
Received May 31, 2020, accepted July 7, 2020, date of publication July 10, 2020, date of current version July 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3008433

A Brute-Force Black-Box Method to Attack
Machine Learning-Based Systems
in Cybersecurity

SICONG ZHANG 1,2, XIAOYAO XIE2, (Member, IEEE), AND YANG XU2
1School of Computer Science and Technology, Guizhou University, Guiyang 550025, China
2Key Laboratory of Information and Computing Science Guizhou Province, Guizhou Normal University, Guiyang 550001, China

Corresponding author: Sicong Zhang (351625648@qq.com)

This work was supported in part by the National Natural Science Foundation of China under Grant U1831131, in part by the Central

Government Guides Local Science and Technology Development Special Funds under Grant [2018]4008, in part by the Technology

Cooperation Key Project of Guizhou Province, China Grant [2015]7763, and in part by the Science and Technology Planned Project of

Guizhou Province, China under Grant [2020]2Y013.

ABSTRACT Machine learning algorithms are widely utilized in cybersecurity. However, recent studies

show that machine learning algorithms are vulnerable to adversarial examples. This poses new threats to

the security-critical applications in cybersecurity. Currently, there is still a short of study on adversarial

examples in the domain of cybersecurity. In this paper, we propose a new method known as the brute-force

attack method to better evaluate the robustness of the machine learning classifiers in cybersecurity against

adversarial examples. The proposed method, which works in a black-box way and covers some shortages

of the existing adversarial attack methods based on generative adversarial networks, is simple to implement

and only needs the output of the target classifiers to generate adversarial examples. To have a comprehensive

evaluation of the attack performance of the proposed method, we use our method to generate adversarial

examples against the common machine learning based security systems in cybersecurity including host

intrusion detection systems, Android malware detection systems, and network intrusion detection systems.

We compare the attack performance of the proposed method against these security systems with that

of state-of-the-art adversarial attack methods based on generative adversarial networks. The preliminary

experimental results show that the proposed method, which is more efficient in computation and outperforms

the state-of-the-art attack methods based on generative adversarial networks, can be used to evaluate the

robustness of various machine learning based systems in cybersecurity against adversarial examples.

INDEX TERMS Adversarial examples, machine learning, deep learning, intrusion detection, malware

detection, neural networks, black-box method.

I. INTRODUCTION

Most scenarios in cybersecurity, such as malware

detection [1] and intrusion detection [2], can be viewed as

classification problems. Machine learning is effective in clas-

sification issues and shows excellent performance in cyber-

security, so it is widely applied in this domain [3]. However,

with the emergence of adversarial examples [4], the machine

learning based systems in this security-critical field face new

challenges. Adversarial examples (AEs), which are generated

by adding intentionally crafted noises to the original inputs,

can make the target classifiers misclassify. In the context

The associate editor coordinating the review of this manuscript and

approving it for publication was Zheng Xiao .

of cybersecurity, this usually means adversaries disguise

malicious behavior as normal to evade the detection of the

machine learning based systems.

Currently, the research onAEsmainly focuses on computer

vision [4]–[7]. Although there has been some pioneering

work [8]–[11] about AEs in cybersecurity, there is still a lack

of relevant research in this domain. On the other hand, the pre-

vious studies [7]–[11] concentrate on generating the AEs

against deep neural networks. The research on AEs against

traditional machine learning algorithms in cybersecurity is

less concerned. Therefore, to better evaluate the robustness of

the machine learning based security systems in cybersecurity,

it is necessary to further research the generation of AEs

against machine learning classifiers in this domain.

128250 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/
VOLUME 8, 2020

https://orcid.org/0000-0001-8547-6531
https://orcid.org/0000-0003-1144-7599


S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

Generative adversarial networks (GANs) [12] are now the

hot topic in deep learning. GAN has shown excellent perfor-

mance in generating images, sounds, and texts [13]. GANs

are a new generative framework that is composed of the

discriminator and the generator. Normally, the discriminator

and the generator are both neural networks. The discriminator

learns to distinguish whether the inputs are fake or real.

The generator learns to produce high-quality fake samples

which can mislead the discriminator. Through the competi-

tion between the discriminator and the generator, GAN can be

trained to produce real-like samples. Because of its excellent

generating performance, it becomes one of the most prevail-

ing and effective methods to generate AEs [9], [14], [15]

in cybersecurity. Although the adversarial attack methods

based on GANs can make the target classifiers misclassify

in a high success rate, the training of GANs is currently

unstable [9], [15] and the attack performance of GAN-based

methods is influenced by training data [14], which are not

always available for adversaries. Besides, GANs are normally

composed of two deep neural networks. Neural networks are

generally regarded as black-box models, which means the

process of generating AEs in GANs is uncontrolled by the

adversaries. We can not intervene in the generating process

to decide the features to be perturbed when generating AEs

with GANs. This will hinder the application of adversarial

attack methods based on GANs under certain circumstances

in cybersecurity because sometimes we can only perturb

some specific features of input vectors to ensure that the

functionality of the inputs does not change. This will be

discussed detailedly in Section III.

In this paper, to avoid the tedious training of the

GAN-based adversarial attack methods and generate adver-

sarial examples more efficiently, we propose a new and

simple black-box attack method known as the brute-force

attack method (BFAM) to better evaluate the robustness of

the machine learning based systems in cybersecurity against

AEs. Our method is simple to implement compared with

the GAN-based methods. Our method modifies the fea-

tures of input vectors for machine learning based systems

in a controlled way. Our method does not need the internal

information of the target classifiers and is a gradient-free

method, which means the computation of the gradient is

unnecessary. The outputs of the target classifiers are the

only needed knowledge for generating AEs. Specifically, our

method needs the confidence scores of the target classifiers.

Our method can be used to produce AEs against different

machine learning based systems in cybersecurity. To vali-

date this, we design three experiments involving different

scenarios of cybersecurity, i.e., host intrusion detection [16],

network intrusion detection [2], and Android malware detec-

tion [17], where the machine learning algorithms are widely

used to improve the detection performance of the target

systems. Our method operates in a black-box way, which

is more common in the real world because the adversary

can only obtain the output of the target classifier in most

cases. The internal knowledge of the target classifiers is

usually unknown to the adversary. To verify the attack per-

formance of our method against various machine learning

algorithms, we adopt the machine learning algorithms which

are widely applied in cybersecurity to build up the tar-

get systems, i.e., logistic regression (LR) [15], [17], deci-

sion tree (DT) [2], [3], [16], [17], multilayer perceptron

(MLP) [2], [17], naive Bayes (NB) [2], [3], [17] and random

forest (RF) [2], [17]. In general, we make the following

contributions:

• We propose a new method known as the brute-force

attack method to generate AEs against machine learning

based systems in cybersecurity. Our method is sim-

ple to implement and avoids the tedious training of

GAN-based attack methods. Besides, our method is a

gradient-free method and manipulates the features of

input vectors in a determinate way, which makes our

method more suitable for the adversarial attacks in

cybersecurity. Our method generates AEs based on the

confidence scores of the target classifiers heuristically.

• Android malware detection, host intrusion detection,

and network intrusion detection are common scenarios

of cybersecurity, where machine learning techniques

are widely used. We compare the attack performance

of BFAM against different target classifiers in these

scenarios with that of the state-of-the-art GAN-based

attack methods to have a comprehensive evaluation of

our method.

• Our method is a black-box attack method for which

the architectures and parameters of the target classifiers

are unnecessary for attacks. The confidence scores of

the target models are the only required knowledge to

produceAEs. Themost widely appliedmachine learning

classifiers for different scenarios of cybersecurity are

chosen as our target classifiers. Through this, we hope to

have a full-scale evaluation of the robustness of different

machine learning classifiers against AEs.

II. RELATED WORK

In recent years, machine learning has shown promising

results in the field of cybersecurity. Machine learning algo-

rithms are diffusely adopted to solve various tasks in

this domain including malware detection [1], [17], intru-

sion detection [2], [3], [16], spam filtering [18], et al.

Fatima et al. [19] utilize the genetic algorithm to select fea-

tures and use the selected features to train machine learning

basedAndroidmalware classifiers. Their results show that the

feature dimension can be reduced to half of the original fea-

ture set with the help of the genetic algorithm and high accu-

racy can be achieved. Yao et al. [20] adopt machine learning

techniques to propose a new intrusion detection framework

to overcome the imbalance of different kinds of data in

network traffic and the nonidentical distribution between the

training set and the test set. Ren et al. [21] adopt isolation

forest, genetic algorithm, and RF to design a new intrusion

detection system which mainly consists of data sampling and

feature selection. Vijayakumar and Ganapathy [22] explore

VOLUME 8, 2020 128251



S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

the role of machine learning to reduce the false alarm rate

of wireless intrusion detection systems. They propose a new

filtration technique to reduce false alarms. Sahın et al. [23]

evaluate the spam classification performance of different

machine learning methods combined with the bag of words

technique.

Because machine learning is widely applied in cybersecu-

rity, it is necessary to pay more attention to AEs, which pose

new threats to the machine learning based systems in this

domain and restrict the further application of machine learn-

ing algorithms in this security-critical field. Szegedy et al. [4]

are the first to reveal the vulnerability of deep neural networks

to AEs. Small but intentionally crafted noises added to orig-

inal inputs can make the target classifiers misclassify. They

adopt the box-constrained limited memory approximation of

the Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) algorithm

to generate AEs against the classifiers in computer vision

successfully. Papernot et al. [5] make use of the Jacobian

matrix of the target classifiers to determine the input features

to be perturbed. Their method is called the Jacobian-based

saliency map attack (JSMA). Moosavi-Dezfooli et al. [6]

propose DeepFool to produce AEs by finding the closest

distances between original inputs and the decision boundary.

Carlini and Wagner [7] put forward three new gradient-based

attack methods by introducing new objective functions. The

Carlini and Wagner (CW) attacks are claimed to be more

effective than many previously proposed attack methods. The

above methods are all white-box attacks.

With machine learning techniques widely applied in cyber-

security, more and more attention is paid to the study of AEs

in cybersecurity. Grosse et al. [8] are the first to research the

generation of AEs in cybersecurity. They expand the JSMA

to generate AEs against the deep learning based Android

malware detection systems (AMDSs). Yang et al. [9] investi-

gate the attack performance of common black-box adversarial

attacks against deep learning based network intrusion detec-

tion systems (NIDSs). They adopt three kinds of black-box

attack methods including zeroth-order optimization attacks,

training a substitute model, and GAN-based attack methods

to evaluate the robustness of deep neural networks for NIDS.

Wang [10] assesses the attack performance of state-of-the-

art adversarial attack methods against deep learning based

intrusion detection systems including JSMA, DeepFool, and

CW. Liu et al. [11] explore the generation of AEs based

on the genetic algorithm in the domain of the internet of

things (IoT).

Because of the excellent generating performance of GANs,

GANs are widely adopted to generate AEs against various

security systems in cybersecurity. Hu and Tan [14] propose a

new framework called MalGAN to generate adversarial mal-

ware to mislead machine learning based malware detection

systems. Lin et al. [15] propose IDSGAN to produce AEs

against machine learning based network intrusion detection

systems. The adversarial attack methods based on GANs are

currently one of the most widely used [9], [14], [15] and

effective [9] black-box attacks in cybersecurity.

III. BACKGROUND

In this section, we briefly introduce the background

knowledge about this paper, which will help understand the

subsequent sections. It mainly involves AEs, GANs, adver-

sarial attacks based on GANs, and the datasets used in our

experiments.

A. ADVERSARIAL EXAMPLES

AEs are derived from adding small but intentionally crafted

perturbations to original inputs. The objective of AEs is nor-

mally to make the target classifiers misclassify. In computer

vision, the perturbations added to inputs are needed to be

imperceptible to human eyes. In cybersecurity, this restriction

is usually replaced by ensuring that the functionality of the

adversarial examples is unchanged [8], [15], [24]. Assuming

that the purpose of malware is to steal the password of the

target system, it is meaningless that the adversaries generate

the adversarial malware using the adversarial attack methods,

which can evade the detection of the target security system but

lose the ability to steal the password. Therefore, it is necessary

to guarantee the validity of AEs.

The adversarial attack methods of generating AEs can be

categorized as white-box and black-box based on the knowl-

edge of the target classifiers possessed by the adversaries.

The white-box attacks normally assume that the adversaries

possess the complete knowledge of the target classifiers

including internal parameters, architectures, training data,

et al. [24]. The black-box attacks assume that the adversaries

own limited knowledge of the target classifiers, which does

not include the model parameters [24].

The adversarial attack methods can also be categorized as

targeted and non-targeted based on the adversarial goal. Let

C(x) be the label predicted by the classifier for x, x be the

original input, x∗ be the corresponding adversarial example,

y be the true label of x, and y∗ be the target label which the

adversaries want the target classifier to output. The goal of

non-targeted attacks is to find a x∗ which makes the classifier

output C(x∗) 6= y. The goal of targeted attacks is to make the

classifier output C(x∗) = y∗.

B. GENERATIVE ADVERSARIAL NETWORKS

GANs are a new category of generative models that are

originally proposed by Goodfellow et al. [12]. GANs

show excellent performance on various tasks including

image translation, semi-supervised learning, image gener-

ation, et al. [13]. GANs mainly consist of two important

components, i.e., the discriminator and the generator. The

generator takes in the latent variable z as inputs and learns

how to produce high-quality fake samples to fool the dis-

criminator. On the contrary, the discriminator takes in fake

samples generated by the generator and real samples as inputs

and learns how to distinguish between real samples and fake

samples. Through the competition between the discrimina-

tor and the generator, GANs generate high-quality real-like

samples [13]. The normal architecture of GANs is shown

128252 VOLUME 8, 2020



S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

in Fig. 1, where z is the latent variable usually sampled from

a uniform distribution.

FIGURE 1. The normal architecture of GANs.

The training of GANs can be viewed as a game between

the generator and the discriminator. On each training step,

the discriminator is first trained to distinguish whether the

input is real or fake. Then the generator is trained to produce

fake samples that can fool the discriminator. By iteratively

carrying out this process, if the discriminator and the gen-

erator have the competent capacity, the Nash equilibrium

will be achieved [12], [13]. Then the discriminator can not

distinguish whether the input is real or fake.

Generally, when the discriminator is trained, the gener-

ator needs to be fixed and when the generator is trained,

the discriminator needs to be fixed. The training of the dis-

criminator is usually to minimize the loss function in (1).

The loss function (1) for the discriminator can be regarded

as a standard cross-entropy loss used to train a standard

binary classifier. The difference is that the discriminator is

trained on two batches of data [12], [13]. To minimize the

loss function (1) corresponds to training the discriminator

to distinguish between the real samples from the real data

distribution, which are labeled as 1, and the fake samples

generated by the generator, which are labeled as 0. The train-

ing of the generator is usually to minimize the loss function

in (2). The loss function (2) for the generator is minimized

to make the generator produce the fake samples predicted as

real by the discriminator. In these two equations, G denotes

the generator and D denotes the discriminator. x denotes the

real samples from the real data distribution pdata and z denotes

the latent variable from the distribution pz.

JD = −
1

2
Ex∼pdata logD(x)

−
1

2
Ez∼pz log(1− D(G(z))). (1)

JG = −
1

2
Ez∼pz logD(G(z)). (2)

C. ADVERSARIAL ATTACKS BASED ON GANs

The adversarial attack methods based on GANs are

currently the most concerned black-box attacks in cyberse-

curity [9], [14], [15]. The advantages of adversarial attacks

based on GANs are as follows: 1) The GAN-based adver-

sarial attacks only require the predicted labels of the target

classifiers to generate AEs, which makes them applicable

for more tasks. The internal information of the target clas-

sifiers is unknown to the adversaries most of the time. The

white-box attacks do not work in this situation. 2) Although

the GAN-based attack methods need minimal knowledge

of the target classifiers, AEs generated by them show an

excellent result in misleading the target models [9], [14], [15].

However, the training of the GANs is currently still unsta-

ble [9], [14], [15]. The attack performance of GAN-based

methods partly depends on the training data [14]. The gen-

erating process of GAN-based methods is normally uncon-

trolled because the generator is usually deep neural networks

which are regarded as black-box models.

In cybersecurity, the existing adversarial attack methods

based on GANs adopt a similar architecture to generate AEs,

which is shown in Fig. 2. The generator takes the concate-

nation of malicious examples and noise as inputs to pro-

duce adversarial malicious examples. The black-box detector

in Fig. 2 is the target classifier the adversaries want to attack.

The black-box detector is just employed to provide the labels

of benign examples and adversarial malicious examples for

the discriminator. In other words, the discriminator is used to

fit the black-box detector and provide the indirect knowledge

for the generator to produce the AEs which can deceive the

black-box detector.

FIGURE 2. The normal architecture of adversarial attacks based on GANs.

The loss functions for the discriminator and the generator

are changed to (3) and (4) [14], [15]. In (3) and (4), Sbenign
and Sadmal denote benign examples and adversarial mali-

cious examples predicted by the black-box detector. Smalicious
denotes the original malicious examples in the dataset. D

denotes the discriminator and G denotes the generator. x is

the input for the discriminator and the generator. z is the noise

vector from the distribution pz which is usually a uniform

distribution. To train this framework to generate AEs, the loss

functions in (3) and (4) need to be minimized.

JD = Ex∈SbenignD(x)− Ex∈SadmalD(x). (3)

JG = Ex∈Smalicious,z∈pzD(G(x, z)). (4)

D. DATASETS

To have a comprehensive evaluation of the attack effect of

our method, three datasets which involve three scenarios of

cybersecurity are adopted to validate the effectiveness of our

method.

VOLUME 8, 2020 128253



S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

The Australian Defence Force Academy Linux Dataset

(ADFA-LD) is a professional and widely used host intrusion

detection dataset [16], [25] published by Creech and Hu [26].

The system call traces are usually used by the host intrusion

detection systems (HIDSs) to detect the attacks against the

target systems. ADFA-LD consists of 833 normal training

traces, 4372 normal validation traces, and 746 attack traces,

which are all collected under the Linux system. Each system

call in the traces is represented by an integer. The details of

the ADFA-LD dataset are shown in Table 1.

TABLE 1. Details of the ADFA-LD dataset.

The NSL-KDD dataset is a benchmark dataset for net-

work intrusion detection, which is widely adopted to evalu-

ate the performance of NIDSs [2], [16], [20]. The previous

work [9], [10], [15] mostly adopts the NSL-KDD dataset

to verify the attack effect of their methods. Every record in

NSL-KDD is composed of 41 features which can be grouped

into four feature sets: Intrinsic, Content, Time-based Traffic,

and Host-based Traffic. Each record in NSL-KDD is labeled

as normal or a specific attack type. There are four main

attacks, i.e., Denial of Service (DoS), Probe, User to Root

(U2R), and Remote to Local (R2L). The four kinds of attacks

can be further divided into 38 attack classes. The training data

contain 22 attack classes and the testing data contain 37 attack

classes, in which 16 novel attacks only exist in the test set. The

details of NSL-KDD are shown in Table 2.

TABLE 2. Details of the NSL-KDD dataset.

The DREBIN dataset originally published by

Arp et al. [27] is a widely used Android malware detection

dataset [8]. DREBIN includes 129013 Android applications,

which consist of 123453 benign applications and 5560 mali-

cious applications. Each application can be transformed into

a vector with 54533 features, each of which is represented by

a binary value to indicate whether the feature is present in the

application [8]. All the features can be divided into 8 feature

sets. The detailed statistics of the number of features in each

feature set is shown in Table 3.

TABLE 3. Details of the DREBIN dataset.

IV. PROPOSED METHOD

The generation of AEs in a targeted way can usually be for-

malized as solving the optimization problem in (5) [4]–[11],

where x is the original input, C(x) denotes the label predicted

by the classifier for x, y∗ is the target label and δ is the

minimal adversarial perturbation causing the target classifier

to misclassify. δ is normally not unique. ‖·‖p denotes a norm.

minimize ‖δ‖p

s.t. C(x+ δ) = y∗. (5)

The adversarial perturbation δ needs to be small enough to

be imperceptible to human eyes in computer vision. As dis-

cussed in Section III.A, this restriction is replaced by guar-

anteeing the functionality of the malware or intrusion data

when AEs are generated in cybersecurity, which implies

that the adversarial perturbation δ added to the original

inputs does not need to be small but it can not destroy the

original functionality of AEs [8]. Therefore, the distortion

of the adversarial examples is normally not concerned in

cybersecurity [9], [10], [14], [15], [24].

Generally, because of the nonconvexity and nonlin-

earity of the target classifiers, there is no closed-form

solution to the problem in (5). Therefore, many exist-

ing attack methods adopt optimization algorithms such

as the gradient-based method to achieve the approxi-

mate adversarial perturbation. Inspired by the previous

work [4]–[11], [14], [15], [28], [29], [30], the generation of

AEs can also be viewed as the problem to search the key

features of an input vector which can affect the output of the

target classifiers. By modifying these key features appropri-

ately, the AEs can be produced to fool the target classifiers.

In the setting of black-box attacks, the generation of AEs is

then transformed into searching the key features with limited

knowledge. Assuming that the confidence scores of the target

classifiers are the only information that adversaries can obtain

from the target classifiers, the problem is further transformed

into searching the key features under the instruction of the

confidence scores of the target classifiers.

The intuitive attempt is to modify the features in the input

vector successively and determine which modification helps

generate AEs which can mislead the target classifiers. This

is like the situation that when a hacker wants to make illegal

access to a target systemwithout knowing the login password,

he will try every possible combination of the passwords and

determine the right login password based on the response of

128254 VOLUME 8, 2020



S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

the target system. Inspired by the attackmode of this common

attack in cybersecurity, we propose the brute-force attack

method (BFAM) to generate AEs against machine learning

based systems in cybersecurity.

Before the detailed introduction to BFAM, some notations

need to be elaborated first. Assuming that F(x) is the con-

fidence scores outputted by the target classifier. Fi(x) is the

ith component of F(x) and indicates the probability of x

belonging to Class i. 0 ≤ Fi(x) ≤ 1 and
∑

i Fi(x) = 1.

Therefore, the label predicted by the target classifier is

C(x) = argmaxiFi(x).

Algorithm 1 Targeted Version of Brute-Force AttackMethod

Input: Target classifier F ; original input x; target label y∗;

perturbation strength α;

indexes of features allowed to be perturbed

p_index.

Output: Adversarial examples adx.

1: i← 0;

2: while argmaxjFj(x) ! = y∗ and i < len(p_index) do

3: f stores the confidence scores before modification:

f← F(x);

4: perturb the feature x[p_index[i]] with the strength α:

x[p_index[i]]← x[p_index[i]]+ α;

5: clip the x into the allowed range;

6: recalculate the confidence score F(x);

7: if Fy∗ (x)− f[y
∗] > 0 then

8: keep the modification;

9: else

10: cancel the modification,

return the feature to its original value;

11: end if

12: i← i+ 1;

13: end while

14: adx← x;

15: return adx.

The intact pseudocode of the targeted version of BFAM

is shown in Algorithm 1. BFAM has two hyperparameters,

i.e., p_index and α. p_index stores the indexes of the features

of x which are permitted to be modified. As discussed in

Section III.A, we need to guarantee the functionality of the

adversarial examples. Therefore, we can only modify the

nonfunctional features of the input vectors [8], [15]. In each

iteration, the confidence scores before the modification are

first stored in f . Then, we modify a permitted feature in x

with a specified perturbation strength α. Then, the modified

feature needs to be clipped into its original value range in

case of destroying the functionality of the input. Through

the clipping, the feature which is less than the minimum

value is set to the minimum value and the feature which is

greater than the maximum value is set to the maximum value.

The modified x is fed to the target classifier to recalculate

the confidence scores F(x). If the Fy∗(x) − f [y∗] is greater

than 0, the modification to the current feature is valid. The

modification is kept. Otherwise, we cancel the modification

to the current feature and restore the feature to its original

value. f [y∗] denotes the original confidence score of the target

class. Two conditions will terminate the while loop: 1) The

AEwhich canmislead the target classifier has been produced.

2) All the features which are allowed to be perturbed have

been tried.

The nontargeted version of BFAM is shown in

Algorithm 2. The biggest difference between the targeted

BFAM and the nontargeted BFAM is that the targeted BFAM

is to increase the confidence score of the target class, but the

nontargeted BFAM is to decrease the confidence score of the

real class.

Algorithm 2 Non-Targeted Version of Brute-Force Attack

Method
Input: Target classifier F ; original input x; true label y;

perturbation strength α;

indexes of features allowed to be perturbed

p_index.

Output: Adversarial examples adx.

1: i← 0;

2: while argmaxjFj(x) == y and i < len(p_index) do

3: f stores the confidence scores before modification:

f← F(x);

4: perturb the feature x[p_index[i]] with the strength α:

x[p_index[i]]← x[p_index[i]]+ α;

5: clip the x into the allowed range;

6: recalculate the confidence score F(x);

7: if f[y]− Fy(x) > 0 then

8: keep the modification;

9: else

10: cancel the modification,

return the feature to its original value;

11: end if

12: i← i+ 1;

13: end while

14: adx← x;

15: return adx.

As shown in Algorithm 1 and Algorithm 2, our method

does not utilize neural networks to generate the adversarial

examples. The proposed method determines the features to

be perturbed based on the confidence scores outputted by the

target classifiers and produces the adversarial examples by

directly manipulating the features of input vectors. We can

regard the generating process of our method as that the con-

fidence scores indicate the direction along which we should

modify the inputs. Our method operates in a black-box way

and does not require any internal knowledge of the target clas-

sifier, which makes our method applicable for more adver-

sarial tasks in cybersecurity. Our method avoids the unstable

training of the GAN-based attack methods and has complete

control over the generating process of AEs. Our method

can perturb the specified features with a specified strength,

VOLUME 8, 2020 128255



S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

which is exactly the deficiency of the GAN-based attack

methods.

V. EXPERIMENTS AND ANALYSIS

To have a comprehensive evaluation of the attack effect of our

method, we adopt BFAM to generate AEs on three different

datasets, i.e., ADFA-LD, NSL-KDD, and DREBIN. These

datasets are chosen to validate the performance of our method

because host intrusion detection, network intrusion detection,

and Android malware detection are the common scenarios in

cybersecurity where machine learning algorithms are widely

applied. Besides, these datasets can represent the typical

inputs for machine learning classifiers in cybersecurity. The

machine learning algorithms which are widely used in cyber-

security [1]–[3], [16]–[23] are employed to build up the target

detection systems, i.e., LR, DT, MLP, NB, and RF. We regard

these three scenarios as binary classification problems. All

the normal examples are labeled as 0 and all the malicious

examples are labeled as 1.

In cybersecurity, the black-box attack methods are nor-

mally thought to be more practical than the white-box

attacks [9], [11], [14], [15] because the adversaries can only

access the target systems as a standard user most of the

time, which means that the adversaries only possess lim-

ited knowledge of the target classifiers. Normally, they can

just access the output of the target classifiers. Therefore,

we only consider the generation of AEs under the setting of

black-box attacks in this paper. GAN-based adversarial attack

methods are currently one of the most effective and con-

cerned black-box attacks in cybersecurity [9], [14], [15], [31].

The previous work [9] has already compared the attack per-

formance of the common black-box attacks in cybersecurity

such as training a substitute model, zeroth-order optimization

methods, and GAN-based attack methods. The GAN-based

attack methods show excellent performance among these

black-box attacks. Besides, our method is proposed to cover

some drawbacks of the GAN-based attack methods such

as the unstable training et al. Therefore, We only compare

the attack effect of our method with that of the state-of-

the-art GAN-based attack methods. Because the existing

GAN-based attack methods [9], [14], [15] all employ the

architecture in Fig. 2 to generate AEs, we also adopt this

architecture to build up the adversarial attack method based

on GAN (AAM-GAN). TheWasserstein GAN (WGAN) [32]

shows excellent performance among the various variants

of GAN. Therefore, we adopt WGAN to implement the

architecture in Fig. 2.

In the real world, the adversaries aremore likely to disguise

malicious behavior as normal. Therefore, we only consider

generating adversarial malicious examples that can evade the

detection of the target security systems without changing

the functionality of the malicious examples in this paper.

The targeted version of BFAM is employed to generate AEs.

Besides, we assume that the adversarial attacks happen in the

test stage, which is closer to the actual condition. Accord-

ingly, the test data are utilized to produce AEs.

Fig. 3 is adopted to illustrate the generation process of

targeted BFAM more intuitively. For an input vector with n

features, assuming that the features allowed to be modified

are the first six features, BFAM successively modifies the

modifiable features to generate AEs and processes a single

feature in each iteration. As shown in Fig. 3, the current

feature to be perturbed is f2. BFAM modifies the current

feature with specific perturbation strength and recalculates

the confidence scores of the target classifiers for the modified

input. If the modification increases the confidence score of

the target class, the modification is kept. Otherwise, it is

canceled and the modified feature is restored to its original

value. We then test whether the target classifiers output the

target label. If the target classifiers output the target label,

we terminate the generation because the adversarial examples

have been produced successfully. Otherwise, we continue to

modify the next feature f3. The above generation process pro-

ceeds iteratively until the adversarial examples are produced

or all the modifiable features are tried. We ignore the clipping

procedure of Algorithm 1 in Fig. 3. To generate m AEs with

n modifiable features, the computational complexity of the

proposed method can be represented as O(m × n) if BFAM

produces m AEs separately. If the vectorized programming

is adopted, the computational complexity can be reduced

to O(n).

FIGURE 3. The process of generating AEs using targeted BFAM.

The metrics used in this paper include the original detec-

tion rate (ODR), adversarial detection rate (ADR), and the

total time cost (TTC) of generating AEs. The ODR indicates

the detection performance of the target classifiers against

the original attack examples. The ODR can be formalized

as (6). The ADR indicates the detection performance of the

target classifiers against the adversarial attack examples. The

ADR can be calculated with (7). Detection rate is a very

important metric for machine learning classifiers in cyberse-

curity. A lower detection rate usually means that many attacks

evade the detection of the target detection systems. This will

put the systems protected by the target detection systems in

danger, which is usually unacceptable. We can intuitively

observe the attack effect of the adversarial attack methods

and the robustness of the target classifiers against AEs by

comparing ODR of the target classifier with its ADR. The

attack method shows an excellent attack performance if the

target classifier with a high ODR achieves a low ADR on

128256 VOLUME 8, 2020



S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

the adversarial attack examples. Our method can be regarded

as an exhaustive but greedy search algorithm. The compu-

tational efficiency of our method needs to be concerned.

TTC measures the total time consumption of producing a

set of AEs. To verify the computational efficiency of BFAM,

we compare the TTC of BFAMwith that of AAM-GAN in the

experiments.

All the experiments are performed on a computer with

an i5-8265U CPU and an 8GB RAM. Two 6G Nvidia

GTX 1660 GPUs are used to accelerate the computation.

We implement all the machine learning classifiers based on

Scikit-learn [33] which is a widely used machine learning

framework. The deep learning framework Pytorch [34] is

used to implement BFAM and AAM-GAN.

ODR

=
Num. of correctly detected original attack examples

Num. of all the original attack examples
.

(6)

ADR

=
Num. of correctly detected adversarial attack examples

Num. of all the adversarial attack examples
.

(7)

A. CRAFTING ADVERSARIAL EXAMPLES AGAINST

MACHINE LEARNING BASED HIDS

The original inputs for HIDSs are normally system call traces

as discussed in Section III.D. The machine learning clas-

sifiers can only process vectors. Therefore, all the original

traces need to be transformed into vectors before feeding

them to the target classifiers. We adopt the set of words tech-

nique to preprocess the original traces because it is widely

applied in cybersecurity [23], [35], [36]. Assuming that

C = {c1, c2, c3, . . . , cm} denotes the set of system calls, m is

the number of system calls and ci denotes a single system

call. For any system call trace s, we transform it into a vector

x =< x1, x2, x3, . . . , xm >, where xi = 1 if s includes ci else

xi = 0. After the preprocessing, all the original system call

traces are transformed into vectors with 175 features.

All the malicious system call traces are labeled as 1 and

all the normal system call traces are labeled as 0. Thirty

percent of the dataset is used as the test set and the rest

is used as the training set. The AAM-GAN and the target

classifiers share the same training data, which usually means

a better performance of the GAN-based attack methods [14].

We adopt the 3-fold cross-validation and grid search to find

the optimal parameters for the target classifiers. To guarantee

the functionality of the malicious system call traces, we only

add system calls to the original malicious system call traces.

In this case, p_index of BFAM is set to the indexes of the

features whose values are zero for each input and α is set to 1.

The number of training epochs for AAM-GAN is set to 50.

The learning rates of the discriminator and the generator are

both set to 0.0001. The RMSProp optimizer is adopted to train

the discriminator and the generator. The outputs of the gen-

erator are firstly clipped into the range of [0, 1]. Then, all the

features which are greater than 0.5 are set to 1. All the features

which are less than or equal to 0.5 are set to 0. To make sure

that we only add additional system calls to original system

call traces, we achieve the final AEs generated byAAM-GAN

through (8), where x is the original input, A(x) denotes the

output of AAM-GAN, x∗ is the final AE, and | denotes the

element-wise OR operation [14].

x∗ = x|A(x). (8)

Table 4 shows the attack performance of BFAM and

AAM-GAN against the machine learning based HIDSs. The

results show that our method shows an excellent attack

performance on all machine learning based classifiers for

host intrusion detection. Before the adversarial attacks, all

the target classifiers achieve a high detection rate on the

original malicious system call traces. However, after trans-

forming the original malicious system call traces into the

adversarial malicious system call traces using BFAM, all the

adversarial malicious traces evade the detection of the tar-

get classifiers. Our method achieves the attack performance

comparable to AAM-GAN on LR-based HIDS, NB-based

HIDS, MLP-based HIDS, and RF-based HIDS. Our method

outperforms AAM-GAN on NB-based HIDS.

TABLE 4. Attacks against machine learning based HIDSs.

Table 5 shows the computational efficiency of BFAM

against machine learning based HIDSs. The TTCs in Table 5

indicate the total time consumption of the correspond-

ing attack methods on the whole test set. The TTCs of

AAM-GAN in Table 5 include training cost and generation

cost. Because BFAM does not need training, the TTCs of

BFAM just involves generation cost. As shown in Table 5,

the TTCs consumed by BFAM to generate AEs against all

the target classifiers are much less than those consumed by

AAM-GAN. This proves the effectiveness of BFAM. The

TTCs of BFAM and AAM-GAN against RF-based HIDS are

much more than the time cost against the other classifiers,

which partly shows that ensemble models are more robust

TABLE 5. Computational efficiency of BFAM against machine learning
based HIDSs.

VOLUME 8, 2020 128257



S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

against AEs and the efficiency of BFAM against ensemble

models needs to be improved.

B. CRAFTING ADVERSARIAL EXAMPLES AGAINST

MACHINE LEARNING BASED AMDS

DREBIN dataset contains 123453 benign Android applica-

tions and 5560malicious Android applications. Arp et al. [27]

transform every application into a binary indicator vector

whose component indicates whether the corresponding fea-

ture exists in the target application. If the feature exists in

the target application, the corresponding component of the

input vector is set to 1. Otherwise, the component is set

to 0 [8]. Each application will be transformed into a vector

with 54533 features through this method. All the features are

grouped into 8 feature sets as shown in Table 3.

We randomly pick out 45000 benign applications as normal

samples. All the 5560malicious applications are used asmali-

cious samples. The benign applications are labeled as 0 and

the malicious applications are labeled as 1. Thirty percent

of all the selected samples are used as the test set and the

others are used as the training set. The AAM-GAN still shares

the training set with the target classifiers to achieve a better

attack performance. The 10-fold cross-validation and grid

search are employed to search the optimal parameters for the

target classifiers. To ensure the functionality of the malicious

applications, we only modify the nonfunctional features of

the applications. Grosse et al. [8] have shown that modifying

the features in S1, S2, S3, and S4 does not influence the

functionality of malicious applications. Therefore, p_index

includes the indexes of features belonging to these four fea-

ture sets. α is still set to 1 because the components of the input

vectors are either 0 or 1.We still train theAAM-GANwith the

RMSProp optimizer and the learning rate is still set to 0.0001.

All the outputs of the generator are clipped into [0, 1]. Then,

all the features which are greater than 0.5 are set to 1 and

the features which are less than or equal to 0.5 are set to 0.

We still employ (8) for AAM-GAN to guarantee that we only

add additional features to original malicious applications.

Table 6 shows the attack performance of BFAM

and AAM-GAN against the machine learning based

AMDSs. BFAM shows excellent attack performance against

LR-based, MLP-based, and NB-based AMDSs, whose ADRs

against AEs are decreased to 0. This means that all the adver-

sarial malicious applications evade the detection of these

target classifiers with their functionality unchanged. BFAM

TABLE 6. Attacks against machine learning based AMDSs.

obtains the same performance as AAM-GAN on LR-based

and MLP-based AMDSs. BFAM outperforms AAM-GAN

on DT-based, NB-based, and RF-based AMDSs. The results

in Table 6 also show that RF classifiers are more robust

against AEs. Especially, there are still 43.08 percent of

adversarial malicious applications generated by AAM-GAN

being detected by RF-based AMDS. Although the attack

performance of BFAM on RF classifier is worse than its

attack performance on the other classifiers, the ADR of

RF-based AMDS against adversarial malicious applications

generated by BFAM is 17.25 percent, which is far less than

43.08 percent of AAM-GAN.

The computational efficiency of BFAM against machine

learning based AMDSs is shown in Table 7. BFAM consumes

much less time to generate AEs against LR-based, DT-based,

MLP-based, and NB-based AMDSs than AAM-GAN. The

TTCs of BFAM and AAM-GAN against RF-based AMDS

are still more than their TTCs against the other classifiers.

However, the TTC of BFAM against RF-based AMDS is just

a quarter of that of AAM-GAN. The results show that our

method is more efficient than the GAN-based attack method

in the setting of Android malware detection.

TABLE 7. Computational efficiency of BFAM against machine learning
based AMDSs.

C. CRAFTING ADVERSARIAL EXAMPLES AGAINST

MACHINE LEARNING BASED NIDS

NSL-KDD dataset is a benchmark dataset for network intru-

sion detection. There are 41 features for each record in the

NSL-KDD dataset, which consist of 32 numeric features,

6 binary features, and 3 nominal features. Because machine

learning classifiers can only process numeric values, the orig-

inal records need to be preprocessed before feeding them

to machine learning classifiers. Normally, the preprocessing

includes two steps [2], [10], [15]: 1) Firstly, the 3 nomi-

nal features, i.e., ‘‘protocol type’’, ‘‘service’’, ‘‘flag’’, are

transformed into discrete values. For example, the feature,

‘‘protocol type’’, has three types of values: TCP, UDP, and

ICMP, which will be transformed into 1, 2, 3 correspondingly.

2) Secondly, all the features are scaled into [0,1] with the

Min-Max method to avoid the influence of different feature

ranges. The Min-Max method can be formalized as (9) where

x is the feature value before normalization, x ′ is the feature

value after normalization, xmin is the minimum value of this

feature over the whole dataset, and xmax is the maximum

value of this feature over the whole dataset.

x ′ =
x − xmin

xmax − xmin
. (9)

128258 VOLUME 8, 2020



S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

There are 4 kinds of malicious traffic data in NSL-KDD.

Because the network intrusion detection is regarded as binary

classification in this paper, all the malicious traffic data

are labeled as 1 and all the normal traffic data are labeled

as 0. The NSL-KDD dataset contains training data and test

data. We train the target classifiers and AAM-GAN with

the whole training set. The 10-fold cross-validation and grid

search are utilized to find the target classifiers which show

the best detection performance. The whole test set is used

to validate the detection performance of the target classi-

fiers and generate AEs against the target classifiers. We still

only modify the nonfunctional features in a traffic record.

Table 8 [37] shows the functional features of each kind of

malicious traffic. The ‘‘Yes’’ in Table 8 indicates that the

features in the corresponding feature set are functional for

that attack category. Because the functional features of each

attack category are different, we generate AEs of each attack

category separately. Therefore, p_index contains the indexes

of nonfunctional features of the corresponding attack cate-

gory when BFAM generates AEs of each attack category.

In Section V.A and V.B, the inputs for the target classifiers

are all binary indicator vectors whose components are either 0

or 1. The α of BFAM can only be set to 1 in the first two

scenarios. In the context of NIDS, the input vectors after

normalization are the combination of features in continuous

values and features in binary values. All the features are in

the range of [0,1]. Therefore, the α can be set to any value

between 0 and 1 for the continuous features in this setting.

We observe the impact of α on the attack performance of

BFAM, which is shown in Fig. 4. For the binary features

of input vectors, we transform the modified features whose

values are greater than 0.5 into 1 and the modified features

whose values are less than or equal to 0.5 into 0. With the

increase of α, ADRs of LR-based NIDS against AEs of each

attack category gradually decrease. The same phenomenon

can be observed on the other machine learning based NIDSs.

Therefore, we still set α to 1 for BFAM to generate AEs in

the following experiments. We adopt the same parameters

as those in Section V.A and V.B to train the AAM-GAN.

Because the ranges of functional features of different attack

categories are different, we train different AAM-GANs for

different kinds of attack data on the same target classifier to

better evaluate the attack performance of AAM-GAN.

TABLE 8. Functional features of each attack category in the NSL-KDD
dataset.

The attack performance of BFAM and AAM-GAN against

machine learning based NIDSs are shown in Table 9. Because

the number of samples of U2R is small and samples of

FIGURE 4. Impact of α on the attack performance of BFAM against
LR-based NIDS.

U2R and R2L own the same functional features and similar

characteristics, we combine them into one group. Due to the

small number of samples of U2R and R2L in the training

set, the original detection rate of the target classifiers against

them is low. Every row in Table 9 shows the original detection

rate of a certain kind of target classifier against a certain

kind of attack and the adversarial detection rate of the tar-

get classifier against the corresponding adversarial malicious

traffic generated by BFAM and AAM-GAN. We can observe

that different categories of adversarial malicious traffic gen-

erated by AAM-GAN perform differently on the same target

classifier. For instance, the ADR of NB-based NIDS against

adversarial malicious traffic of DoS generated byAAM-GAN

is 33.86 percent. However, the ADR of NB-based NIDS

against adversarial malicious traffic of Probe generated by

AAM-GAN is just 4.88 percent. The similar phenomena

can be observed on DT-based, and MLP-based NIDSs. This

proves the instability of GAN-based attack methods. The

results in Table 9 show that BFAM reduces the ADRs of all

the target classifiers greatly and shows better stability than

AAM-GAN. BFAM outperforms AAM-GAN in most cases.

However, AAM-GAN shows better performance than BFAM

when they generate AEs of Probe against LR-based and

NB-based NIDSs. RF still shows better robustness against

AEs.

The computational efficiency of BFAM against machine

learning based NIDSs is shown in Table 10. Just like the

results in Table 5 and Table 7, BFAM consumes much less

time than AAM-GAN to produce the same number of AEs.

The TTCs of BFAM and AAM-GAN on RF are still much

more than their TTCs on the other target classifiers.

D. THE IMPACT OF THE NUMBER OF FEATURES ALLOWED

TO BE MODIFIED ON ATTACK PERFORMANCE

In this section, we want to discuss the influence of the number

of features permitted to be modified in input vectors on

the attack performance of BFAM and AAM-GAN. As dis-

cussed in Section III.A, the constraint of imperceptibility on

AEs in computer vision is substituted by the limitation of

guaranteeing the functionality of the adversarial examples in

VOLUME 8, 2020 128259



S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

TABLE 9. Attacks against machine learning based NIDSs.

TABLE 10. The computational efficiency of BFAM against machine
learning based NIDSs.

cybersecurity. This means that only nonfunctional features of

input vectors can be modified, which usually increases the

difficulty of generating AEs. We evaluate the attack perfor-

mance of BFAMandAAM-GAN against the target classifiers

when different numbers of modifiable features are available.

Specifically, we specify different numbers of features allowed

to be modified for BFAM and AAM-GAN to observe the

changes in their attack performance.

The attack performance of BFAM and AAM-GAN against

machine learning based AMDSs with different numbers of

features allowed to be modified is shown in Fig. 5. The

BFAM_A and AAM-GAN_A in Fig. 5 indicate that BFAM

and AAM-GAN generate AEs by modifying both functional

features and nonfunctional features. BFAM_NF and AAM-

GAN_NF indicate that AEs are produced by only altering

the nonfunctional features of the input vectors. The results

in Fig. 5 indicate that BFAM and AAM-GAN show better

attack performance when there is no restriction on the number

of modifiable features. The ADRs of DT-based, NB-based,

FIGURE 5. Impact of the number of modifiable features on the attack
performance against machine learning based AMDSs.

and RF-based AMDSs increase with the decrease in the

number of modifiable features, which implies the degradation

of attack performance of adversarial attack methods. We can

also observe that the performance degradation of BFAM

is slower than that of AAM-GAN. For instance, the ADR

of the RF-based AMDS against AEs generated by BFAM

increases from 0 percent to 17.25 percent after limiting the

number of modifiable features. The increase of the ADR

against AEs generated by AAM-GAN is from 12.8 percent

to 43.08 percent. The ADRs of LR-based and MLP-based

AMDSs remain unchanged at 0 percent after restricting the

number of modifiable features, which implies that not all the

features are useful for generating AEs. We just need to find

the key features which can influence the output of the target

classifier and modify them appropriately to produce AEs,

which proves the point made in Section IV.

The influence of the number of features allowed to be

modified on the attack performance against machine learning

based NIDSs is shown in Fig. 6.We evaluate the impact of the

number of modifiable features on different attack categories

in the NSL-KDD dataset separately because attack data of

128260 VOLUME 8, 2020



S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

FIGURE 6. Impact of the number of modifiable features on the attack
performance against machine learning based NIDSs. (a) displays the
impact on the attack performance of AEs of DoS; (b) displays the impact
on the attack performance of AEs of Probe; (c) displays the impact on the
attack performance of AEs of R2L&U2R.

different categories own different functional features. We still

put R2L and U2R into one group. We can draw the same

conclusion fromFig. 6. The attackmethods show better attack

performance when there is no restriction on the number of

modifiable features. The degradation of the attack perfor-

mance of BFAM is slower than that of AAM-GAN when

there is a constraint on the number of modifiable features.

Besides, we can observe that the performance of AEs of some

attack categories generated by AAM-GAN on some target

classifiers is better than that of AEs generated byBFAMwhen

there is no limitation on the number of features permitted to

be modified. For example, the results in Fig. 6(a) show that

AEs produced by AAM-GAN_A achieve a lower ADR than

those produced by BFAM_A on MLP-based and NB-based

NIDSs.

The results in these figures prove that BFAM ismore robust

and effective than AAM-GAN when there is a restriction on

the number of modifiable features, which is important for the

adversarial attack methods in cybersecurity. The impact of

the number of modifiable features on the attack performance

against machine learning based HIDSs is not displayed in

this section because the ADR of machine learning based

HIDSs against AEs remains the same even when there is

a restriction on the number of modifiable features. This is

because we only add system calls into the original system

call traces to guarantee the functionality of the inputs. The

nonfunctional features of input vectors for machine learning

based HIDSs are the ones whose values are 0 in this setting.

However, BFAM and AAM-GAN clip the modified features

into the range of [0,1] during the generation. AEs that are

generated with all the features allowed to be altered and AEs

that are generated with just nonfunctional features allowed to

be altered obtain the same attack performance.

E. COMPREHENSIVE ANALYSIS

The following analysis and conclusion are given based on the

results of the preliminary experiments above:

1) BFAM is simple to implement and avoids the tedious

training of GAN-based methods, which makes BFAM

more efficient in computation. The results in Table 5,

Table 7, and Table 10 prove that BFAM costs much

less time to generate AEs than AAM-GAN in various

scenarios of cybersecurity.

2) BFAM outperforms the GAN-based attack method in

most cases. Especially, when there is a restriction on

the number of features allowed to be modified, BFAM

is more effective and robust than AAM-GAN.

3) BFAM shows excellent attack performance against

state-of-the-art machine learning classifiers in cyber-

security. Most AEs generated by BFAM can evade the

detection of the target machine learning based systems

in cybersecurity, which means state-of-the-art machine

learning algorithms are vulnerable to AEs. Among all

the target classifiers, RF classifiers are the most robust

against AEs.

4) BFAM is a black-box attack method, which only

requires the confidence scores of the target classifiers

to generate AEs. This makes BFAM closer to the real

condition and suitable for more adversarial tasks in

cybersecurity than the white-box attacks.

VOLUME 8, 2020 128261



S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

5) Currently, the training of the GAN-based attack meth-

ods is unstable which is reflected in the instability of

the attack performance of AAM-GAN. For instance,

the ADR of MLP-based NIDS against AEs of Probe

generated by AAM-GAN is 50.81 percent in Table 9.

Nevertheless, the ADR of NB-based NIDS against AEs

of Probe generated by AAM-GAN is just 4.88 percent.

The GAN-based methods show better attack perfor-

mance when there is no restriction on the number of

modifiable features. For example, when all the features

can be modified, AAM-GAN decreases the ADRs of

LR-based, MLP-based, and NB-based NIDSs against

AEs of Probe to 0 percent, as shown in Fig. 6(b). How-

ever, we need to keep the functional features unmod-

ified to guarantee the validity of the AEs in the real

world, which hinders the further application of the

existing GAN-based attack methods.

6) GAN-based attack methods can produce AEs only with

labels. BFAMneeds the confidence scores outputted by

the target classifiers to instruct the generation of AEs,

which means that the proposed method is currently not

fit for being used to evaluate the machine learning clas-

sifiers which only output labels. BFAM requires to be

improved to be applicable for more machine learning

classifiers in future work.

7) Comparing the results in Table 4, Table 6, and Table 9,

we can conclude that BFAM performs better on

machine learning based HIDSs and AMDSs whose

inputs are high dimensional sparse vectors. The intu-

itive hypothesis for this is that BFAM is an exhaustive

algorithm for which more features allowed to be mod-

ified means more opportunities to mislead the target

classifiers.

VI. CONCLUSIONS

The preliminary experimental results in this paper indicate

that the proposed method, BFAM, shows excellent attack per-

formance against the common machine learning algorithms

utilized in cybersecurity. Therefore, BFAM can be used to

evaluate the robustness of machine learning based systems in

cybersecurity against AEs. BFAM outperforms the state-of-

the-art GAN-based attack methods and produces AEs more

simply and efficiently. BFAM decreases the detection rate of

the target classifiers against adversarial malicious examples

greatly without changing the functionality of these malicious

examples. This usually means that most of the adversarial

malicious examples evade the detection of the target classi-

fiers, which is unacceptable for the security-critical systems

in cybersecurity. BFAM operates in a black-box way and

only requires the confidence scores of the target classifiers

to generate AEs, which makes BFAM available for more

adversarial attack tasks in cybersecurity.

Sometimes, the adversaries can only access the labels pre-

dicted by the target classifier. BFAM is not able to work in

this case, as discussed in Section V.E. In future work, we are

going to improve BFAM so that it can generate AEs only

with the labels and can be used for more scenarios and target

classifiers.

REFERENCES

[1] J. Li, L. Sun, Q. Yan, Z. Li, W. Srisa-An, and H. Ye, ‘‘Significant

permission identification for machine-learning-based Android malware

detection,’’ IEEE Trans. Ind. Informat., vol. 14, no. 7, pp. 3216–3225,

Jul. 2018.

[2] A. L. Buczak and E. Guven, ‘‘A survey of data mining and machine

learning methods for cyber security intrusion detection,’’ IEEE Commun.

Surveys Tuts., vol. 18, no. 2, pp. 1153–1176, 2nd Quart., 2016.

[3] T. T. T. Nguyen and G. Armitage, ‘‘A survey of techniques for Internet

traffic classification using machine learning,’’ IEEE Commun. Surveys

Tuts., vol. 10, no. 4, pp. 56–76, 4th Quart., 2008.

[4] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,

and R. Fergus, ‘‘Intriguing properties of neural networks,’’ 2013,

arXiv:1312.6199. [Online]. Available: http://arxiv.org/abs/1312.6199

[5] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and

A. Swami, ‘‘The limitations of deep learning in adversarial settings,’’

in Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P), Mar. 2016,

pp. 372–387.

[6] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, ‘‘DeepFool: A simple

and accurate method to fool deep neural networks,’’ in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2574–2582.

[7] N. Carlini and D. Wagner, ‘‘Towards evaluating the robustness of neural

networks,’’ inProc. IEEE Symp. Secur. Privacy (SP),May 2017, pp. 39–57.

[8] K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,

‘‘Adversarial examples for malware detection,’’ in Proc. Eur. Symp. Res.

Comput. Secur. Cham, Switzerland: Springer, 2017, pp. 62–79.

[9] K. Yang, J. Liu, C. Zhang, and Y. Fang, ‘‘Adversarial examples against the

deep learning based network intrusion detection systems,’’ in Proc. IEEE

Mil. Commun. Conf. (MILCOM), Oct. 2018, pp. 559–564.

[10] Z. Wang, ‘‘Deep learning-based intrusion detection with adversaries,’’

IEEE Access, vol. 6, pp. 38367–38384, 2018.

[11] X. Liu, X. Du, X. Zhang, Q. Zhu, H. Wang, and M. Guizani, ‘‘Adversarial

samples on Android malware detection systems for IoT systems,’’ Sensors,

vol. 19, no. 4, p. 974, Feb. 2019.

[12] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,

S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’ in

Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2672–2680.

[13] Y. Hong, U. Hwang, J. Yoo, and S. Yoon, ‘‘How generative adversarial

networks and their variants work: An overview,’’ ACM Comput. Surv.,

vol. 52, no. 1, p. 10, 2019.

[14] W. Hu and Y. Tan, ‘‘Generating adversarial malware examples for black-

box attacks based on GAN,’’ 2017, arXiv:1702.05983. [Online]. Available:

http://arxiv.org/abs/1702.05983

[15] Z. Lin, Y. Shi, and Z. Xue, ‘‘IDSGAN: Generative adversarial networks for

attack generation against intrusion detection,’’ 2018, arXiv:1809.02077.

[Online]. Available: http://arxiv.org/abs/1809.02077

[16] Y. Xin, L. Kong, Z. Liu, Y. Chen, Y. Li, H. Zhu, M. Gao, H. Hou, and

C. Wang, ‘‘Machine learning and deep learning methods for cybersecu-

rity,’’ IEEE Access, vol. 6, pp. 35365–35381, 2018.

[17] S. Y. Yerima and S. Sezer, ‘‘DroidFusion: A novel multilevel classifier

fusion approach for Android malware detection,’’ IEEE Trans. Cybern.,

vol. 49, no. 2, pp. 453–466, Feb. 2019.

[18] N. M. Shajideen and V. Bindu, ‘‘Spam filtering: A comparison between

different machine learning classifiers,’’ in Proc. 2nd Int. Conf. Elec-

tron., Commun. Aerosp. Technol. (ICECA), Coimbatore, India, Mar. 2018,

pp. 1919–1922.

[19] A. Fatima, R. Maurya, M. K. Dutta, R. Burget, and J. Masek, ‘‘Android

malware detection using genetic algorithm based optimized feature selec-

tion and machine learning,’’ in Proc. 42nd Int. Conf. Telecommun. Signal

Process. (TSP), Budapest, Hungary, Jul. 2019, pp. 220–223.

[20] H. Yao, D. Fu, P. Zhang, M. Li, and Y. Liu, ‘‘MSML: A novel multilevel

semi-supervised machine learning framework for intrusion detection sys-

tem,’’ IEEE Internet Things J., vol. 6, no. 2, pp. 1949–1959, Apr. 2019.

[21] J. Ren, J. Guo, W. Qian, H. Yuan, X. Hao, and H. Jingjing, ‘‘Building

an effective intrusion detection system by using hybrid data optimization

based on machine learning algorithms,’’ Secur. Commun. Netw., vol. 2019,

Jun. 2019, Art. no. 7130868, doi: 10.1155/2019/7130868.

[22] D. S. Vijayakumar and S. Ganapathy, ‘‘Machine learning approach to

combat false alarms in wireless intrusion detection system,’’ Comput. Inf.

Sci., vol. 11, no. 3, pp. 67–81, 2018.

128262 VOLUME 8, 2020

http://dx.doi.org/10.1155/2019/7130868


S. Zhang et al.: Brute-Force Black-Box Method to Attack Machine Learning-Based Systems in Cybersecurity

[23] E. Sahin, M. Aydos, and F. Orhan, ‘‘Spam/ham e-mail classification using

machine learning methods based on bag of words technique,’’ in Proc. 26th

Signal Process. Commun. Appl. Conf. (SIU), İzmir, Turkey, May 2018,

pp. 1–4.

[24] N. Akhtar and A. Mian, ‘‘Threat of adversarial attacks on deep learning in

computer vision: A survey,’’ IEEE Access, vol. 6, pp. 14410–14430, 2018.

[25] A. Chawla, B. Lee, S. Fallon, and P. Jacob, ‘‘Host based intrusion detection

system with combined CNN/RNNmodel,’’ in Proc. Joint Eur. Conf. Mach.

Learn. Knowl. Discovery Databases. Cham, Switzerland: Springer, 2018,

pp. 149–158.

[26] G. Creech and J. Hu, ‘‘Generation of a new IDS test dataset: Time to

retire the KDD collection,’’ in Proc. IEEE Wireless Commun. Netw. Conf.

(WCNC), Apr. 2013, pp. 4487–4492.

[27] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck, ‘‘Drebin:

Effective and explainable detection of Android malware in your pocket,’’

in Proc. Netw. Distrib. Syst. Secur. Symp., 2014, pp. 23–26.

[28] R. Taheri, R. Javidan, M. Shojafar, P. Vinod, and M. Conti, ‘‘Can machine

learning model with static features be fooled: An adversarial machine

learning approach,’’ Cluster Comput., Mar. 2020, doi: 10.1007/s10586-

020-03083-5.

[29] B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto, C. Eckert,

and F. Roli, ‘‘Adversarial malware binaries: Evading deep learning for

malware detection in executables,’’ inProc. 26th Eur. Signal Process. Conf.

(EUSIPCO), Sep. 2018, pp. 533–537.

[30] F. Zhang, P. P. K. Chan, B. Biggio, D. S. Yeung, and F. Roli, ‘‘Adversarial

feature selection against evasion attacks,’’ IEEE Trans. Cybern., vol. 46,

no. 3, pp. 766–777, Mar. 2016.

[31] A. Piplai, S. S. L. Chukkapalli, and A. Joshi, ‘‘NAttack! Adversarial

attacks to bypass a GAN based classifier trained to detect

network intrusion,’’ 2020, arXiv:2002.08527. [Online]. Available:

http://arxiv.org/abs/2002.08527

[32] M. Arjovsky, S. Chintala, and L. Bottou, ‘‘Wasserstein GAN,’’ 2017,

arXiv:1701.07875. [Online]. Available: http://arxiv.org/abs/1701.07875

[33] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas,

A. Passos, and D. Cournapeau, ‘‘Scikit-learn: Machine learning in

Python,’’ J. Mach. Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.

[34] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga, and A. Lerer, ‘‘Automatic differentiation in

PyTorch,’’ inProc. NIPS AutodiffWorkshop, FutureGradient-BasedMach.

Learn. Softw. Tech-Niques., 2017, pp. 1–4.

[35] J. Saxe and K. Berlin, ‘‘Deep neural network based malware detection

using two dimensional binary program features,’’ in Proc. 10th Int. Conf.

Malicious Unwanted Softw. (MALWARE), Oct. 2015, pp. 11–20.

[36] R. Taheri, M. Ghahramani, R. Javidan, M. Shojafar, Z. Pooranian, and

M. Conti, ‘‘Similarity-based Android malware detection using Hamming

distance of static binary features,’’ Future Gener. Comput. Syst., vol. 105,

pp. 230–247, Apr. 2020.

[37] W. Lee and S. J. Stolfo, ‘‘A framework for constructing features andmodels

for intrusion detection systems,’’ ACM Trans. Inf. Syst. Secur., vol. 3, no. 4,

pp. 227–261, Nov. 2000.

SICONG ZHANG was born in Chongqing, China.

He received the B.E. degree in electrical engi-

neering and automation from the Civil Aviation

University of China and the M.E. degree in com-

puter science and technology from Guizhou Nor-

mal University. He is currently pursuing the Ph.D.

degree in software engineering with Guizhou Uni-

versity, Guiyang, China. His research interests

include cybersecurity, deep learning, and opti-

mization theory.

XIAOYAO XIE (Member, IEEE) was born in

Guizhou, China. He is currently a Professor and

a Ph.D. Supervisor with the Key Laboratory

of Information and Computing Science Guizhou

Province, Guizhou Normal University, Guiyang,

China. He is also the Director of the Key Labo-

ratory. He is also the Vice President of Guizhou

Normal University. His research interests include

IPv6, 5G, and cybersecurity.

YANG XU was born in Shandong, China.

He received the Ph.D. degree in computer software

and theory from Guizhou University. He is cur-

rently a Professor and a master’s Supervisor with

the Key Laboratory of Information and Comput-

ing Science Guizhou Province, Guizhou Normal

University, Guiyang, China. His research interests

include cybersecurity and machine learning. He is

a Senior Member of the China Computer Federa-

tion (CCF).

VOLUME 8, 2020 128263

http://dx.doi.org/10.1007/s10586-020-03083-5
http://dx.doi.org/10.1007/s10586-020-03083-5

