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Abstract

High-throughput sequencing technolo-

gies allow easy characterization of the

human microbiome, but the statistical

methods to analyze microbiome data are

still in their infancy. Differential abun-

dance methods aim at detecting associ-

ations between the abundances of bac-

terial species and subject grouping fac-

tors. The results of such methods are

important to identify the microbiome as

a prognostic or diagnostic biomarker or

to demonstrate efficacy of pro- or an-

tibiotic drugs. Because of a lack of

benchmarking studies in the microbiome

field, no consensus exists on the perfor-

mance of the statistical methods. We

have compared a large number of pop-

ular methods through extensive para-

metric and non-parametric simulation as

well as real data shuffling algorithms.

The results are consistent over the dif-

ferent approaches and all point to an

alarming excess of false discoveries. This

raises great doubts about the reliabil-

ity of discoveries in past studies and im-

perils reproducibility of microbiome ex-

periments. To further improve method

benchmarking we introduce a new simu-

lation tool that allows to generate corre-

lated count data following any univari-

ate count distribution; the correlation

structure may be inferred from real data.

Most simulation studies discard the cor-

relation between species, but our results

indicate that this correlation can nega-

tively affect the performance of statisti-

cal methods.
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Introduction

The human microbiome is known to contribute

to key body functions such as food digestion [1], re-

sistance to infection [2], maturation of the immune

system [3, 4] and anatomic development [2]. On

the other hand, (local) disturbances of the micro-

biome are associated with disease statuses such as

gut inflammation [2], vaginosis [5], diabetes [6, 7]

and periodontal disease [8]. The microbiome is usu-

ally characterized by sequencing one specific marker

gene (usually the 16S rRNA gene), clustering these

reads into consensus sequences, which are referred

to as Operational Taxonomic Units (OTUs), and

mapping them to a reference database to link the

sequences to the microbial species. This results in a

count table listing the number of times each species

was detected per sample [9, 10]. In microbiome

studies the OTU level is the lowest level of micro-

bial identification, but often data analysis focuses

on a higher taxonomic level. For this reason, we

will often use the term taxon to refer to the target

of the differential abundance analysis.

Development of biomarkers based on the mi-
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crobiome composition, as well as evaluation of

microbiome-targeting drugs, require singling out of

the specific taxa that are most strongly associated

with a certain grouping factor of interest (e.g. dis-

ease status). This problem was coined the detection

of ”differential abundance” [11, 12], after the con-

cept of differential expression in genomics. With

the current sequencing technologies, the total num-

ber of reads per sample is a technical artefact, un-

related to its biological composition. As a result

these technologies do not allow inference on ab-

solute abundances of the taxa in the sample, and

differential abundance is usually defined as a dif-

ference in mean relative abundances (taxon count

relative to total count of all taxa in the sample)

between groups [12]. However, an increase of some

taxa’s relative abundances in response to a phys-

iological change, automatically results in changes

in the relative abundances of all other taxa. To

tackle this so-called ”compositionality”, robust nor-

malization techniques [11, 13, 14, 15, 16] as well as

methods based on ratios rather than differences of

relative abundances (ANCOM [17] and ALDEx2

[18]), have been developed. They attempt to only

detect the minority of the taxa that initially re-

sponded to the physiological change, although no

clear mathematical definition exists that discrimi-

nates between this group and the taxa that undergo

changes in relative abundances as a consequence of

changes in other taxa.

Some differential abundance methods for micro-

biome data have been developed [10, 11, 17, 18],

but they are not widely used and no consensus ex-

ists on their performance due to lack of benchmark-

ing studies in the microbiome field. In practice,

simple statistical tests such as two-sample t-tests

[19] and Wilcoxon rank sum tests [20, 21] are fre-

quently employed. It has recently been suggested

that methods developed for RNA-Seq data could

easily be adapted to microbiome data, since both

data types are in essence read count data mapped

to a reference database [12].

The differentially abundant taxa are usually of

great scientific interest. These are taxa that can

serve as a disease biomarker or that respond to a

treatment. For this reason, sensitive methods are

needed for identifying as many of these differen-

tially abundant taxa as possible. However, micro-

biomes typically consist of hundreds to thousands

of different taxa, of which only a minority is ex-

pected to be differentially abundant. It is there-

fore equally important to restrict the number of

taxa that are falsely reported as differentially abun-

dant. Suppose that in a microbiome study 1000

taxa have to be tested for differential abundance,

for which 100 taxa are truly differentially abundant.

For a method that has a sensitivity of 60% and a

specificity equal to 95.5%, we expect approximately

100 ∗ 0.6 + 0.045 ∗ 900 ≈ 100 taxa to be declared

differentially abundant: 40 false discoveries and 60

true discoveries. In terms of sensitivity/specificity

trade-off this particular method appears to perform

well. However, this is not relevant with respect to

how researchers and the scientific community work

with the results of this study. Typically, only the

discoveries (significant taxa) are reported in the lit-

erature and only these taxa are considered in follow-

up studies. However, 40% of the taxa reported in

this study are not differentially abundant in reality.

For this reason, researchers often choose for con-

trolling the false discovery rate (FDR), which is

the expected fraction of non-differentially abun-

dant taxa among the taxa called significant (the

discoveries) [22]. An FDR method typically con-

sists in adjusting the individual p-values and call-

ing taxa differentially abundant if their adjusted

p-values fall below a certain threshold. The correc-

tion method and the threshold are constructed such

that the FDR equals a user specified level, which

is referred to as the nominal FDR level. The FDR

is thus a measure of the reliability of the discov-

eries and as such it is of primary importance that

the true FDR does not exceed the nominal FDR by

much, otherwise the reproducibility of the study

is jeopardized. An excess of false discoveries may

lead to more costly but fruitless follow up studies on
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taxa that are actually not differentially abundant.

One strategy for evaluating methods for differen-

tial abundance detection is to reanalyze a sample

with a golden standard method (e.g. rt-qPCR or

microarray) [23, 24]. Such golden standard method

is typically not available and comparative stud-

ies therefore rely predominantly on simulations or

methods involving randomly shuffling real datasets.

In parametric simulations, data are repeatedly

generated from a particular parametric distribution

with known parameter values. This approach has

the advantage of being very tractable and readily

allows evaluation of the performance of differen-

tial abundance methods because the truth, which

is completely described by the underlying distribu-

tions with their parameters, is known. However,

the distributional assumptions may be wrong and

unrealistic. Moreover, mostly only the marginal

univariate count distributions of the taxa are speci-

fied, ignoring possible correlations between species’

abundances (save for one exception [16]). Simulat-

ing taxon-by-taxon implies the assumption of inde-

pendence between counts of different taxa, which

biologically makes little sense. In reality, bacte-

ria living in the same niche do not grow indepen-

dently. Generating data with a correct correla-

tion structure matters, because even though sta-

tistical testing for differential abundance typically

occurs taxon-by-taxon, the estimation of normal-

ization factors [11, 13, 15, 16, 25] and variance

[13, 25, 26], as well as the subsequent FDR mul-

tiplicity correction [22, 27, 28] may work on the

ensemble of taxa. As a result the correlation struc-

ture may affect the behaviour of the statistical test-

ing procedure, and hence it is important not only

to specify the marginal univariate count distribu-

tions, but also the correlation between taxa so as

to achieve a correct joint distribution of the abun-

dances. This issue has been largely ignored in the

literature. Many studies that propose new methods

present results from parametric simulation under

the independence assumption, and often the simu-

lations use the same distribution as the one their

new method is built upon. As a consequence, it

may be expected that many of the simulation re-

sults reported in the literature are too optimistic

and show a bias towards the preference of the new

methods proposed in the respective papers.

Non-parametric simulation, which has recently

been used for RNA-Seq data [24, 29, 30], resamples

or modifies counts of real datasets for constructing

synthetic datasets. As a consequence, it incorpo-

rates realistic levels of noise and retains realistic

marginal distributions and correlation structures,

resulting in realistic joint distributions. Hence

these methods do not rely on simple assumptions

about the marginal distributions [24, 31, 32], and

thus reduce the risk of evaluating methods based on

misspecfied simulation models. On the other hand,

when starting from real data it is not possible to

control most of the parameter settings.

Finally, a third stream of simulation methods,

which are here referred to as real data shuffling,

encompasses all methods that leave the original

counts intact and only manipulate a grouping fac-

tor by repeatedly randomly permuting the grouping

factor labels. This approach yields realistic data,

albeit only under the null hypothesis that none

of the taxa are differentially abundant, and it re-

quires strong assumptions on sample homogeneity

to evaluate method performance. See figure 1 for

an overview of data generation paradigms used.

We performed a large scale simulation study us-

ing parametric and non-parametric simulation and

real data shuffling for evaluating a wide range of

methods from the microbiome and the RNA-Seq

world. To mimic various realistic data structures

as closely as possible, the simulations were based

on real human microbiome datasets from several

body sites as templates [20, 33, 34]. These tem-

plates were combined with combinations of pop-

ular normalization, differential abundance testing

and multiplicity correction strategies and with a

range of relevant sample sizes and fold changes. In

this way we cover a broader range of scenarios for

microbiome differential abundance testing than in
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previous comparative studies [11, 12, 32, 35, 36].

Moreover, some of our simulation techniques result

in more realistic evaluations than was presented in

earlier work. The most important findings are pre-

sented in the main text of this paper, and the more

extensive results are provided in the Supplementary

Material.

The results are surprisingly consistent over the

different approaches and all raise an alarming con-

cern about the complete failure of the methods to

control the FDR at the nominal level. This is of

direct importance to past and present microbiome

research, because failure to control the FDR gives

researchers a false sense of certainty about the reli-

ability of their discoveries. Similar tendencies were

seen in previous studies for some RNA-Seq meth-

ods [17, 29, 30, 31, 35, 37, 38], but the violations

were not as severe and consistent as the ones we

found in the microbiome setting.

To tackle the problem of unrealistic correlation

structures in parametric simulation, we proposed a

simulation technique that allows to specify the cor-

relation structure in combination with any desired

marginal univariate count distribution for generat-

ing count datasets. The mimicry of realistic cor-

relation structures is made possible through recent

advances in the estimation of correlation networks

of microbiome sequencing data [39]. Our results re-

veal that the existence of a correlation structure can

negatively affect the performance of the statistical

methods evaluated in this paper.

Materials and methods

Computations were run on a Dell laptop, on

two servers with 12 respectively 30 cores and

on the high performance computing facilities of

VSC (the Flemish Supercomputer Center). All

analyses were implemented and run with the R

programming language versions 3.2.3, 3.3.0 and

3.3.1. R-packages (and version numbers) used

were parallel (3.2.3, 3.3.0 and 3.3.1), phyloseq

(1.12.2, 1.14.0 and 1.16.0), HMP (1.4.3), MASS

(7.3.45), SpiecEasi (0.1), TailRank (3.1.0),

fdrtool (1.2.15), SimSeq (1.4.0), edgeR (3.10.5,

3.12.1 and 3.14.0), DESeq2 (1.8.2, 1.10.0 and

1.12.4), ggplot2 (2.1.0), metagenomeSeq (1.12.1

and 1.14.2), plyr (1.8.4), reshape2 (1.4.1), AUC

(0.3.0), samr (2.0), ALDEx2 (1.0.0, 1.2.0 and

1.4.0), biom (0.3.12), rhdf5 (2.16.0), Biostrings

(2.40.0), rmarkdown (1.0), knitr (1.14), psych

(1.6.9), V GAM (1.0.2), grid (3.3.1), Hmisc

(4.0.1) and bigmemory (4.5.19). All R-code is

available at http://users.ugent.be/~shawinke/

ABrokenPromise/.

Datasets

Data were used from the Human Microbiome

Project (HMP, V13 region of the 16S rRNA gene)

[33], the American Gut Project (AGP) [34] and a

study on the use of the colorectal microbiome as a

biomarker for cancer, referred to as the Zeller data

[20]. Only the metagenomics sequencing data of

the Zeller data were used in this paper. For simu-

lation purposes, only the 1000 most abundant taxa

(by summing each taxon’s counts over the samples)

were used. Prior to any analysis, taxa with a preva-

lence lower than 5% (i.e. taxa with a non-zero count

in less than 5% of the samples) were trimmed.

Parametric simulation

Distributions and parameters

In general terms the parametric simulation of

abundances of taxa required the specification of the

joint distribution of the abundances of these taxa.

Three methods for the construction of a joint dis-

tribution are considered:

1. Direct specification of a joint multivari-

ate distribution: The Dirichlet-multinomial

is a multivariate distribution and thus charac-

terizes the marginal distributions (beta bino-

mial) as well as the correlation structure. It

gives a constant overdispersion parameter to

all marginal beta binomial distributions and

small negative correlations between all taxa

[40].
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2. Specification of the marginal univari-

ate distributions and assuming indepen-

dence between the taxa: The negative

binomial distribution was used to generate

counts for each taxon separately.

3. Separate specification of the marginal

univariate distributions and the correla-

tion structure between the taxa: The neg-

ative binomial and beta binomial were consid-

ered as marginal distributions, but now a re-

alistic correlation structure between the taxa

was imposed. This new simulation method

starts from correlation networks estimated

from real datasets using the SpiecEasi R-

package [39] (see figure 3, and sections 4 and

3 in the Supplementary Material for details).

Parameter values

All parameters for parametric simulations were

estimated from the AGP and HMP template

datasets. From the HMP data only three body

sites were used: the tongue dorsum, stool and

mid vagina. The parameters of the negative bi-

nomial distribution were estimated by maximum

likelihood, and those of the Dirichlet-multinomial

by the method of moments. The Dirichlet multi-

nomial distributions imposes beta-binomial distri-

butions on its margins with one common disper-

sion parameter [40]. Therefore the parameter val-

ues (including the common dispersion parameter)

estimated for the Dirichlet multinomial model were

also used to generate the beta binomial data. As

a result of this choice the data generated with the

beta-binomial (and the Dirichlet multinomial) have

larger variance and larger frequency of zeroes than

under the negative binomial, which models the ob-

served zero frequency and variance more accurately

(see section 2 in the Supplementary Material). The

parameter values used for the parametric simula-

tion were randomly sampled from the pool of esti-

mated parameter values; this was repeated in each

simulation run. For the negative binomial distribu-

tion, the mean and overdispersion parameters were

sampled from the same taxon so as to preserve any

mean-dispersion relationship. The total numbers

of counts per sample, also known as library sizes,

were sampled with replacement from the observed

library sizes of the respective template datasets.

Sample sizes of 5, 25 and 100 samples per group

were considered for the simulation study.

Introduction of differential abundance

To create differentially abundant taxa, we pur-

sued two different strategies. In the first approach

(referred to as ”without compensation”) the mean

relative abundance of a randomly sampled fraction

of 10% of the taxa was multiplied with a given

fold change in one of the groups, and the ensem-

ble of mean relative abundances was renormalized

to sum to 1 prior to random number generation.

This corresponds to the scenario for which the ab-

solute abundance of a small group of taxa responds

to a physiological change. Even though this proce-

dure modifies the mean relative abundances of all

taxa, a microbiologist would only want to detect the

small group that initially reacted to the physiolog-

ical change. For this reason significant results for

other taxa will be considered as false discoveries.

In a second approach (referred to as ”with com-

pensation”), the mean relative abundance of 10%

of the taxa was changed such a way that it did

not affect the relative abundances of the remaining

90%. In particular, to introduce a fold change FC,

the mean relative abundances of a fraction 1

FC+1
of

the 10% (with relative abundances summing to a)

were multiplied by FC, the remaining FC
FC+1

(with

relative abundances summing to b) had its mean

relative abundance multiplied by a
b
(1 − FC) + 1

so that the total of all mean relative abundances

equaled 1 again. The fold changes were set to 1 (no

differential abundance), 1.5, 3 and 5 (differential

abundance).

Outliers

In a separate set of simulations, datasets were

generated by adding outliers to data generated with

the negative binomial distribution. Outliers were

introduced based on the pattern of Pearson residu-

als from a negative binomial distribution fit of the
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real data. A count was considered an outlier when

its Pearson residual was larger than or equal to

5. Samples with smaller library sizes contain more

outliers. To preserve the relationships between the

number of outliers and library size, the number of

outliers added was derived from the observed frac-

tion of outliers in the following way. The number of

outliers effectively introduced in a sample i, nout
i ,

was determined by binomial sampling with the ob-

served outlier fraction as success probability and

the total number of taxa as size parameter. The

magnitude of the Pearson residuals was determined

by sampling from the observed Pearson residuals of

outliers for that particular body site. Outliers were

introduced for nout
i randomly chosen taxa by re-

placing their original simulated count xij (the count

in sample i for taxon j) by

xnew
ij = rPearson

ij ∗

√

ρjsi(1 + ρjsi ∗ φj) + ρjsi (1)

with rPearson
ij the observed Pearson residual and φj ,

si and ρj the estimated dispersion, library size and

mean relative abundance, respectively. These new

values xnew
ij were rounded to the nearest integers

and negative values were set to zero.

Parameter combinations

Per unique combination of sample size (5, 25

and 100), fold change (1, 1.5, 3, and 5), distri-

bution (Negative binomial with and without out-

liers, with or without correlation, correlated beta-

binomial and Dirichlet-multinomial) and body site

(stool (AGP), stool (HMP), tongue dorsum (HMP)

and mid vagina (HMP)), 250 simulation runs were

executed. Prior to statistical analyses, taxa with a

prevalence lower than 5% were trimmed from the

generated datasets, as one would do with a real

dataset.

Non-parametric simulation

The non-parametric simulation paradigm imple-

mented in the R-package SimSeq enables generat-

ing synthetic datasets by resampling from a real

dataset. SimSeq proceeds as follows: first a factor

that is believed to be associated to some of the taxa

abundances is selected, and all taxa are tested for

differential abundance between the factor-defined

groups. For each taxon the method computes a lo-

cal false discovery rate (lfdr). Next, a number of

taxa that are supposed to be differentially abun-

dant is specified by the user. These differentially

abundant taxa are subsequently sampled from the

taxa with an lfdr below a cut-off of 5% with sam-

pling probabilities equal to one minus the lfdr’s.

A user-specified number of non-differentially abun-

dant taxa is next sampled with uniform weights

from the taxa with an lfdr above the cut-off [29].

The original SimSeq method uses the Wilcoxon

rank sum test for delivering the lfdr’s, but this may

favour this statistical test in subsequent method

evaluations. Therefore, the lfdr’s are here obtained

as follows. First the lfdr’s are estimated from t-

tests, Wilcoxon rank sum tests, edgeR, DESeq2

and metagenomeSeq (the latter two with TSS nor-

malization, the others with their own normalization

method), and subsequently the lfdr’s are averaged

by calculating their geometric mean. One minus

this geometric mean was used as weight in the re-

sampling procedure. The grouping factors used to

test for differential abundance were IBD (Crohn’s

disease or ulcerative colitis) [41], penicillin use in

the last year [42] for the AGP data and sex [43]

for the HMP and AGP data. For the Zeller data,

sex and cancer diagnosis were used to determine

the groups. Subjects with diagnoses ”healthy” and

”small adenoma” were pooled for this purpose. For

the AGP and HMP data, sample sizes of 5, 25 and

75 were used, for the Zeller data 5, 25 and 41.

Real data shuffling

This method starts from a subset of samples

from a real dataset. The subset is selected so that

it is homogeneous with respect to covariates that

are believed to affect the microbiome composition.

All samples in the subset are assumed to have on

average the same composition. Next, this subset

is evenly split at random into two artificial mock

groups. The taxa are subsequently tested for dif-
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ferential abundance between the mock groups. The

process of randomly splitting and hypothesis test-

ing is repeated many times. Since all taxa on aver-

age have equal means in both mock groups, because

of the random splitting, all discoveries can be con-

sidered to be false and the results can be used to

estimate the specificity [30, 32, 44]. We can also use

these simulation results to assess the distribution of

the p-values under the null hypothesis. An excess

of small p-values compared to a uniform distribu-

tion can cause an excess of false discoveries [16, 36,

45].

The AGP dataset was subsetted to include only

female Caucasians who declared not to be pregnant

or gluten intolerant, not to have used penicillin re-

cently, not to have used selective antibiotics in the

last year, and not to have diabetes or IBD. These

covariates (sex [46, 47], race [42], pregnancy [48],

gluten intolerance [43], penicillin or selective an-

tibiotics use [49], diabetes [7, 50] and IBD [41]) are

thought to be sources of variability in the micro-

biome. The HMP data were subsetted to include

only female subjects that were sequenced at the

Washington university genome center. The split-

ting procedure was repeated 250 times, the sam-

ples sizes were 5, 25 and 100 per mock group for

the AGP data and 5 and 25 per mock group for the

HMP data.

Evaluation-verification method

The concept of the evaluation-verification

method is to exploit real datasets with grouping

factors that are believed to be associated to taxon

composition. Since the truly differentially abun-

dant taxa are unknown in this setting, a large pro-

portion of the available samples is set apart as a

verification set. Because of the large number of

samples, it is assumed that the results of differen-

tial abundance tests on this set can be considered

as the truth. The differential abundance detec-

tion methods are then also applied to the remaining

samples, constituting the much smaller evaluation

set. The splitting of the data into a verification

and an evaluation set must happen randomly, with

the restriction that the distribution of the group-

ing factors must be the same in the two sets. The

test results obtained from the verification set are

used to evaluate of the performance of the methods

on the smaller evaluation set. The splitting into

evaluation and verification sets is repeated many

times. Hence, on average both sets are drawn from

the same population [32]. Since it can be expected

that test results on the evaluation and verification

sets are more similar when the same test method is

applied to both sets than when different test meth-

ods are used, the verification sets were analyzed

with the other test methods under study. To limit

the number of comparisons, only the method’s de-

fault normalization method was applied. For t-tests

and Wilcoxon rank sum tests, both total sum scal-

ing and rarefying were used, because these are both

popular normalization methods for these tests. The

same grouping factors were used as for the non-

parametric simulation with SimSeq.

Evaluation sets were constructed by selecting 5

or 25 subjects from each group for the AGP data

and 5 or 20 for the metagenomics data. The cor-

responding verification sets were then constructed

with the remaining samples, and were always at

least 3.5 times as large as the evaluation sets. The

splitting procedure was repeated 250 times in each

setting.

Differential abundance testing

Normalization

Normalization factors ”Trimmed mean of M-

values” (TMM), ”Relative log-expression” (RLE)

and ”Cumulative sum scaling” CSS were estimated

with the default settings of the edgeR, DESeq2 and

metagenomeSeq packages respectively. The SAM

normalization method from the samr package was

slightly modified to adapt to the high fraction of

zeroes encountered in microbiome data. All taxa

with Chi-squared goodness of fit statistics between

the 20th and 80th percentile were used to estimate

the normalization factor, and a pseudocount of 1

was added to the estimated normalization factor
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to avoid estimated normalization factors equal to

0. For TSS or ”total sum scaling”, library sizes

were used as normalization factors. As specified

in the edgeR help [14], TMM normalization fac-

tors were multiplied by the library sizes to ob-

tain the final normalization factors. Normalization

type ”none” means normalization factors equal to

1 were used. Rarefying was done by random sub-

sampling counts with replacement to the smallest

library size in the dataset. Subsequently, normal-

ization factors equal to 1 were applied to these rar-

efied data. For two-sample t-tests and Wilcoxon

rank sum tests, normalization was achieved by di-

viding the observed counts by the normalization

factors. For methods based on generalized lin-

ear models (edgeR, DESeq2, limma − voom and

metagenomeSeq) the normalization factors were

used as offsets. ALDEx2 uses the geometric mean

as an inherent normalization technique and was not

combined with the other normalization factors [18].

For edgeR only TSS, TMM and rarefying normal-

ization were used.

Statistical tests for differential abundance

Differential abundance detection always oc-

curred between two groups, without correction for

any other covariate than the normalization factors.

The following methods were applied: two-sample

t-test and Wilcoxon rank sum test, permutation

t-test and permutation Wilcoxon rank sum test

[51], ALDEx2, edgeR, DESeq2, metagenomeSeq,

SAMseq and limma− voom. In edgeR the robust

option was used, in all other packages default set-

tings were used.

Multiple testing correction

Multiple testing corrections were done by the

Benjamini-Hochberg [22], Benjamini-Yekutieli [27]

and local false discovery rate [28, 52] procedures.

SAMseq employs its own plug-in multiple testing

correction and directly returns differentially abun-

dant taxa given a nominal FDR level [53]. The

nominal false discovery rate was set at 5% for all

analyses.

Performance evaluation

The results from the simulations where differ-

ential abundance is expected (parametric simula-

tion under H1, the non-parametric simulation and

the evaluation-verification method) were evaluated

for sensitivity, false discovery rate (FDR), speci-

ficity, area under the ROC-curve (AUC) and for

the non-parametric simulation also departure from

uniformity of the p-values of the non-differentially

abundant taxa in both the liberal and the conser-

vative direction (see below). With FN the number

of false negatives, FP the number of false positives,

TP the number of true positives and FP the num-

ber of false positives among the test results of a

single simulated dataset, we define:

Sp =
TN

TN + FP

Se =
TP

TP + FN

FDP =
FP

TP + FP
.

(2)

When no taxa were declared significant (i.e.

TP=FP=0) the FDP (false discovery proportion)

was set to 0. An estimate of the false discovery

rate (FDR) was obtained by averaging the values of

FDP over the 250 simulation runs. Similarly, sensi-

tivity and specificity were calculated as the average

of Se and Sp, respectively, over the 250 simulation

runs. The AUC is a measure of classifier accuracy

that varies between 50% for a random classifier and

100% for a perfect classifier. The AUC was calcu-

lated as the area under the ROC-curve, obtained

by plotting the sensitivity versus 1-specificity for

varying p-value thresholds.
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Parametric

simulation

Non-parametric

simulation:

SimSeq

Real data

shuffling:

Mock groups

Evaluation-

verification

method

Assume a parametric distribution and:

• Estimate corresponding parameters
from a real dataset to mimic real data

or

• Fix parameter values to investigate
their effect

Take a dataset with recorded grouping
factors associated to taxa composition.

Test for differential abundance
based on these grouping factors

Subset data based on recorded
sample variables to ob-

tain a homogeneous dataset

or

Use biological replicates
from a single experiment

Take a dataset with recorded
grouping factors associ-
ated to taxa composition

Optional: Estimate correla-
tion structure using SpiecEasi

Optional: Validate differen-
tial abundance externally, e.g.
using microarray or rt-qPCR

Chooses sample size within
the limits of the dataset

Chooses sample size of evaluation
set, within the limits of the dataset

Choose sample size, fold change
and fraction of true positives.

Under H1: Multiply mean relative abun-
dance parameters by chosen fold changes

to introduce differential abundance

Choose sample size and de-
sired true positive fraction

Split this dataset randomly by
assigning mock group variables

Split dataset in a small evalua-
tion and a large verification set

Randomly generate data according to
chosen distribution and correlation structure

Sample differentially abundant taxa
from the significant taxa with lfdr

as weights, and non-differentially
abundant from the non-significant ones

Test for differential abundance
based on the mock groups

Test for differential
abundance in both sets

Test for differential abundance and
evaluate performance based on
known expected abundances

Test for differential abun-
dance and evaluate performance
based on sampling scheme

Evaluate performance under H0 Evaluate performance on evaluation
set assuming results of the ver-

ification set represent the truth

+ True parameters known
+ Parameters can be chosen to inves-
tigate their effect
- Distributional assumptions may be
wrong
- Unrealistically clean data
- Correlation between species is often
ignored

+ No distributional assumptions
+ Realistic marginal and joint distri-
butions and levels of noise
+ Fraction of true positives can be
steered
- No correlation between differen-
tially abundant and non-differentially
abundant taxa
- Sample size limited by template
dataset
- No control over parameter values

+ Uses real data
+ Realistic marginal and joint distri-
butions and levels of noise
- Incorrect marginal distribution in
case of non-homogeneous dataset
- Sample size limited by size of tem-
plate dataset
- Only performance evaluation under
H0

+ Uses real data
+ Realistic marginal and joint distri-
butions and levels of noise
- Results on verification set may be
incorrect
- Only estimates of effect sizes
- No control over parameter values
- Sample sizes severely limited by size
of template dataset

Figure 1: Overview of data generation paradigms used in this study. The data generation steps are represented as a flowchart from to to bottom, below
the strengths (in green) and weaknesses (in red) of every method are listed.



The departure of the p-values from uniformity

was quantified as follows. For each simulation sce-

nario and for each taxon for which the null hypoth-

esis holds true (i.e. non-differentially abundant),

p-values obtained from the simulations were used

for the construction of a QQ-plot for the uniform

distribution: sorted p-values were plotted against

the corresponding quantiles of the uniform distri-

bution. We are mainly interested in p-value dis-

tributions that are stochastically smaller than uni-

form, because they can lead to inflated type I errors

(i.e. liberal hypothesis tests). To quantify the de-

partures from uniformity into this direction, twice

the mean distance between the diagonal line and

the points in the QQ-plot below the diagonal was

computed (see figure 2). This measure will further

be called the ”liberal area” and can range from 0

when there are no p-values smaller than expected,

to 1 for extreme departure from uniformity in the

liberal direction. Analogously, also the ”conserva-

tive area” was calculated as the distance between

the diagonal line and points above it. Both cal-

culated areas can be averaged over all taxa to get

a summary statistic for each simulation scenario.

The results from the datasets where no differen-

tial abundance was expected (parametric simula-

tion under H0 and the real data shuffling method)

were evaluated for specificity and for the departure

of the p-value distributions from uniformity in lib-

eral and conservative directions.

Results and discussion

Generation of correlated count data

Microbiome or RNA-Seq parametric simulation

studies almost invariably generate counts taxon-by-

taxon (or gene-by-gene), which requires only the

specification of their marginal univariate distribu-

tions. This implicitly assumes independence be-

tween counts of different taxa. However, bacteria

in a community interact with each other and as a

result their abundances are expected to be corre-

lated. To accurately mimic the joint distribution of

a microbiome dataset one needs to correctly spec-
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Figure 2: Illustration of how departures from unifor-
mity of the p-value distribution under the null hypothe-
sis can be quantified through the area between observed
and theoretical, uniform quantiles. Here the case of a
p-value distribution stochastically smaller than uniform
is shown.

ify the marginal distribution of each taxon sepa-

rately as well as the correlation structure. A multi-

variate count model such as the Dirichlet multino-

mial [54] comes with a complete joint distribution

but makes strong and unrealistic assumptions on

the correlation structure. Alternatively, we propose

to estimate the correlation network from real data

and combine it with marginal count distributions of

choice. The correlation network is estimated with

the sparse network estimation methodology imple-

mented in the SpiecEasi R package [39]. Next, cor-

related count data are generated with the ”Normal

to anything” approach implemented in the same

R package. This exists in the generation of cor-

related multivariate normal data with the desired

dimensions and correlation structure (as estimated

from real data), conversion to the copula space with

the normal cumulative distribution function, and fi-

nally transformation to the desired marginal count

distributions through the use of the corresponding

quantile functions. This data generating pipeline

is schematically represented in figure 3; for further

details see the Supplementary Material, section 3.
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Estimate
correlation

network of real
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SpiecEasi

Randomly
generate
correlated
multivariate
Gaussian data

Transform to the
copula space

through the
Gaussian

distribution
function.

0.0 0.4 0.8

0
.0

0
.4

0
.8

x

y

0.0

0.1

0.2

0.3

0.4

0 5 10 15
Outcome

D
e
n
s
it
y Distribution

Poisson

Zero_inflated_Poisson

Negative_binomial

Obtain correlated
data with any

marginal
distribution
through its
quantile

function

Figure 3: Schematic representation of the pipeline
for generating count data with a realistic correlation
structure. Correlation networks are estimated from the
data using SpiecEasi, after which count data with this
correlation structure are generated with the normal-to-
anything approach. See text for details.

Sensitivity

Under parametric simulation with compensation

the sensitivity increases with sample size and ef-

fect size for all methods except for SAMseq and

DESeq2 (see figure 4 and Supplementary figures

S4- S6). metagenomeSeq is the most powerful

method at sample sizes of 25 and 100 (with a sen-

sitivity of 50% and higher); DESeq2 and SAMseq

are the only methods with a modest sensitivity at

a sample size of 5. For SAMseq the sensitivity

is higher under the negative binomial distribution

when the counts are correlated. The results un-

der parametric simulation without compensation

are very similar, with only edgeR achieving slightly

lower powers (see Supplementary figures S1- S3).

In non-parametric simulation and the evaluation-

verification method, alsoDESeq2 and SAMseq are

the only methods with sensitivity at a sample size of

5; edgeR andmetagenomeSeq are most sensitive at

sample sizes of 25 and 100 (see Supplementary fig-

ures S7- S14). The sensitivity varies considerably

among the taxa, depending on their relative abun-

dance and frequency of zeroes (see Supplementary

figures S82-S85).

False discovery rate

In the parametric simulation with compensation,

the false discovery rate (FDR) is seen to decrease

with sample size for DESeq2, limma− voom

and SAMseq, but to increase with sample size

for edgeR and metagenomeSeq. The t-test and

Wilcoxon rank sum test control the FDR below the

nominal level in all settings (see Supplementary

figures S18 - S20). The FDR of DESeq2, edgeR,

metagenomeSeq and SAMseq exceed the nominal

level of 5% by a large margin in many settings,

no matter which FDR multiplicity correction is

applied. For limma− voom this only happens

when the Benjamini-Hochberg multiplicity cor-

rection is applied. The results under parametric

simulation without compensation are very similar,

except that now edgeR has a lower FDR, and

the Wilcoxon rank sum test and DESeq2 have

a higher FDR (see figure 4 and Supplementary

figures S15- S17) This suggests that some of

the false discoveries of the latter two methods

are due to the compositionality effect, which is

not present in the setting ”with compensation”.
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Figure 4: Results from parametric simulations with compensation with the stool samples of the American Gut project as
template. Top: Sensitivity after Benjamini-Hochberg multiple testing correction (plug-in correction for SAMseq). Bottom:
false discovery rate with a fold change of 3. Top panels indicate the testing method used, right panels the fold change
applied (top) and the multiple testing correction applied (bottom). Colours indicate the distribution through which the
counts were generated. Normalization occurred through the geometric mean for ALDEx2 and with library sizes for the
other methods. Dotted horizontal lines indicate 50%, dot-dashed lines indicate nominal FDR rate of 5% (bottom). No
lines are drawn when the multiplicity correction method was not applied Out: outliers added, Cor: Counts generated with
estimated correlation networks. Error bars are omitted for clarity; for the sensitivity the interquartile ranges lie between 0
and 0.24 for t-test, Wilcoxon rank sum test, DESeq2 and ALDEx2; reach up to 0.58 for edgeR, Wilcoxon rank sum test
and SAMseq and up to 0.66 for metagenomeSeq. For the FDR the interquartile ranges range are 0 for t-test and Wilcoxon
rank sum test, and lie between 0 and 0.93 for all other methods



Under non-parametric simulation the FDR also

decreases with increasing sample sizes for DESeq2,

limma− voom and SAMseq, and increases with

sample sizes for edgeR and metagenomeSeq. Only

limma− voom, the t-test and the Wilcoxon rank

sum test control the FDR at or below the nominal

level (see Supplementary figures S22 - S24).In the

evaluation-verification method, similar patterns

are observed. In all settings for which a method

has a sensitivity above 5%, the nominal level of

the FDR of 5% is exceeded. In the setting of the

evaluation-verification method, even the Wilcoxon

rank sum test does exceed the nominal FDR (see

Supplementary figures S25 - S28).

P-value distribution under the null hypothesis

In most scenarios we evaluated, the false discov-

ery rate control strategies fail to control the FDR

at the nominal level. This could be caused by incor-

rect raw p-values obtained by the statistical meth-

ods. Even a small number of incorrect p-values can

throw off the overall false discovery rate control be-

cause FDR control methods take the ensemble of

all p-values as input. Some FDR control methods

even work when the hypotheses tests are correlated

[27], but they all assume uniformity of the p-value

distributions under H0 (or at least no tests with

p-values stochastically smaller than uniform).More

small p-values than expected under uniformity in-

dicates that the test is too liberal, which may cause

an excess of false discoveries. For each taxon, this

is quantified in the simulation studies through the

liberal area. On the other hand, with small sam-

ple sizes and with discrete count data, the p-value

distribution can also exhibit discreteness and show

more large p-values than expected under uniformity

(quantified by the conservative area). With such

tests present, FDR control methods may result in

conservative control of the FDR. When both types

of departure from uniformity are present, FDR may

deviate from its nominal level in either direction.

As can be seen from figure 5, the p-value distribu-

tions of edgeR, ALDEx2, limma−voom, t-test and

metagenomeSeq depart most from uniformity in

the liberal direction in parametric simulation under

H0 (see also Supplementary figures S56 - S57). The

departures are larger when the counts of the nega-

tive binomial distribution are correlated for edgeR,

but smaller for t-test and metagenomeSeq. With

the mock variable method the departures from

uniformity are more severe, but here also t-test,

limma − voom, edgeR and metagenomeSeq have

the strongest departures from uniformity in the lib-

eral direction (see Supplementary figure S58). Very

similar patterns are observed for the null taxa un-

der non-parametric simulation with SimSeq (Sup-

plementary figures S59 - S60). This confirms previ-

ous findings of non-uniformity of p-values [24] and

may partly explain the excess of false discoveries

for these methods. The departure from uniformity

in the liberal direction varies considerably between

the taxa; for all the aforementioned methods and

DESeq2 there are subgroups of taxa with a con-

siderable liberal area. Taxa with large liberal areas

are more often reported as false positives (see Sup-

plementary figures S96 - S98). The liberal area is

largest for taxa with small abundances and interme-

diate frequencies of zero counts (see Supplementary

figures S86 - S95). For taxa with very high numbers

of zeroes, there is either no departure from unifor-

mity or a departure in the conservative direction,

and most methods have a lower power (see Supple-

mentary figures S99 - S107 and S82 - S85). This

indicates that if taxa have too many zero counts,

then their p-value distributions become very dis-

crete and more large p-values than expected are

obtained.

Specificity

In parametric simulations, all methods except for

metagenomeSeq, edgeR, DESeq2 and SAMseq

are almost 100% specific (see Supplementary fig-

ures S29 - S31). Under non-parametric simulation

and with real data shuffling and the evaluation-

verification method, very similar patterns can be

observed (see Supplementary figures S34 - S41).
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AUC

In parametric simulations, edgeR, limma −

voom and metagenomeSeq achieve the highest

AUC values (see Supplementary figures S44- S45).

In non-parametric simulations with SimSeq, the

Wilcoxon rank sum test, edgeR, metagenomeSeq

and limma− voom also have the largest AUC val-

ues (see Supplementary figures S48- S55). For the

evaluation-verification method the AUC values are

too variable to draw any meaningful conclusions.

Conclusions

The quick rise of microbiome science necessi-

tates the development of new specialized statistical

methodologies. Detection of differences in mean

relative abundance or ”differential abundance” is

often one of the key goals. To decide on which

methods are best suited, benchmark studies com-

paring the different methods are urgently needed.

Although for RNA-Seq data many comparative

studies have been carried out already on the same
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methods [24, 29, 30, 31, 35, 37, 38, 45], micro-

biome data require special attention because of

their higher variance and higher frequency of ze-

roes and larger sample sizes. When new methods

for differential expression or differential abundance

are proposed in the literature, their performance is

usually evaluated in parametric simulation studies.

In the simulation studies of these papers [11, 26, 32,

55] often data are generated with the same distri-

bution as is used in the construction of the testing

method itself. Hence, as a self fulfilling prophecy

these papers conclude that their proposed methods

perform well. For a broad, honest and reliable as-

sessment of the performance of a large set of meth-

ods, we used multiple count models in parametric

simulation studies. This allows us to see how the

methods perform when their distributional assump-

tions are violated. Complementary to that, non-

parametric simulations and use of real data allow

for the evaluation of methods under realistic cor-

relation structures between different taxa and real-

istic levels of noise and confounding. To allow for

realistic correlation structures in parametric simu-

lations as well, we proposed a new data generating

method. We exploited recent advances in sparse

network inference [39] for estimating real corre-

lation networks and generating correlated counts

with any marginal univariate count distribution.

Our simulations indicate that the correlation be-

tween taxa counts can affect the performance of

some of the testing procedures.

Several methods have been proposed to address the

issue of varying sequencing depths of read count

data through normalization [11, 13, 14, 15, 16],

and some simulation and other studies have tried to

establish an optimal choice of normalization factor

[12, 45, 56]. In our results, no single normalization

method uniformly outperforms the others under all

settings. This suggests that the default normaliza-

tion method of each R package may be used, or that

simply the use of the library size as a normalization

factor is sufficient.

We found that popular differential abundance

methods, such as two sample t-test and Wilcoxon

rank sum test, and methods based on log-ratios

such as ALDEx2, have very low power to detect

differential abundance. An even more worrying re-

sult obtained with all evaluation approaches is that

the false discovery rate (FDR) exceeds the nom-

inal level by a large margin for all methods that

do have a sensitivity above 20% (edgeR, SAMseq,

metagenomeSeq and ANCOM , see Supplemen-

tary section 8 for the latter method’s results). The

opposite has been claimed before[24], but many

studies on RNA-Seq methods have obtained simi-

lar results, albeit less extreme than ours [17, 29, 30,

31, 35, 37, 38, 57]. Still this very general result has

never been obtained in the microbiome setting, or

under such a wide range of conditions that were ex-

plored in this paper. In conjunction with these find-

ings our results raise great concern about the reli-

ability and reproducibility of microbiome research.

A typical result of a differential abundance analysis

is a list of significantly differentially abundant taxa.

The researcher set the nominal FDR level such that

it reflects the average risk of a finding being a false

positive, he is willing to accept; this nominal level

hardly ever larger than 10% and is often set to

5%. The researcher (and the scientific community

at large) thus expects that only about 5% of the

reported significant findings are false. Our results

indicate that in reality this promise is often broken

and up to more than half of the discoveries are false!

As a consequence, researchers should treat the list

of significant taxa with great suspicion, particularly

when taxa are only marginally significant and the

fold-changes and sample sizes are small.

In publications in which new methods for testing for

differential abundance are introduced [11], as well

as in comparative simulation studies [12, 23, 58],

authors have failed to report on the FDR and only

compared methods in terms of the sensitivity/speci-

ficity trade-off. However, when only a minority of

the taxa are differentially abundant it is possible

for the specificity to be close to 1, whereas the true

FDR exceeds the nominal level. Therefore sensitiv-
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ity and FDR (rather than specificity) should be the

two criteria of interest in benchmarking studies.

Our simulations showed that the raw p-values of

some taxa are stochastically smaller than uniform

under the null-hypothesis for the Wilcoxon rank

sum test, edgeR, limma − voom, ALDEx2 and

metagenomeSeq. This explains at least in part

why edgeR, limma− voom, and metagenomeSeq

fail to control the FDR at the nominal level. Es-

pecially taxa with low abundances and intermedi-

ate frequencies of zeroes have p-value distributions

stochastically smaller than uniform. These depar-

tures from uniformity may reflect the fact that sta-

tistical inference is hampered by the skewed count

distributions and the many zero abundances en-

countered in microbiome data. These count distri-

butions are less tractable than the Gaussian dis-

tribution, and their associated generalized linear

models require much larger sample sizes to result

in precise parameter estimates and in approximate

normal sampling distributions of the parameter es-

timators [24]. The latter is crucial for correct p-

value calculation.

Further investigation into the causes of the failure

of FDR control and to methods that do control the

FDR correctly are important challenges in micro-

biome statistics research in the near future.

Key points

• We conducted an extensive simulation study

to assess performance of methods for differen-

tial abundance detection in microbiome stud-

ies.

• We propose a framework to generate realisti-

cally correlated count data through paramet-

ric simulation and show that correlation be-

tween species’ counts does negatively affect

the performance of the statistical methods.

• edgeR, DESeq2, limma− voom, SAMseq

and metagenomeSeq fail to control the false

discovery rate at the nominal level, question-

ing the reliability and reproducibility of the

discoveries in microbiome studies.

• The failure to control the false discovery rate is

caused by stochastically smaller than uniform

p-value distributions, and can be attributed

in particular to taxa with low abundances and

moderately large number of zeroes.
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