian network
approximation is five dimensional, and its components represent limits of (scaled
versions of) the following five processes in our original model: U1(·) corresponds
to cumulative unused capacity for server 1; U2(·) corresponds to cumulative
unused capacity for server 2; U3(·) corresponds to cumulative time devoted to the
nonbasic activity 4 by server 1, and U4(·) and U5(·) correspond to the cumulative
number of jobs ejected from buffers 1 and 2, respectively.

Finally, we take the bounded state space S for our normalized buffer contents
process Z to be S = [0, u] × [0, u], where u is a large positive number.

A modified example. To make connection with the ideas developed in
Section 6, suppose that the parallel-server model has capacity vector q = (1,1.1)′
but all other model elements are as described above. (The meaning or intrepretation
of this modified example will be discussed in the next section.) The modified
example does not satisfy Assumption 1, but we know from Section 3 that by
taking q∗ = (1,1)′ we obtain a balanced reference model, as that term was used in
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Section 6, whose associated nominal processing plan x∗ is given by (10). If we set
γ = (0,−1)′ and define a parametric family of models with capacity vectors

qr = q∗ − r−1γ =
(

1
1 + r−1

)
for r > 0,(64)

then our modified example is the member of this family with r = 10. For the
reference model that we have chosen, there are b = 3 basic activities, and the
submatrix B appearing in the partition (11) of our capacity consumption matrix A

is

B =
[

1 0 0
0 1 1

]
.

To formulate a nominal processing plan x for the modified parallel-server
example, using the general recipe (47)–(49), it will be convenient to take the
following right-inverse for B:

B† =

1 0

0 0.80
0 0.20


 .(65)

With this choice the first three components of x∗ are given by B†q∗, and so the
nominal processing plan x obtained from (47)–(49) is

x1
x2
x3


 = B†q =


 1

0.88
0.22


 and x4 = x5 = x6 = 0.(66)

Thus, according to (52) and (53), the Brownian network approximation for our
modified parallel-server example has drift vector

θ = r(λ − Rx) = HB†γ = −
(

0.1
0.8

)
,(67)

and all other elements of the Brownian approximation are the same as described
earlier.

8. A common special structure. Our construction of a nominal processing
plan x for the modified parallel-server example, based on the nominal plan x∗
for its reference model, involved what might be termed a “canonical choice” of
the right inverse B†. The method is broadly applicable, but not universally so.
The essential special structure exploited there is that each column of the capacity
consumption matrix A has at most one positive element; that is, each activity is
conducted by a single resource or else consumes no capacity at all. Most of the
stochastic processing networks one encounters in the published literature have this
special structure, including the multiclass “queueing networks” that were the focus
of study in [4].
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For a stochastic processing network that has this structure and further satisfies
Assumption 1 of Section 3, the number of basic activities b must be greater than or
equal to the number of resources �, because according to Assumption 1, the basic
activity levels x∗

1 , . . . , x∗
b exhaust the capacity of all resources. It follows that the

submatrix B in (11) has full row dimension, and by generalizing (65) in an obvious
way one can choose a right inverse B† so that the vector x defined by (47)–(49) is
related to x∗ as follows:

xj = (qk/q
∗
k )x∗

j when Akj > 0,(68)

and xj = x∗
j for those j such that Akj = 0 for all k = 1, . . . , �. That is, to derive

a nominal processing plan x from x∗, given the special structure described above,
the activity levels associated with each server k can be scaled up or scaled down
by a common factor, that factor being chosen so that the capacity qk is precisely
consumed.

Given the special structure identified in this section, more can be said about
what it means to have a family of models parameterized by the capacity vector q .
Consider, for example, the modified parallel-server example with q2 = 1.1. The
effect of ten percent added capacity for server 2, relative to what one has in the
reference model described in Section 3, is that the two activities conducted by
server 2 are “speeded up” by a factor of 1.1, and the value rates associated with
those activities are increased by a factor of 1.1 as well. That is, the outcomes
achievable in our modified parallel-server example are exactly the same as if we
kept q2 = 1 but increased µ2, µ3, v2 and v3 each by a factor of 1.1. (Recall
from Section 3 that the imputed average value per service completed by means
of activity j is vj /µj . In the transformation just described, these ratios are
unchanged, and so one might say that the essential economic structure of the model
is unchanged.)

More generally, consider any stochastic processing network that has the special
structure described at the beginning of this section. If the capacity qk for any
resource k is replaced by αqk, where α > 0, the effect is exactly the same as if
qk were left unchanged but Fj (·) were replaced by Fj(α·) and vj were replaced
by αvj for every activity j such that Akj > 0.

9. Comments on the generalized Brownian network model. Having ex-
plained earlier how the data of the Brownian network model (1)–(5) are chosen
to approximate a given stochastic processing network, we now consider various
properties of the Brownian approximation. Recall from Section 6 that the data
(R,A,v,λ) of the original model, along with the capacity vector q∗ of an associ-
ated “reference model,” jointly satisfy Assumption 1 of Section 3. That is, when
q∗ is substituted for q in the original model, the static planning problem (6)–(7) has
a unique optimal solution x∗, and moreover Ax∗ = q∗. To form the Brownian net-
work model, we need to know b, the number of basic activities in x∗, and activities
need to be numbered so that the basic ones are 1, . . . , b. We then set p = �+n−b,
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partition A as in (11), and define K via (23). For future reference, we deduce
the optimal solution of the following linear program from Assumption 1: choose
y ∈ R

n to

minimize v · y subject to Ry = 0 and Ky ≥ 0.(69)

PROPOSITION 1. The unique optimal solution of (69) is y∗ = 0.

PROOF. The proposed solution y∗ = 0 is obviously feasible, with objective
value v · y∗ = 0. Now suppose there exists some other y ∈ R

n such that Ry = 0,
Ky ≥ 0, and v ·y ≤ 0. From the definition (23) of K one has that yb+1, . . . , yn ≤ 0.
For sufficiently small ε > 0, the vector x = x∗ − εy would then satisfy Rx = λ,
Ax ≤ q∗, x ≥ 0, and v · x ≥ v · x∗. This contradicts Assumption 1. �

The justification provided in this paper for the generalized Brownian network
model is admittedly incomplete. To build confidence in its validity as an
approximation, one wants to check that the model passes certain tests of internal
consistency. Given that the Brownian model formulation allows controls with
unbounded variation, the following question naturally suggests itself. Can the
system manager drive the cumulative “cost” process ξ(·) arbitrarily far in the
negative direction, in any given time interval, by means of some admissible
strategy? Loosely adopting a term from financial theory, one might say in this
case that the Brownian network admits “arbitrage opportunities,” and if such
possibilities do not exist, one might say that the Brownian network is “arbitrage
free.”

To see the connection between Proposition 1 and arbitrage, suppose that there
exists a vector y ∈ R

n such that

Ry = 0, Ky ≥ 0, and v · y < 0.(70)

Now consider a control Y that has jump Y (t) − Y (t−) = y at some fixed time
t > 0. From (1) and the equality Ry = 0 in (70) we have that Z(t) − Z(t−) =
R[Y (t) − Y (t−)] = 0, which means that the jump in Y does not violate the
state space constraint (3). Also, (2) and the inequality Ky ≥ 0 in (70) ensure
that U(t) − U(t−) ≥ 0, so the admissibility requirement (4) is not violated by
the hypothesized jump in Y . Finally, the inequality v · y < 0 in (70) says that
the control jump generates a strictly negative jump in cumulative “cost,” so by
considering arbitrarily large multiples of y as control jumps we generate an
arbitrage opportunity. Furthermore, one can extend this reasoning to show that
arbitrage opportunities exist if and only if there exists a vector y satisfying (70).
Of course, Proposition 1 says that no such y exists (the boundedness of the state
space S is essential in this regard), so it ensures that the Brownian network is
“arbitrage free.”
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A next concern about the Brownian network model is whether the system
manager actually can keep Z within a bounded state space S, or equivalently,
whether there exist any admissible controls Y . To address this issue let


 = {
δ ∈ R

m : δ = Ry, y ∈ R
n, Ky ≥ 0

}
.(71)

Elements of 
 are displacements of the state vector Z that the system manager can
effect by means of control increments y = 
Y that are feasible in the sense of (4).
Thus 
 might be called the set of “feasible displacements.” Assuming that the
covariance matrix � is nondegenerate, it is more or less obvious that admissible
controls exist if and only if 
 = R

m but one would like to reduce that condition to
concrete requirements on the matrices R and K .

The assumptions made in this paper do not guarantee the existence of admissible
controls, because we have not imposed restrictions on the original stochastic
processing network which ensure that our bounded state space constraint can be
met in that context. (Presumably, such restrictions would ensure the existence of
admissible controls when carried over to the corresponding Brownian model.)

This is a good point to comment about the new issues that arise if one allows
the state space S of the Brownian network model to be unbounded. To put the
discussion on a concrete footing, consider the parallel-server example described
in Sections 3 and 7, specialized by taking v4 = 5/4 (this is within the range
0 < v4 < 3/2 specified earlier) and modified by taking µ4 = 1 rather than µ4 = 3.
This change makes activity 4 less attractive, so activity 4 remains nonbasic in the
static planning problem (6) and (7). The approximating Brownian network then
has

R =
[

1 0 1
2 0 1 0

0 1 0 1 0 1

]
, K =




1 0 0 1 0 0
0 1 1 0 0 0
0 0 0 −1 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1


 and v =




1
1
1
5
4
0
0




.(72)

As a control increment y = 
Y , consider specifically

y = (1,1,−1,−1,0,0)′.(73)

Given the definition (21) of the scaled deviation control Y , one has the following
interpretation of (73): over an unspecified time interval, server 1 undertakes r more
units of activity 4 and r fewer units of activity 1 than called for in the nominal plan,
while server 2 undertakes r more units of activity 3 and r fewer units of activity 2.
The net effects of this control increment on the processes Z, U , and ξ are

Ry =
[

1
2

0

]
, Ky =




0
0
1
0
0


 and v · y = −1

4 ,(74)
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respectively. That is, the scaled buffer contents process Z1 increases by one-half
unit, the content of buffer 2 is unchanged, neither server experiences any idleness,
the cumulative use of the nonbasic activity 4 increases, neither of the two disposal
activities are used and the system manager decreases cumulative “cost,” relative
to what would have happened if the nominal plan were implemented over that
same time interval. The economic gain derives from the fact that activity 4 earns
higher value per unit of server capacity allocated to it than does activity 1 (activities
2 and 3 have identical value rates).

If we take the state space S of the Brownian network to be all of R
2+, then

according to (74), the system manager can drive ξ arbitrarily far in the negative
direction by implementing a control increment that is an arbitrarily large multiple
of y, without violating the state space constraint (3). The disadvantage to such
an action is that it causes a correspondingly large increase in Z, and hence
in the holding cost rate h(Z), but one sees that great care must be taken in
formulating mathematically the system manager’s problem. If, for example, the
stated objective were to minimize E[ξ(T )] for some fixed T , without any penalty
associated with ending inventory Z(T ), then the problem would be unbounded,
because the system manager can implement an arbitrarily large multiple of y as
the control increment over an arbitrarily short time span [T − ε, T ]. This new and
subtle danger in problem formulation arises because of the expanded economic
framework employed in this paper, where individual activities may generate value
in a linear fashion.

If one allows the state space S to be unbounded, then exactly the same
issues come up in conjunction with the limiting argument described in Section 5.
Specifically, to prove that policies violating (46) are dominated by policies
satisfying (46), in the limit as r → ∞, one must make assumptions about the
holding cost function h, and one must consider the precise economic objective
to be optimized. In fact, it seems likely that policies satisfying (46) are dominant
if and only if there exists an optimal policy with a finite objective value in the
Brownian control problem (1)–(5) that is mechanically derived from the model
data.

Thus far nothing has been said about the “initial state” z appearing in (1). It is
natural to think in terms of the case where z ∈ S, but this is not really necessary.
If z is not in S, then an instantaneous displacement δ ∈ 
 must be effected at
t = 0, moving the system state from z to z + δ ∈ S, by choosing a nonzero initial
value Y (0) = y for the cumulative control process. Of course, the system manager
may choose to enforce such an instantaneous displacement at t = 0 even when
z ∈ S. In such circumstances it is deceptive to describe z as the “initial state” of
the Brownian network model. One might say instead that z represents an “initial
condition” that the system manager may or may not convert to a different initial
state Z(0) = z + Ry by taking Y (0) = y.

Finally, let us consider the topic of “state space collapse,” or “equivalent
workload formulation,” for a Brownian control problem whose cumulative cost



A BROADER VIEW OF BROWNIAN NETWORKS 1149

process ξ can have the generic form (5). The approach to such model reduction
developed in [8] centers on the concept of “reversible displacements,” which are
defined exactly as in (71) but with Ky = 0 in place of Ky ≥ 0. The ultimate
conclusion of the theory developed in [8] is that under an optimal control
policy, the process Z lives in a manifold of dimension d ≤ m. (In applications
to multiclass queuing networks, the reduced dimension d is typically much
smaller than m.) Points on the manifold correspond to different values of the
“workload process” W(t) = MZ(t), where M is a certain d × m matrix derived
from R and K . Under model assumptions imposed in [8], a system manager is
indifferent between any two states z and z′ that have the same work content
(meaning that Mz = Mz′), because either of the two states can be instantly and
costlessly exchanged for the other by means of a reversible displacement. With the
more general cost structure hypothesized in (5), it will be shown in future work that
the generalized Brownian network still has dimension d , with the same workload
process W = MZ serving to summarize system status, but the process Z lives on
a d-dimensional manifold that may differ from the one described in [8].
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