
A BSP/CGM Algorithm for Finding All
Maximal Contiguous Subsequences of a

Sequence of Numbers⋆

Carlos Eduardo Rodrigues Alves1, Edson Norberto Cáceres2, and Siang Wun
Song3

1 Universidade São Judas Tadeu, Brazil,
prof.carlos r alves@usjt.br,

2 Universidade Federal de Mato Grosso do Sul, Brazil
edson@dct.ufms.br,

3 Universidade de São Paulo, Brazil,
song@ime.usp.br

Abstract. Given a sequence A of real numbers, we wish to find a list
of all non-overlapping contiguous subsequences of A that are maximal.
A maximal subsequence M of A has the property that no proper sub-
sequence of M has a greater sum of values. Furthermore, M may not
be contained properly within any subsequence of A with this property.
This problem can be solved sequentially in linear time. We present a
BSP/CGM algorithm that uses p processors and takes O(|A|/p) time
and O(|A|/p) space per processor. The algorithm uses a constant number
of communication rounds of size at most O(|A|/p). Thus the algorithm
achieves linear speed-up and is highly scalable.

1 Introduction

Given a sequence of real numbers, the maximum subsequence problem finds the
contiguous subsequence with the maximum sum [3]. A more general problem is
the all maximal subsequences problem [8] which finds a list of all non-overlapping
contiguous subsequences with maximal sum. These two problems arise in several
contexts in Computational Biology. Many applications are presented in [8], to
identify transmembrane domains in proteins expressed as a sequence of amino
acids and to discover CpG islands. Csuros [4] mentions other applications that
require the computation of such subsequences, in the analysis of protein and
DNA sequences, determination of isochores in DNA sequences, etc.

Linear time sequential algorithms are known to solve both problems [3, 8].
Wen [10] presents a EREW PRAM algorithm that solves the maximum subse-
quence problem of n given numbers in O(log n) time using O(n/ log n) processors.

⋆ Partially supported by CNPq 30.0317/02-6, 30.5218/03-4, 55.0094/05-9 and
62.0123/04-4, and FUNDECT-MS Proc. 41/100117/03. We also acknowlegde the
comments of the anonymous referees.

For this same problem, Alves, Cáceres and Song [1] present a BSP/CGM paral-
lel algorithm on p processors that requires O(n/p) computing time and constant
number of communication rounds. Dai and Su [5] present a PRAM EREW work-
optimal algorithm that solve the all maximal subsequences problem in O(log n)
time with O(n) operations.

In this paper we present a BSP/CGM algorithm to solve the all maximal sub-
sequences problem. Given a sequence A of numbers, this algorithm uses p pro-
cessors and finds all the maximal subsequences in O(|A|/p) time, with O(|A|/p)
space per processor, and requires a constant number of communication rounds
in which at most O(|A|/p) data are transmitted. Unlike the parallel solution for
the basic maximum subsequence problem, it is not at all intuitive that one can
find a parallel algorithm for this problem that requires only a constant number
of communication rounds. In this sense, this is also an important result in a
theoretical viewpoint. Finding a BSP/CGM algorithm with constant number of
communication rounds for a problem with linear sequential complexity is not
always possible, as shown by the list ranking problem where the best known
BSP/CGM algorithm requires O(log n) communication rounds [7].

2 Preliminary Definitions and Results

Given a sequence A of real numbers, denote its elements by ai, 1 ≤ i ≤ |A|.
Subsequences of A are indicated as Aj

i = (ai+1, ..., aj). The superscript indicates
the rightmost position in the subsequence, and the subscript is one less than the
leftmost position. If the subscript and the superscript are equal, the subsequence
is empty. A particular subsequence of A can be denoted by some other upper-
case letter, but all indices will refer to sequence A. To indicate the indices of
the first (leftmost) and last (rightmost) positions of a sequence X we use L (X)

and R (X). For coherence with the previous notation we have X = A
R(X)
L(X) =

(aL(X)+1, ..., aR(X)). Notice that L (X) indicates one position to the left of the
actual beginning of X . The concatenation of sequences X1, X2, ... Xn will be
denoted by 〈X1, X2, ...Xn〉. The sum of the values of a subsequence X will be
denoted by Score(X). If X is empty, then we define its score to be zero. As the
sum of prefixes of A is very important in this paper, we use PS (j) to denote
Score(Aj

0). We consider PS (0) = 0. Notice that Score(Aj
i) = PS (j) − PS (i).

For a subsequence X = Aj
i , the minimum and the maximum among all values

of PS (k), for i ≤ k ≤ j, will be denoted by Min(X) and Max (X), respectively.
We consider the BSP/CGM (Bulk Synchronous Parallel/Coarse-Grained Mul-

ticomputer) model [9, 6], with p processors each with O(n/p) local memory,
where n is the input size of the problem. A BSP/CGM algorithm consists of al-
ternating local computation and global communication rounds. In each commu-
nication round, each processor can send/receive messages with at most O(n/p)
data. A BSP/CGM algorithm attempts to minimize the number of communica-
tion rounds as well as the total local computation time.

A maximum scoring subsequence of X is one with the largest score among
all scores of subsequences of X . When ties occur, we choose the subsequence of

minimum length. If there is no positive number in X , we assume that there is
no maximum scoring subsequence. It is easy to see that prefixes and suffixes of
a maximum subsequence always have positive scores, because the deletion of a
prefix or suffix with non-positive score would lead to a better subsequence. The
problem of finding all maximal subsequences of A is more complicated. Ruzzo
and Tompa [8] define the set of maximal subsequences recursively, as follows.

Definition 1. Given a sequence A of real numbers, the set of maximal subse-
quences of A is empty if A has no positive values. Otherwise, let 〈A1, M, A2〉 be
a decomposition of A in three subsequences where M is the maximum scoring
subsequence of A (A1 and A2 may be empty sequences). Then the set of maximal
subsequences of A is the union of the set {M}, the set of maximal subsequences
of A1, and the set of maximal subsequences of A2.

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

ai 5 -3 -1 5 -9 0 3 3 7 -9 3 -6 3 -1 0 3 -3 0 7 -4 0 -6

Fig. 1. Example sequence to be used throughout the text.

Consider the sequence A = (a1, a2, . . . , a22) of Figure 1. The maximal subse-
quences are A4

0 = (5, -3, -1, 5), A9
6 = (3, 3, 7), A11

10 = (3), and A19
12 = (3, -1, 0,

3, -3, 0, 7), with respective scores of 6, 13, 3, and 9.
Ruzzo and Tompa also give two necessary and sufficient properties that a

subsequence X must have to be maximal in sequence A. They are stated in the
following theorem. For a proof, see [8].

Theorem 1. A subsequence X is maximal in A iff it has both properties below:

Property Pr1 For any proper subsequence Y of X, Score(Y) < Score(X).
Property Pr2 There is no proper supersequence of X that has Property Pr1.

Notice that the score of a sequence with property Pr1 must be positive.
Subsequences of A that have property Pr1 will be called Pr1-subsequences. We
can restate the definition of a maximal subsequence in terms of these properties.

Definition 2. Given a sequence A of real numbers, the list of maximal subse-
quences of A, denoted MList (A), is the list of all subsequences that have Prop-
erties Pr1 and Pr2, ordered with respect to L (.). This list is indexed starting at
1 with the leftmost subsequence.

Property Pr1 can also be stated in terms of prefix sums, by the following
lemma. In this paper we omit all the proofs. They can be found in [2].

Lemma 1. A subsequence Aj
i is Pr1-subsequence iff for all m, i < m < j,

PS (i) < PS (m) < PS (j).

5
−3

−1

5
−9

0
3

3

7 −9

3

−6
3

−1

0

3 −3

0

7
−4

0 −6

Fig. 2. Sequence A = (5,−3,−1, . . . , 0,−6) and some Pr1-subsequences.

In Figure 2, we plot the function PS (.), so that positive (negative) val-
ues in the sequence are represented by ascending (descending) line segments. A
Pr1-subsequence X is indicated by a rectangular box with (L (X), PS (L (X)))
and (R (X), PS (R (X))) as lower-left and upper-right corners, respectively. The
plotted curve touches the box only in these corners. Notice that the first three
Pr1-subsequences in Figure 2 are maximal subsequences of A, but the last three
are not (they are subsequences of the same A-maximal, namely A19

12).
We say that Aj

i , i < j, is a Pr1-prefix if PS (i) < Min(Aj
i+1) and it is a

Pr1-suffix if Max (Aj−1
i) < PS (j). A Pr1-subsequence is both a Pr1-prefix and

a Pr1-suffix.

Corollary 1. If P is a Pr1-prefix and S is a Pr1-suffix, 〈P, S〉 is a Pr1-subse-
quence iff Min(P) < Min(S) and Max (P) < Max (S).

One can observe [8] that (i) any Pr1-subsequence of a sequence A is contained
in a maximal subsequence of A (maybe not properly), and (ii) given a sequence
A, any two distinct maximal subsequences of A do not overlap or touch each
other. The parallel algorithm is based on finding lists of maximal subsequences in
segments of the original sequence A. Consider a subsequence X of A. We will say
that a subsequence is an X-maximal subsequence, or just an X-maximal, if it is
maximal in X , that is, it is a Pr1-subsequence and has no proper supersequence
that is a Pr1-subsequence of X . (As an abuse of our notation we write the plural
of X-maximal as X-maximals.) Thus we want to find the set of all A-maximals.

Lemma 2. Let Z = 〈X, Y 〉 for some non-empty X and Y . Then there is at
most one Z-maximal M that overlaps both X and Y . If there is such M , it has
an X-maximal as a prefix and a Y -maximal as a suffix. The X-maximals to the
left of M and the Y -maximals to the right of M are also Z-maximals.

This lemma shows that it is possible to build MList (A) working incremen-
tally. Ihis is important for the proposed parallel algorithm, where the sequence
A is divided into subsequences that are treated separately. Their maximal sub-
sequences are used later to find the A-maximals. The parallel algorithm deals
with the following subproblem: given a subsequence X of A and its list of max-
imal subsequences MList (X), find, if possible, an X-maximal that is a prefix
(or suffix) of a larger A-maximal. This clearly involves MList (X) and the rest
of sequence A. However, some X-maximals need not be considered as possible

suffix candidates
prefix candidates

Fig. 3. A sequence X, MList (X), PList (X) and SList (X). The first (last) maximal
is not a suffix (prefix) candidate because of the first condition of the definition. The
other maximals that are not candidates fall in the second condition - observe the
bottom of the prefix candidates and the top of the suffix candidates. The descending
lines represent sequences of non-positive numbers.

prefixes or suffixes of larger A-maximals, regardless of what is outside X . The
efficiency of our algorithm is based on this important notion, so we formalize it
in the following definitions and lemmas. We deal with prefix candidates first.

Definition 3. Given a subsequence X of A, PList (X) is the ordered list of all
X-maximals, with the exception of those X-maximals M for which one of the
two conditions are satisfied: (1) Min(M) ≥ PS (R (X)), or (2)there is an X-
maximal N to the right of M such that Min(M) ≥ Min(N). (The elements of
PList (X) are indexed starting at 1 with the leftmost subsequence.)

Informally, PList (X) gives us the list of all X-maximals that are potential
candidates to be merged to the right to give larger maximals. Notice that we
excluded from PList (X) those X-maximals (satisfying conditions 1 and 2) that
can never give larger maximals. Consider X = A14

0 of the example sequence
(see Figure 1 and Figure 2). There are four X-maximals, namely A4

0, A9
6, A11

10,
and A13

12 (indicated by the first four boxes of Figure 2). A4
0 does not belong to

PList (X) because of condition 1. A11
10 does not belong to PList (X) because of

both conditions 1 and 2. Thus PList (X) = (A9
6, A13

12).
We have following properties [2]: (i) If X is a subsequence of A, PList (X)

contains all X-maximals that can be a proper prefix of an A-maximal, (ii) if
M is a sequence in PList (X) and i ∈]L (M) ,R (X)] then Min(M) < PS (i),

that is, A
R(X)
L(M) is a Pr1-prefix, and (iii) if M is a sequence in PList (X) and

i ∈]R (M) ,R (X)] then Max (M) ≥ PS (i). A consequence of these properties
is that PList (X) is in a non-increasing order of Max (.) and a strictly increasing
order of Min(.). Figure 3 illustrates PList (X) (and SList (X), defined shortly).

We also a need similar definition for possible suffixes of A-maximals. The
associated properties are given below. Notice the exchanging roles of Max (.)
and Min(.), “left” and “right”, etc.

Definition 4. Given a subsequence X of A, SList (X) is an ordered list of all
X-maximals, with the exception of those X-maximals N for which one of the
two conditions below are satisfied: (1) Max (N) ≤ PS (L (X)), or (2) there is a
X-maximal M to the left of N such that Max (N) ≤ Max (M). (The elements of
SList (X) are indexed starting at 1 with the rightmost subsequence.)

Properties: (i-a) If X is a subsequence of A, SList (X) contains all X-maximals
that can be a proper suffix of an A-maximal, (ii-a) if N is a sequence in SList (X)

and i ∈ [L (X) ,R (N)[then PS (i) < Max (N), that is, A
R(N)
L(X) is a Pr1-suffix,

and (iii-a) if N is a sequence in SList (X) and i ∈ [L (X) ,L (N)[then PS (i) ≥
Min(N). Notice that at most one X-maximal may belong to both PList (X)
and SList (X), namely a maximum subsequence of X . Any other element of
SList (X) must be to the left of any element of PList (X). See Figure 3 for an
illustration of PList (X) and SList (X) (when these lists are disjoint).

3 The Parallel Algorithm

Consider p processors P1, P2, . . . , Pp. Assume that the input sequence A is di-
vided into p subsequences, each of size l = ⌈|A|/p⌉ except the last one, which
may be smaller. We call these subsequences AP i = Ali

l(i−1). At the beginning,
each AP i is already stored in the local memory of processor Pi. At the end,
processor Pi will contain the information (position and score) of all A-maximals
that start or end within AP i. Lemma 3 shows how to find the local maximals.

Lemma 3. In O(|A|/p) time and space and with one communication round of
size O(p), each processor Pi may obtain: (i) its local lists of maximals (MList (AP i)),
prefix candidates (PList (AP i)) and suffix candidates (SList (AP i)), and (ii)
PS (L (AP j)), Min(APj) and Max (AP j) for all j ∈ [1, p].

We now consider a basic procedure to join lists of maximals. We will see how
MList (Z) may be obtained from MList (X), MList (Y), PList (X) and SList (Y)
when Z = 〈X, Y 〉. The following lemma states the condition for two local maxi-
mal subsequences to be merged to form a larger one.

Lemma 4. Given M ∈ PList (X) and N ∈ SList (Y), A
R(N)
L(M) is a Pr1-subse-

quence iff Min(M) < Min(N) and Max (M) < Max (N).

Properties (i) and (i-a) state that we may search for a Z-maximal that over-
laps X and Y using only PList (X) and SList (Y). Algorithm 1 does this. We
use Pl = PList (X) and Sl = SList (Y) for short, indexing them as stated in
Definitions 3 and 4. The algorithm returns the indices of the chosen candidates
for prefixes and suffixes of the new Z-maximal.

Algorithm 1: Joining Two Lists of Maximals

Require: Lists Pl and Sl, with |Pl| and |Sl| candidates, respectively.
Ensure: Flag f that indicates if a new maximal was found, indices ip and is of

the candidates that define this maximal.
1: ip ← 1, is ← 1, f ← false
2: while ip ≤ |Pl| and is ≤ |Sl| and not f do

3: if Max (Pl[ip]) ≥ Max (Sl[is]) then

4: ip ← ip + 1
5: else if Min(Pl[ip]) ≥ Min(Sl[is]) then

6: is ← is + 1
7: else

8: f ← true
9: end if

10: end while

It can be shown that, given Z = 〈X, Y 〉, Pl = PList (X) and Sl = SList (Y),
Algorithm 1 finds the only Z-maximal that overlaps X and Y , if it exists, in
O(|Pl|+ |Sl|) time and O(1) additional space.

The parallel algorithm performs a single joining step, using a constant num-
ber of communication rounds, involving all the local maximals found in the local
step. This step is based on the simple observation that a non-local maximal must
start inside some AP i and end in some AP j with 1 ≤ i < j ≤ p, so it must
have some sequence in PList (AP i) as prefix and some sequence in SList (AP j)
as suffix. The problem is to find a relevant set of Pr1-subsequences of A that
cross processor boundaries. By relevant we mean all the A-maximals that cross
processor boundaries must be contained in this set.

We say that a prefix candidate and a suffix candidate match if they define a
Pr1-subsequence of A. The following definition states the conditions for a match.

Lemma 5. For M ∈ PList (AP i) and N ∈ SList (AP)j, 1 ≤ i < j ≤ p, A
R(N)
L(M)

(the sequence that has M as prefix, N as suffix and contains APk, i < k < j)
is a Pr1-subsequence iff Min(M) < Min(N), Max (M) < Max (N), Min(M) <
mini<k<j Min(APk) and Max (N) > maxi<k<j Max (APk).

After the local step described in Lemma 3 the processors cannot determine
which candidates match because they have access only to their own lists of
candidates. However, given a particular prefix or suffix candidate, the extra
conditions of Lemma 5 allow the determination of the processors where a match
for this candidate may be found. So the first step in the global joining operation
is to tag each candidate with the number of the processor(s) that may contain
a match for it.

Lemma 6. For i ∈ [1, p] it is possible to tag all the elements of PList (AP i) and
SList (AP i) based on the values of Max (APj) and Min(AP j) for all j ∈ [1, p].
Each tag indicates which processor may contain a match for a particular candi-
date. Each candidate is tagged at most once, with two exceptions per processor
at the most. The time required is O(|A|/p) and the space required is O(p).

Algorithm 2 presents the tagging process, based on a case by case study
[2]. This algorithm contains the tagging procedure for the prefix candidates of
PList (AP i), called Pl for short. PTagList (i) is called T l for short. Figure 4
illustrates the tagging of prefix candidates.
Algorithm 2: Tagging a List of Prefix Candidates

Require: Lists Pl and T l, with |Pl| and |T l| elements, respectively.
Ensure: Tagging of the elements of Pl.
1: ip ← 1, it ← 1, f ← false

2: while ip ≤ |Pl| and it ≤ |T l| and not f do

3: if Max (Pl[ip]) ≥ Max (T l[it]) then

4: ip ← ip + 1
5: else if Min(Pl[ip]) ≥ Min∗(T l[it]) then

6: it ← it + 1
7: else

8: tag Pl[ip] with tag(T l[it])
9: if Min(Pl[ip]) < Min(T l[it]) then

10: f ← true
11: end if

12: end if

13: end while

1 2 3 4 5 5

8

5

3,2

4 - 3 2 - 1

AP2AP3AP4AP5AP6AP7AP8

Fig. 4. We consider the tagging of elements of PList (AP1), represented as shaded bars
on the left. The darkened bars in the right represent the data from other processors.
The numbers below the bars represent the indices in PList (AP i) and PTagList (1).

After the tagging procedure, each prefix/suffix candidate may be associated
with two other processors: the one which contains it and the one specified in
the tag. Some candidates have no tags and may be ignored. A few candidates
have two tags and have to be duplicated for the next phase. The next phase
involves checking the existence of cross-processors Pr1-subsequences of A, that
is, Pr1-subsequences that start within AP i and ends within APj for some pair
(i, j), 1 ≤ i < j ≤ p. This is done by checking the elements of PList (AP i) that
are tagged with j and elements of SList (APj) that are tagged with i. These
elements must be in the local memory of one single processor for verification by
Algorithm 1. The rule to choose which processor does the verification is simple:
the one whose list of candidates is larger receives the data from the other one.
In case both lists have the same size, a deterministic rule is used to break the
tie. For example, if i + j is even then Pi does the job, otherwise Pj does it.

The following lemma summarizes the complexity of the tagging process.

Lemma 7. After tagging the prefix and suffix candidates, all cross-processors
Pr1-subsequences that may be A-maximals can be found in O(|A|/p) time and
space and two communication rounds of sizes O(p) and O(|A|/p). The number
of sequences is at most 2p.

It should be noticed that some of the new Pr1-subsequences may not have
Property Pr2. The important thing here is that the procedure just described
does not miss any possible A-maximal. The next step is to find the Pr1-subse-
quences that are really A-maximals. All processors broadcast the information
about the new Pr1-subsequences found. Every processor then eliminates the
Pr1-subsequence that are contained in another Pr1-subsequence. The presented
procedure does not generate two Pr1-subsequences that overlap, unless one is
contained in the other. That is because if two Pr1-subsequences overlap then
their union is also a Pr1-subsequence. Each Pr1-subsequence is related to a
different pair of processors. All that must be verified is which pairs generated
new sequences, done by Algorithm 3. It takes O(p) time and space.

Algorithm 3: Removing Pr1-subsequences that not A-maximals

Require: List L (with |L| elements) of pairs of processors for which there is a
cross-processor Pr1-subsequence.

Ensure: List N (with n elements) of pairs of processors for which there is a
cross-processor A-maximal.

1: for k ← 1 to p do

2: V [k]← k
3: end for

4: for k ← 1 to |L| do

5: i← smallest component of L[k]
6: j ← largest component of L[k]
7: if j > V [i] then

8: V [i]← j
9: end if

10: end for

11: n← 0, k ← 1
12: while k < p do

13: if V [k] > k then

14: n← n + 1
15: N [n]← (k, V [k])
16: k ← V [k]
17: else

18: k ← k + 1
19: end if

20: end while

A final step is done locally by each processor. By examining the list of new
A-maximals, processor Pi verifies if there is an A-maximal that contains its
entire local subsequence AP i, which means that its own local set of maximals
MList (AP i) should be discarded. This can be done in time O(p). If there is
a cross-processors A-maximal that starts or ends within AP i, a final scan of
MList (AP i) will eliminate the local maximals that are contained in a larger
A-maximal. This final scan can be done in time O (log(|A|/p)).

Theorem 2. Using a BSP/CGM with p processors, all maximal subsequences
of a sequence A (already distributed in the p local memories) can be found in
time O(|A|/p), using O(|A|/p) local space and O(1) communication rounds.

4 Conclusion

We have presented a parallel algorithm that finds all maximal subsequences of
a sequence A with linear speed-up and high scalability. The size of the com-
munication rounds is bounded by O(|A|/p). communication rounds should be
much lower than |A|/p. Experimenting with a sequence X of random numbers
we conjecture that the average size of PList (X) is O(log(|X |)). The running
time of the whole algorithm is dominated by the time of the first step to find the
local maximal subsequences. To derive this parallel O(|A|/p) time and O(|A|/p)
space per processor algorithm, requiring a constant number of communication
rounds, we explored the properties of those local maximals that are potential
candidates to be merged together to form larger maximals, as well as an efficient
merge process to join candidate local maximals.

References

1. C. E. R. Alves, E. N. Cáceres, and S. W. Song. BSP/CGM algorithms for maximum
subsequence and maximum subarray. In Proceedings 11th European PVM/MPI
Users’ Group Meeting, volume 3241 of Lecture Notes in Computer Science, pages
139–146. Springer Verlag, 2004.

2. C. E. R. Alves, E. N. Cáceres, and S. W. Song. A BSP/CGM algorithm for finding
all maximal contiguous subsequences of a sequence of numbers. Technical report,
Universidade de São Paulo, January 2005.

3. J. Bentley. Programming Pearls. Addison-Wesley, 1986.
4. M. Csuros. Algorithms for finding maximal-scoring segment sets. In Proceedings

WABI2004 - 4th Workshop on Algorithms in Bioinformatics, volume 3240 of Lec-
ture Notes in Computer Science, pages 62–73. Springer Verlag, 2004.

5. H.-K. Dai and H.-C. Su. A parallel algorithm for finding all successive minimal
maximum subsequences. In Latin American Theoretica Informatics, volume 3887
of Lecture Notes in Computer Science, pages 337–348. Springer Verlag, 2006.

6. F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel geometric algorithms
for coarse grained multicomputers. In Proc. ACM 9th Annual Computational Ge-
ometry, pages 298–307, 1993.

7. F. Dehne, A. Ferreira, E. Caceres, S. W. Song, and A. Roncato. Efficient paral-
lel graph algorithms for coarse grained multicomputers and BSP. Algorithmica,
33(2):183–200, 2002.

8. W. L. Ruzzo and M. Tompa. A linear time algorithm for finding all maximal scoring
subsequences. In Proceedings of the 7th International Conference on Intelligent
Systems for Molecular Biology, pages 234–241. AAAI Press, August 1999.

9. L. Valiant. A bridging model for parallel computation. Communication of the
ACM, 33(8):103–111, 1990.

10. Z. Wen. Fast parallel algorithm for the maximum sum problem. Parallel Comput-
ing, 21:461–466, 1995.

