narodni
N U dlozisté
1 L Sedé
6 literatury

A Bundle-Newton Method for Nonsmooth Unconstrained Minimization

Luksan, Ladislav
1996

Dostupny z http://www.nusl.cz/ntk/nusl-33627

Dilo je chranéno podle autorského zakona ¢. 121/2000 Sb.

Tento dokument byl stazen z Narodniho Ulozisté $edé literatury (NUSL).
Datum stazeni: 21.08.2022

Dalsi dokumenty muzete najit prostrednictvim vyhledavaciho rozhrani nusl.cz .


http://www.nusl.cz/ntk/nusl-33627
http://www.nusl.cz
http://www.nusl.cz

INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

A Bundle-Newton method for nonsmooth
unconstrained minimization

Ladislav Luksan and Jan Vlcek

Technical report No. 654

1996

Institute of Computer Science, Academy of Sciences of the Czech Republic
Pod vodarenskou vézi 2, 182 07 Prague 8, Czech Republic
phone: (44202) 6605 3281 fax: (+4202) 8585789
e-mail: luksan@uivt.cas.cz



INSTITUTE OF COMPUTER SCIENCE
ACADEMY OF SCIENCES OF THE CZECH REPUBLIC

A Bundle-Newton method for nonsmooth
unconstrained minimization®

Ladislav Luksan and Jan Vlcek

Technical report No. 654
1996

Abstract

An algorithm based on a combination of the polyhedral and quadratic approximation
is given for finding stationary points for unconstrained minimization problems with
locally Lipschitz problem functions that are not necessarily convex or differentiable.
Global convergence of the algorithm is established. Under additional assumptions, it
is shown that the algorithm generates Newton iterations and that the convergence is
superlinear. Some encouraging numerical experience is reported.

Keywords
Nondifferentiable minimization, numerical methods, quadratic approximation, global
convergence, superlinear convergence

!This work was supported by the grant No. 201/96/0918 given by the Czech Republic Grant Agency



1 Introduction

This paper describes a bundle-type method for minimizing a locally Lipschitz contin-
uous function f : RV — R. We assume that for each y € RY we can compute f(y),
an arbitrary subgradient ¢(y), i.e. one element of the subdifferential df(y) (called
generalized gradient in Clarke (1983)) and an N x N symmetric matrix G(y) as a
substitute for the Hessian matrix. The function f is often (as in all problems that we
have solved) continuous “piecewise-C?”, i.e. RN is composed of regions inside which
both the gradient and the Hessian matrix exist and are continuous. In that case, if
f is not twice differentiable at y, we can take the gradient and the Hessian matrix at
some point “infinitely close” to y as ¢(y) and G(y), respectively. If f is convex, then
for all y except in a set of zero (Lebesgue) measure, f is differentiable at y and has
second-order approximation around y (see Hiriart-Urruty and Lemarechal (1993)).

Our method is based on the following model, which generalizes a long-known cut-
ting plane model due to Kelley (1960) and Cheney and Goldstein (1959). At step k,
let zq,..., 2 be the iterates and yy,...,yr be the trial points that have been gener-
ated, together with the corresponding function values f(y1),..., f(yx), subgradients
g1 € 0f(y1)y- -, gk € Of(yr), matrices G; = G(y1),...,Gr = G(yx) and damping pa-
rameters p; € [0,1], 7 = 1,..., k. We define the quadratic approximation of f around
y; by

FEG) = fly) + o (@ —y) + Joile —y) ' Gile —y;). j=1o k. (1)
choose some index set J, C {1,...,k} and define the piecewise quadratic function
i (@) = max{fF(x)j € Ji}. (1.2)
Minimizing this model is equivalent to the nonlinear programming problem
P . . # .
(A) gnzlglégl]&%? z subject to fI(x) <z, j€Ji,

which can be solved by the sequential quadratic programming (SQP) method, whose
rate of convergence is of a second order (see Fletcher (1987)). The iteration step of the
SQP method can be written as a quadratic programming (QP) problem
. . . _I_ l o TW o
e AT
subject to f]#(l’k) + g;&(l‘k)T(II? —xp) <z, JEJy,

where, if we denote by )\f, J € Ji, the Lagrange multipliers at step k,

We= > Md;, (1.3)
JE€JR_1
g (2)=ViFa) =g +0,Gi(x —y;), j=1,....k. (1.4)

The idea of using a quadratic model is not new. Lemarechal in his pioneering work
(1978) proposed an algorithm where the following QP problem was solved in each step
. . . l o TA o
B T
subject to [ f(y;) + g% (wx —y))| + o (@ —wx) Sz, j=1.... .k,

1



where Aj was some symmetric positive definite N x N matrix, which was intended to
accumulate information about the curvature of f around x;. Mifflin (1982) slightly
modified the algorithm and showed that if f is inf-compact and the matrices Ay stay
uniformly bounded and positive definite then at least one cluster point of {z} is sta-
tionary. Later (in Mifflin (1984)), he considered the problem of minimizing f3(z) to
motivate algorithms having a subproblem, which was similar to (B), and investigated
conditions for obtaining better than linear convergence. Other ideas for developing a
rapidly convergent algorithm, based on QP subproblem (B), can be found in Mifflin
(1992). Kiwiel (1989) presented the algorithm, where subproblem (C') was solved, in
which he combined features of the ellipsoid and bundle methods and reduced the num-
ber of stored subgradients using two strategies: subgradient selection and aggregation.

Because our model uses more second-order information and follows closely the min-
imax analogy, we expect faster convergence. Note that it is not necessary to evaluate
the matrices (; analytically - when we used finite difference approximation (without
respecting discontinuities), the number of iterations was practically the same.

Our algorithm is based on a line search concept. We also mention two signifi-
cant first order methods of Schramm and Zowe (1992) and Kiwiel(1996), based on a
restricted step (trust region) approach.

The paper is organized as follows. The algorithm is derived in Section 2, its global
convergence is proved in Section 3 and its superlinear convergence is studied in Section
4. Particularly, under additional assumptions, we show a “self-cleaning” property of
the algorithm and its reduction to the Newton method. In Section 5 some numerical
experience is reported, which demonstrates faster convergence in comparison with first-
order bundle methods.

Throughout the paper, we use || - || to denote the spectral matrix norm.

2 Derivation of the method

The algorithm given below generates a sequence {3}, C R that should converge
to a minimizer of f, search directions {dx} C R" and stepsizes {t}} C [0, 1], related by
Tpy1 = :L'k—l—t]’gdk, k > 1. The method also calculates trial points yp11 = l‘k—l-t%dk e RN
for k > 1 with y; = 21, subgradients g, € df(yx), symmetric matrices (i, and damping
parameters gy, € [0, 1] for k > 1, where ¢ € (0, 1] are the auxiliary trial stepsizes.
We take a serious step from xy to x4y, and set yriq = xp1q if we find t,’g satisfying
t,’g >ty and
Flen) < f(xp) + mptio, (2.1)
1

,3)s to € (0,1) are parameters and vz < 0 is the predicted amount
of descent (if vy = 0 the algorithm will stop with x4 ; see below). Otherwise a short

where my, € (0

step if (2.1) holds, but t§ € (0,%y) or a null step w141 = x5 will improve the quadratic
approximation f7,, . Letting

fF=1 ), g =gl (@) =g+ 0iGilan —w;)s G=1.k, k21, (22)



we can write (B) equivalently in the form (here z is not the same as in (B))

e )

subject to —ﬂ]k + (z — :L'k)Tgf <z JEJ,
where ﬂ]k = f(ar) — ff. To guarantee the property that min, fP(z) < f(zg) in
our model, it would be useful to have 0 < ﬂ]k = f(ar) — f]#(l'k), J € Ji, because
then it would be the case that min, f7(z) < f(zx) < f(xx) by (1.2). Note that
it can happen that ﬂ]k < 0 even when f is convex. Furthermore, f7 closely approx-
imates f only when trial points y;, j € Ji are in the neighbourhood of zj. Thus

we generalize the locality measures introduced by Kiwiel (1985) and replace ﬂ]k by

a;? — max [|ka - f(:z;k)|,’y(5f)‘”] for j € Ji (the absolute value is not necessary, but

significantly improves numerical results), where
. k-1
S]:|y]—:1:]|—|-2|:1;2+1—:1;2|Z|y]—:1;k|, ]:1,,]6,]621 (23)
i=j

and v > 0, w > 1 are parameters (Kiwiel (1985) uses w = 2).

Because the method needs a positive definite matrix in problem (D), we replace
Wy by its positive definite modification G’;. To reduce the bundle size, we use the
subgradient aggregation strategy of Kiwiel (1985).

We shall now state the method in detail.

Algorithm 2.1

Step 0 (Initialization). Select the starting point x; € RY, a final accuracy tolerance
¢ > 0, a bundle dimension M > 2. a distance measure parameter v > 0, line search
parameters my, € (0, %), mp € (my, 1), a lower bound for long serious steps to € (0, 1),
an upper bound Cg > 0 for distance between x; and y;, an upper bound for damped
matrices Cg > 0, a matrix selection parameter i, > 0, a bundle reset parameter ¢, > 0
and a locality measure parameter w > 1. Set y; = @1 and compute f(y1), g1 € If(y1)
and a symmetric matrix ;. Initialize the iteration counter & = 1, the number of
consecutive null and short steps ¢, = 0, the number of serious steps from the last
bundle reset iy =0, J; = {1}, o1 =1, s, =51 =0, f} = f{ = f(y1), g, = 91 and
Gy = Gy.

Step 1 (Direction finding). 1f both of the steps k — 1 and k — 2 were serious and
)\],zj =1 orif ¢y > i,, then set G = G}, otherwise set G = G*. If 1, < i,,,, modify ¢

- - p
to obtain a positive definite matrix G’;, otherwise set G’; = ’;_1. Find the solution

(di, 1) to the k-th QP subproblem

minimize 0 + %dTG’;d over all (d,0) € RN x R
(P) subject to  —al +dTgF <o for j e Jy,
—Oé];‘|‘dTg£§@ if nglra
where
of = max[| f} — f(zx)l,7(s5)*]  for j € Jy, (8a)



oy, = max[|fy — f(xx)l,7(s5)"];

(80)

which can be obtained by solving the k-th subproblem dual (see Lemarechal (1978)):

Find values of the multipliers )\f, J € Ji, and )\]; to

2
minimize % > )\]g] + )\pgp + 42 )\jozf + )\po/;
; J€Jk J€Jk
(P') subject to  A; >0, 5 € i, A, >0, Y A4+ A, =1,
J€Jk
A, =0 if 1y > Uy,

with

de = _le (Z )‘fgf —I_)‘pgp) )

J€J,
b = —diGrdp— > Mok — Aok

4 p%p >
JE€Jk

where Hj, = (G’;)_l/z. Ifi, > 1,, set 1, = 0. Set

(f]p?f Gk+1 Nk Z)\k g]?f]?@] 7o ])—I_)\k( p?fp? PO ];)

J€Jdy
ax[|f} = flaw)l,7(55)],
_ 1|Hk |2 _I_ O{

Step 2 (Stopping criterion). If wy, < e then stop.

(2.11)

(2.12)
(2.13)
(2.14)

Step 3 (Line search). By a line search procedure as given below find step sizes

t,’{, t% such that 0 < t,’g < t% < 1 and such that the corresponding points zp1; =
T + t,’{dk, Yrr1 = Tp + t%dk satisfy the serious descent criterion (2.1) and either a
serious step 1§ = th > 1o is taken, or a short step 0 < t§ < to, t5 <t} or a null step
0 =t} <t} occur. Calculate fiy1 = f(yrs1), o1 € Of(yri1) and a symmetric matrix

Grap. If t,’g < tg set 1, =1, + 1, otherwise set 7, = 0 and 1, = 15, + 1.

Step 4 (Updating). 1f i,, < 3, set g1 = min[l, Cq/||Grs1]|], otherwise set ppyq = 0.

Calculate the values

sttt = b lagp —ail, j €Tk,
SQE [Tkt — Yrta s
’;J’l = 3’; + |2rg1 — 2,

ka =[5+ (vep1 — 21) 98 + 30j (v — w0) T Giwpgr — i), J € I,
f;fjhl = fr41 £ ($k+1—yk+1)T9k+1 + %@k+1($k+1—yk+1)TGk+1($k+1—yk+1)a

f’“Jrl = ]if + (g1 — l‘k) gp + ($k+1 — ) Gl;-l—l(xk-l—l — k),
gt =gF + 0iG(wep —xk),  J € J,
91]::1 = Grtr1 + k1 Gropt (Thtr — Yt1),s

9 =0y + G (e — ).
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Select a set Jyiq satisfying Jyoy C{k—M+2,... k+1}n{1,2,...} and k+1 € Jpq1.
Step 5. Increase k by 1 and go to Step 1.

A few comments on the algorithm are in order.

The situation when ¢5 > ¢, and thus A, = 0 will be called the bundle reset, signifi-
cant only for the theory contained in Section 4.

Note that one of the j constraints in (P) may be the same as the p constraint, e.g.
when k = 1; it must be respected when solving (P).

It follows from (2.13), (2.14) that vy < 0 when the stopping criterion is not satisfied.
This criterion is presented in the form usual in bundle methods, but in practice it can
be advantageous to modify it e.g. to the form

if |HigF? + c- ok /(| flap)]| +6) < 2 then stop,

where ¢, 6 are suitable positive constants (e.g. ¢ =100, 6 = 0.001).

The condition ¢, < 3 in Step 4 was established empirically. The choice g, <
min[l, Cq/||Gk|], & > 1, guarantees the boundedness of {px()}, because we always
have

ox|| G| < Ce. (2.18)

The updating rules for 3?"’1, ff"’l and gf"’l, J € Jip41 follow from (2.3), (1.1) and (2.2),
respectively. Following Kiwiel’s (1985) aggregation strategy we obtain the updating
rules for 3’;"'1, f]f"'l and g;f"'l.

The parameters 2,,, ¢, are not meant to improve the efficiency of the method. We
need them for convergence proofs.

We shall now present a line search algorithm and subsequent lemma given in similar
form by Kiwiel (1985). The choice ¥ > 1 is intended not to prevent rapid convergence
of some interpolation procedures at step (vi) (Kiwiel (1985) uses ¥ = 1). Note that
the termination conditions for short and null steps (which occur when 5 < t,) in step
(v) of the following procedure correspond to

- O‘ii% + dfgﬁﬂ > MRy, |$k+1 — yk+1| < Cs. (2.19)

Line Search Procedure 2.2

(i) Set i, =0andt=ty=1. Choose ( € (0,3), ¥ > 1.

(i) If flar + tdy) < f(ag) + myptoy set t, = t, otherwise set ty = t.
(tii) If tp, > to set tgp =ty and return.

(iv) Calculate g € df(x) + tdy), a symmetric matrix G and

o =min[l,Cq/||G||] if @, <3, 0 =0 otherwise,
f=flax+tde) + (1 — t)g"di + g0t — 1)di Gy,
B =max[|f — f(xr + trdi)|, y(tL — 1)*[dk|*]
(at termination xy 4 trdy and xy + tdy, correspond to w41 and yxiq, respectively).

(v) If =3+ dE(g+ o(ty, — t)Gdy) > mprvy, and (t — t1)|dx| < Cs, then set tp =t and

return.



(vi) Choose t € [tr + ((tr —t1)%,tr — ((tr — t1,)?] by some interpolation procedure and
go to (ii).

Lemma2.3. Let f satisfy the following “semismoothness” hypothesis (see Lemma 3.3.3
and Remark 3.3.4 in Kiwiel (1985)):
for any x € RN, d € RV and sequences {g;} C RN and {t;} C R, satisfying
gi € 0f(x +t;d) and t; | 0, one has

limsup g} d > liminf[f(z + t;d) — f(z)]/t;.

Then Line Search Procedure 2.2 terminates with t§ = t; and %, = t satisfying (2.1).

Proof. Assume, for contradiction purposes, that the search does not terminate. Let
£ttt gt o, GY and 3 denote the values taken on by ¢, t1, ty, ¢, o, G and 3,
respectively at the i-th iteration of the procedure, hence ti € {ti, ti;} for all 7. Since
C e (0.1), (H—t)D < 1,4, < 657 < 4 <ty and 657 =151 < th—t5,—2( (t—t})”
for all 2, there exists ¢t > 0 satisfying ¢} T1, {;; | {. Let

S ={t > 0[f(ap +tdx) < f(xr) + mptog}.
Since {tt} C S, t* 11 and f is continuous, we have

ie.t€S. Let [ ={ilt' ¢ S}. We prove first, that the set [ is infinite. If there existed
io € I satisfying t € S for all ¢ > ig, it would be % = i, | # for all 7 > iy, which
implies = 1% ¢ S, which is a contradiction. Thus I is infinite and we have

flak + tidk) — flag) > mptiv, forallie .
By (2.20), we obtain
[z + t'dy) — [l 4+ 1dp)] /(1" — 1) > mpvp foralli €1,

hence

tdy 4 (' — 1)dy) — id :
mpup < lim inefI f(@e 4t + ( " ){k) f(@e + tds) < limsup d} ¢', (2.21)
t00, b= NN

where g' € Of(x), +t'dy). For sufficiently large ¢ we have (¢ —t})|dx| < C's and by step
(v) of the procedure

—B +dl (g + o' (1% — 1))Gdy) < mpoy, for all large 1.

But #° — 0, (1% —t)o'dEG'd;, — 0 as i — oo, since t T ¢, t — ¢, f is continuous,
subgradient mapping df(-) is locally bounded (see Kiwiel (1985)) and {o'[|G'||} is
bounded by (2.18). Thus limsup,_ . df ¢' < mpv; and by (2.21) we obtain mpv; <
mpgvg, which contradicts 0 < my, < mp < 1 and v, < 0. Therefore the search
terminates and obviously (2.1) holds at termination. O

6



3 Global convergence

In this section we will establish the global convergence of the method, generalizing
and modifying Kiwiel’s (1985) nonconvex approach. We suppose that each execution
of Line Search Procedure 2.2 is finite and that the values 3?"'1 and gf"'l are defined
by the updating rules (15a) and (17a), respectively, also for j & Ji, ie. for all j =

..k, k> 1, and define additional multipliers )\é? =0forje{l,....k}\Ji, k> 1.
Convergence results assume that the final accuracy tolerance ¢ is set to zero.
Lemma 3.1. Suppose that k > 1 is such that Algorithm 2.1 did not stop before the
k-th iteration. Then there exist numbers j\f, g =1,...,k, satisfying

L k
(G gy, 30) = ZA? (0;Gjrglssh), M=0,j=1,...k Y N=1. (31

Proof. The proof will proceed by induction. If £ = 1 then we can set j\lf = 1. Suppose
that (3.1) holds for some k > 1. Let

j\lﬁ—l _ )\k-l—l + )\k"‘lj\’? for j <k, )‘gﬂ =N

Then A1 > 0 for all j < k + 1 and AL AL = soBLARL 4 jk (z] ) Af) =
From (2.11) and (3.1) we obtain

ht1 ko
Gy o= 2 AT eG A (Z Af@ij)

=1 7=1
k X k1
= Mo Grn + 2 oA+ NTIANG =3 Mt ed),
J=1 7=1
and, letting 6, = xpy1 — 21,
k1
(bt a0ty = SO M) N (GE 4 GRS, 5+ |6k])
7=1
k1 k
k k k k k

= Z)\j"'l( it —I—Z)\p"'l)\ g] + 0;G; 5k,3 + |6k])

g=1 71=1

k
IR NSy | k-|—1 k+1 RL R hHL Rt
= )‘k-|—1(gk-|—175k-|—1 ‘|'Z)‘ ‘|')‘ A ]( » S )
=1

k+1

_ Zj‘f—l_l(gf—l_l k-|—1)

7y

from (17) and (15). The induction is then established with k + 1 replacing k. O

Lemma 3.2. Let z € RV ‘be given and suppose that there exist matrices G}, vectors
4, y;, g; and numbers 5;, A\; for y =1,..., L, L > 1, satisfying

L
;20 5=1,....L, S A =1, (3.2)

i=1 i=1

S
ol
o
S—’
I
[]=
S|
.
S
Q)
.
—+
%)
o
S
81
|
2
o
S—’
Wl
o
S—’
S|



lyi =zl <s;, gi€dfy), j=1....L (3.3)
Then q € 0f(z).
Proof. Let J = {j|)\; > 0}. By (3.2), 5; = 0 for all j € J, hence (3.3) implies
y; =, j € J,s0 g; € df(z) for all j € J. Thus we have ¢ = ;¢ A;g;, A; > 0 for
J€J, YjesA; =1,50q € df(x) by the convexity of 9f(z). O
Lemma 3.3. If Algorithm 2.1 terminates at the k-th iteration, then the point ¥ = xy
is stationary for f.
Proof. If the algorithm terminates at step 2 due to wy = 0, then, since ¢ = 0 and
6/; > 0, we have f];f =0, 6/; = 55 = 0 by (2.14) and nonsingularity of Hy. From
(2.3) we obtain |y; — | < 3? for j < k. Using Lemma 3.1, (2.2) and Lemma 3.2 with
L=k G;=0;G;, q:g{;, Yy =19, 9; = g, §j:5§, j\jzj\?forjgkwehave

0=qedf(z). O

From now on we suppose that the algorithm does not terminate, i.e. w; > 0 for all k.

Lemma 3.4. Suppose that N-vectors p, g, A and numbers ¢, v, w, f,m € (0,1),« >0
satisfy

w=1pP+a, v=—(p*+a), —B—g"p>mv, c=max[|g||p|,va]. (3.4)

Let
Qv)=3lvg+ (1 —v)p+ AP +vi+ (1 —v)a for v € R. (3.5)

Then

(1 —m)

1
4e| Al + =|AJ2.
o TAcAl+ 51

min{Q(v)|r € [0,1]} < w — w’

Proof. Simple calculations yield

Qr) = Qi(v) + Q2(v),

where
Qiv) = [pP2+atv(—p—a+B8+p"g)=w+vw+8+p"9),
Qav) 2 (F/2)lp+ A =gl + AT((p+A/2)(1 = 20) + vg).
From (3.4) we have for v € [0, 1]
i(v) < w+v(l—mpy < w—rv(l—mmw,
Qa2(v) < (V¥/2)(2e + |A]D* + (1/2 = v)|AP* 4 2¢|A|
= 2207 + 201/2|A| +((1 - 1/)2/2)|A|2 + 2¢|A|
< 2607 4 de| Al 4 |AJ/2.

Denoting Q(Z/) = 2¢4v? — v(1 — m)w, we check that Q is minimized by
(1—m)w/(4c*) <1-(3/2)c*/(4c*) < 1, yielding Q(v) = —(1 —m)*w?/(8¢*), v € [0,1
which completes the proof.

—
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We define (wy, is the optimal value of the k-th QP subproblem (P’))

o(x) = lilgn inf maxfwy, |zp — z|] forz € RV, (3.6)
dp = T Ajaj+Agap, k=gl Higpl* + 6 (3.7)
7€k

Lemma 3.5. (i) At the k-th iteration of Algorithm 2.1, one has

ab <ak, wy <y (3.8)

(ii) Suppose that there exist & € RN and an infinite set K C {1,2,...} satisfying
vr - %. Then f(z) | f(z) and thv, — 0.

Proof. (i) By (2.12), (2.11), (8), (3.7) and, since the functions { — 7|¢|¥ for v > 0,

w > 1 and (£,7) — max[¢, n] are convex,

af < max | Y0 NETE = flan)| + ARE = Flan)]s 30 Noa(sh)? 4 Ay (sh)?
J€Jk J€Jk
<30 Mmax || = el (5] 4 A max || £ - f(wk)|,7(8’;)“’] =ak,

JE€Jk

which yields (3.8).

(71) Let ay x, =z Continuity of f implies f(xy) x, f(z), so f(xr) | f(z) follows
from the monotonicity of {f(zx)} due to (2.1). Since my, € (0,1), t§ >0, vz <0 and
(2.1) is always fulfilled, we have 0 < —thv, < [f(2r) — f(2ra1)]/mr — 0, which implies
t%vp — 0 and completes the proof. a
Lemma 3.6. Suppose that {x}} is bounded (e.g. when the level set {x € RV |f(z) <
f(xs)} is bounded for some { > 1) and o(z) = 0 for some point © € R". Then
0 € df(z).

Proof By (3.6) there exists an infinite set K C {1,2,...} such that x; x, z,

wp = 0. Let I = {1,..., N +2}. From Lemma 3.1 and the Caratheodory theorem
(see Hiriart-Urruty and Lemarechal (1993)) we deduce the existence of vectors gh, sh*
and numbers A for ¢ € I, k > 1, satisfying

g;f,NI; Z)\]“ R sk, AR >0, 0 €1, Z)\k’izl, (3.9)
€] el
with (¢, %) € {(gf,Sf)U =1,...,k} CRY xR, 1€ 1, k> 1. In view of (2.2) we
can assign to every k > 1 and every ¢ € [ an index j = j(k,7), 1 < j <k, satisfying
9" =g; = gi+0;Gilar —y). =], (3.10)

with ¢; € df(y;), o; € [0,1]. By (2.19) and the fact that x; = y; for serious steps, we
always have |z; — y]| < Cg. Thus {y,} is bounded and there exist points y;, ¢ € I,

and an infinite set Ky C K satisfying y;pq) — i as k M o for i € I By the
local boundedness and the upper semicontinuity of df (see Kiwiel (1985)), there exist

9



vectors g; € df(y:), ¢ € I, and an infinite set Ky C K, satisfying g, RLER gi fore € 1.
Since {0;G;}, {\¥'} are bounded by (2.18), there eX1st matrices GZ, numbers \;, 1 € I,

and an infinite set K C K, satisfying 05(ki) Gk, x, Gy, AP x, A fori e I.
Letting & € K approach infinity in (3.9) and (3.10) we obtain f];f X, Sier Mg +
Gi(z — i) 2 q. From wy, X, 0, (2.14), (2.12) and combining (2.18) with Lemma 3.1
we have f];f 0= g and 6/; K, 0, which yields 55 K, 0, hence M\right 250 for
i€, k>1by(3.9) and nonnegativity of all Abighi Therefore from Ab 5 Ayt €1
and (2.3) we obtain s** Ko5> |z — y;|, setting 5; = 0 for A; # 0. If A\; = 0 we set
= |z —;]. Obviously \; >0, 1€ I, S,c;\i = 1,50 0= g € df(z) by Lemma 3.2. O
Lemma 3.7. Let = € RY be given and suppose that {H}} is bounded and there
exists an infinite set K C {1,2,. .} such that xy x, z, o(z) > 0. Then for any ¢ >0

Tpy; — T and tk‘H 0 as k 25 0. Moreover, for any fixed r > 0 there exists k >0

such that w4, > o(2)/2 and tk‘H <ty for all k > k, ke Kand 0 <:<r.

Proof. (:) We shall first establish x4, K, % for any ¢ > 0. For ¢ = 0 it is true by
assumption. By induction, let it be true for any fixed : > 0. Since {H;}, {t}} are
bounded, we have

hpigs — gl =V HZGET ) < | Hipi [V =t o —

by (9), (2.11)-(2.13) and Lemma 3.5(¢¢), which implies @441 X, 7 and completes the
induction. )

(7¢) Next we show that tht 2,0 for any fixed ¢ > 0. We assume that it is not true,
i.e. that there exist { > 0 and an infinite set K C K, satisfying t57° > # for all k € K.
By (2.13), (2.14) and Lemma 3.5(iz) we get 0 < fwpgi < —ti"’ika — 0 for k € K,
which yields w4, i 0, so o(x) = 0, since T4, i Ttisa contradiction, yielding
the desired assertion. )

(¢27) Let » > 0 be fixed. For any ¢ > 0, since x4, N together with o(z) > 0 and,
since ti"’i X, 0, there exist k; > 0, satisfying wyy; > o(2)/2 and ti"’i < tg for all
k > k;. Setting k= max{k;|0 < ¢ < r} completes the proof. a

Note that the boundedness of {H} can be provided numerically. If we modify the
matrix G’; in Step 1 using a factorization method by P.E. Gill and W. Murray (1974),
then there exists a constant ¢ > 0 satisfying H(G’;)_IH < ¢ for all £ > 1. This follows
easily from the fact that G’; = LkaL;‘f, where Dy is a diagonal matrix with elements
greater than some positive constant and L is a unit lower-triangular matrix with
bounded off-diagonal elements.

Theorem 3.8. Suppose {1} and {H}} are bounded. Then every accumulation point
of {1} is stationary for f.

Proof. Suppose xj X, . In view of Lemma 3. 6, it suffices to show that o(z) = 0.
For contradiction purposes, let o(z) > 0 or o(z) = +oo.

As in the proof of Lemma 3.6 we establish boundedness of {yx}, {0xGr}, {gx} and
also of {gF}, {Hgr} and {af} by (17b), (15b), (16b) and continuity of f. Since the
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multipliers A, = 1, A; = 0 for j € Ji\{k} and A\, = 0 are feasible for the k-th dual
subproblem (P’) for all k& > 1, it holds @y, < (1/2)|Hrgf|* + af, k > 1, and using
(3.8) and (2.14) we deduce that {wi}, {Hxgk}, {gF} and {a}} are bounded and o(z)

is finite. Denote

c= Sup{|HkgI]§|7 |Hk§£|7 \/ON‘]; |k > 1}7 Ay = Hk-l-l(g;;-l—l - g;)v k=1,
(3.11)
6=o0(2)/2, ¢=06(1—mg)/(4e), r=(3/2)*/e* +1i,,.

Arguing as in the first part of the proof of Lemma 3.7 and from (15¢) and Lemma 3.5(ii)
we obtain x4y, — xp — 0, 3’;"'1 — 55 — 0, f(2r41) — f(2r) — 0. Combining (2.18)
with Lemma 3.1 and using (16¢) and (17c) we get fF*! — f; — 0 and Ay — 0.
Since for w > 1 the function ¢ — ¢“ is Lipschitz continuous on any bounded subset
of R, $&8 < (ak/y)"/¥ for k > 1 and {a*} is bounded, there is a constant ¢, > 0
such that |(sFT1) — (85)%| < ¢p|sht! — 88| for k > 1. Using (8b), (2.12) and relation
| max[a, b] — max[e, d]| < |a — ¢| + |b — d|, holding for «, b, ¢, d € R, we have for k > 1

o — a8 = max(l ! f(zaen)lr (o)) — max(lf — Flzl,7(35))

P
< AT = BT U ein) = e+ verlsy™ =35 =0

and thus there exists a number k > 0 satisfying
Al Ayl + |ARPP/2 + [t —ab| < & for all k> k. (3.12)

Let % be the number defined in Lemma 3.7. Choose ks € K satisfying ko >
max[k, k], any integer ¢ € [i,,,7] and set k = ko + 7. It follows from Lemma 3.7 that
wg > 0, t,’g < tg and 2, > 1, after Step 3 of Algorithm 2.1. Thus G’;"’l = G’; in the next
Step 1 and Hyiy = Hj. Since no bundle resetting occurs (i.e. 5 < 4,) for short and
null steps, the multipliers Apy1 = v, A; =0for j € S \{k+1}, A, =1—v, v €]0,1]
are feasible for the (k + 1)-th dual subproblem (P’) and we get by (3.7) and (3.8)

2 N N
Wiy < 3 ‘VHkHQﬁ% + (1—1/)Hk+1g£+1‘ +vaft + (1-v) [o/; + (O/;H—o/;)]. (3.13)

In view of (2.19) we can apply Lemma 3.4 with p = ka];f = —H, \di, g = Hk_|_1g,§ﬂ,

A=A v=uvp w=w = o/,zﬂ, o= 6/; and m = mpg, to obtain

< . o (1 = mp)? A EA 2 B+l ~k 2
Wey1 < wp — Wi So2 + 4c| k|—|—2| k| +|ap ozp|<wk ¢, (3.14)

where the first inequality follows from Lemma 3.4 and the second from the definition
of ¢ in (3.11), the fact that wy, > 6 and (3.12). For the largest n < r it follows from
(3.14), (2.14) and the definition of ¢ and r in (3.11) that

Whytnt1 < Whytin, — M+ 1 —1,) <2+ —(r —i,) =0,

which is impossible. Therefore o(z) = 0, yielding the desired result. O
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4 Superlinear convergence

In this section we show that the convergence rate of Algorithm 2.1 is superlinear and
from some index on we have Newton iterations under the following assumptions: the
trial points sequence {y;} converges to z, the problem function f is strongly convex
with modulus Cr > 0 (i.e. f(z)—(Cp/2)|x|? is convex) and has continuous second order
derivatives in some neighbourhood B(%) of Z, the number of serious steps is infinite,
the locality measure parameter w = 1 and G are the Hessian matrices V2 f(yy).

We suppose that the final accuracy tolerance ¢ = 0 and Cr is large enough to ensure
that in Step 1 of Algorithm 2.1 the matrices GGy are not modified for all y, € B(z).

Lemma 4.1. Let the number of serious steps generated by Algorithm 2.1 be infinite.
Then for each ky > 1, there is a number ky > ky such that Ji C {ky, k1 +1,...} and

L k
(G ) =Y g ), M2 0 <<k Y (0)
J=k1 i=k1

for all k > k.

Proof. Choose ky > ky + M — 1 (M > 2 is the bundle dimension) such that in the
ky-th step the bundle resetting was performed, i.e. )\’;2 =0. Let k > ky.

The bundle definition yields J, C {k— M +1,...,k} C {ki,k1 + 1,...}, which
implies )\f = 0 for j < ky. Thus, letting j\f be the same as in Lemma 3.1, we have
j\f = )\’;5\?_1 for j < ky from the proof of Lemma 3.1. Since )\’;2 = 0, we obtain by

induction for k = ko, ko + 1,..., that j\f =0in (3.1) for y < k4. Using (15), (17) and
(3.1) we get

k+1  _k+1 _ k k+1 ~k
(gp » Sp ) = ( p T Gp ($k+1 - J?k)aSp + |51?k-|-1 - l’k|)

Qe

I

o
Il
x>
2

)\f (gf + 0;Gi(Tp1 — xp), Sf + [Thyr — l‘k|)

I

Il
x>
2

B ),

J 777
J

which together with (3.1) completes the proof. O

Lemma 4.2. Let the assumptions of Lemma 4.1 be satisfied. Suppose that {z;}, {y.}
are sequences generated by Algorithm 2.1, yr — ¥, the function f has locally Lipschitz
continuous first derivatives at &, {Hy} is bounded and w = 1. Then V f(z) = 0 and
there exists a number k such that the QP subproblem (P) has only one active constraint
with the index k whenever k > k and Ui = Tp.

Proof. By assumption there exists a neighbourhood B(Z) of # and a constant Cp,
satisfying

90 — 91 < Cilyi =yl forall  yi, y; € B(x). (4.2)
By (2.19) and in virtue of x; = y; for serious steps, we always have |z, — yix| < Cs.
Therefore {z} is bounded and since the set {k|xy = y;} is infinite by assumption, we
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can apply Theorem 3.8, obtaining 0 € df(z) = {V f(2)} by continuity of V f at & (see
Clarke (1983)). Thus gx — 0 and we can choose a number k; such that y, € B(z) and

(Cr+ Ca)Chlgrl <~ (4.3)

for all & > ki, where Cyr = sup{||Hy|| [k > 1} and v is the distance measure parameter.

Let k be a number ko determmed by Lemma 4.1 and suppose that k& > & and
yr = . Then of = 0 and gF = g; by (8a), (15b), (16b) and (17b), and the reduced
QP subproblem

(R) {nn;lelg%%? z+ uTGk subject to — ozg + uTg,lj <z

(similar to the QP subproblem (P)) has the solution
up = —H gy, Zp = —u;‘félguk = g;{uk. (4.4)

Since k > k, we deduce from Lemma 4.1 that j > k; for any j € J; and, hence,
y; € B(z). By (2.2), (4.4) and (2.18)

(98 — gr)"ur <lg; — gx — 0;G;(y; — )| - Juk| < (Cr + Ca)Chlgelly; — il

for all j € Ji. Observe that the assumption x, = yi can be fulfilled only for serious
or short steps (x) # xj_1), hence 3 > 0 for j < k by (15a). Thus, since w = 1 is
assumed, one always has

(gf — gk)Tuk < ’ysf < ozf (4.5)
for all j € J\{k} by (4.3), (2.3) and (8a). Similarly (4.1), (4.5) and (8b) imply

k-1 k-1
(g;f — i) uy = > )\f_l(gf — i) ug <~y > )\f_lsf = 73]; < o/;. (4.6)
J=k1 J=k1
From (4.4)-(4.6) we get —ozf + u;{gf < zp for j € J\{k} and —o/; + u{g;f < zp,
hence (uy, zx) also solves the QP subproblem (P), which completes the proof. a
Lemma 4.3. Let the assumptions of Lemma 4.2 be satisfied. Suppose that the func-
tion f is strongly convex with modulus Cp > 0 and has continuous second order
derivatives in some neighbourhood of x. Then there exists a number k such that
Yis1 = Thp1 = x — G 'gr (Newton step) for all k > k.
Proof. Let K = {k|v; =y and G% = Gy }.
(i) At first we establish the ex1stence of a number k¢ such that yp11 = x4 = 25 + di.
for all k € K, k > ko. Suppose that k € K, k > k, where k is defined in Lemma 4.2.
Then, by Lemma 4.2, \F =1 and )\f =0 for all 5 7E k. Hence, we have ap =af =0
and f];f = gf = g by (2.11), (2.12), (15b), (16b) and (17b), which gives

dk = —Glzlgk, Ve = ggdk = —dgdek (47)

by (9) and (2.13). Reasoning as in the proof of Lemma 4.2, we obtain ¢g; — 0, hence
dr — 0 by the boundedness of {Hy}. A Taylor series about x; and (4.7) yield

Flee 4 di) = flze) = dfge + (1/2)d] Grdp + Ay = v /2 + A, (4.8)
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where A;, = o(dldy) by continuity of V2f. It follows from the strong convexity of f
with modulus Cr that the smallest eigenvalue of Vf is minorized by CF (see Hiriart-
Urruty and Lemarechal (1993)). Thus there exists ko > k such that

Ap < (1/2 = mp)Crpldy|?, d'Grd > Cpld* foralld € RN, k€ K, k > k. (4.9)
From (4.7)-(4.9) we obtain
flar +dy) — flzr) <wvpf2 4+ (1/2 — mp)d} Grdy = mpvy,

hence (2.1) with th = 1 holds for k € K,k > k.
(ii) Cl@oose k>ky >k sucl@ that in the k-th step the bundle resetting was performed.
Then k € K and thus the k-th step is serious by the part (i) of the proof. Since the

(k—1)-th step was serious, it follows from Lemma 4.2, the positive definiteness of G,
and Algorithm 2.1 that £ +1 € K. Now we can complete the proof by induction. O

In view of (4.9) the strong convexity and second order differentiability assumptions
of Lemma 4.3 imply the boundedness of {G;'} and, hence, the boundedness of {H}}
which is assumed in Lemma 4.2.

Theorem 4.4. Let the assumptions of Lemma 4.3 be satisfied. Then, after a sufficient
number of steps, Algorithm 2.1 generates Newton iterations purely and {x,} converges
to & superlinearly.

Proof. Suppose that & > k, where k is defined by Lemma 4.3. Write e, = x;, — . Since
Vf(z) =0 by e.g. Lemma 4.2, we obtain from y; = z and yry1 = 241 = 21 — G} ' gr

ert = —Grl (g — Grer) = =G [VF(T + ex) = V(7)) = VEf(a1)er]
By continuity of V2f and in view of the boundedness of {G;'}, easy calculations give

exal/lex] < NG - |3 IV2A(E + €e) — V2£(& + e de]| — 0. .

5 Numerical examples

The above concept was implemented in FORTRAN 77 as BNL. In this section we
compare our results for 18 standard examples from literature with those obtained by
the ellipsoid bundle method (EB) of Kiwiel (1989), by the BT algorithm (trust region
concept) of Schramm and Zowe (1992) and by our implementation of the proximal
bundle method (PBL, line search concept). Problems 1-14 are described in Makeld
(1992), problems 15-18 and also 10-12 in Kiwiel (1989). In Table 1 we give optimal
values of tested functions.

The parameters of the algorithm had the values M = N4+3, ( =my =0.01,9 =1,
mp = 0.5, to = 0.001, Cs = Cq = 10°°, i, = 4, = 100. The algorithm of Luksan
(1984) was employed for solving the QP subproblem. To cut off useless iterations, the
algorithm stopped:
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if

or

|Hi g5 | + 10085 /(] f ()| 4 0.001) <2107

(1 f(yx) — fzr_n)])/ max[L, | f(yx)]] < 1078

in two consecutive iterations.

Our results are summarized in Table 2, in which the following notation is used. Ni is

the number of iterations, Nf is the number of objective function (and also subgradient

and matrix (%) evaluations, F is the objective function value at termination and ~ is

the distance measure parameter value (values of ~ were chosen experimentally).

‘ Nr. ‘ N ‘ Problem ‘ Minimum H Nr. ‘ N ‘ Problem ‘ Minimum ‘
1 2 | Rosenbrock 0.0 10 | 4 Rosen -44.0
2 12 Crescent 0.0 11 | 5 Shor 22.600162
3 12 CB2 1.9522245 || 12 | 10 | Maxquadl | -.84140833
4 |2 CB3 2.0 13 120 Maxq 0.0
5 12 DEM -3.0 14 |20 Maxl 0.0
6 |2 QL 7.20 15 |1 5 Colville -32.348679
T2 LQ -1.4142136 || 16 | 15 | SHELL DUAL | 32.348679
8 | 2 Mifflin1 -1.0 17 130 MXHILB 0.0
9 |2 Mifflin2 -1.0 18 |30 L1HILB 0.0
Table 1: Test problems
BNL w=1 BNL w=2 PBL
Nr.| Ni Nf F ~ Ni Nf F ~ Ni Nf F
11 51 52 .120E-18 0.5 59 60 .367E-15> 1.3 42 45 .381E-06
2 7 8 .168E-10 107* 7 8 .168E-10 0.001 18 20 .679E-16
3 9 10 1.9522245 0.25 8 9 1.9522245 1.0 32 34 1.9522245
4| 14 15 2.0000000 0.01 | 13 14 2.0000000 0.1 14 16 2.0000000
5( 15 16 -3.0000000 0.1 14 15 -3.0000000 0.25 17 19 -3.0000000
6 4 6 7.2000000 10-t° 4 6 7.2000000 10-t° 13 15 7.2000015
71 16 17 -1.4142136 107'°| 16 17 -1.4142136 10~'° 11 12 -1.4142136
81| 11 13 -1.0000000 0.1 1214 -1.0000000 0.08 66 68 -.99999941
9 10 11 -1.0000000 10='°| 10 11 -1.0000000 10-t° 13 15 -1.0000000
10 | 13 15 -44.000000 107'°| 13 15 -44.000000 10-1° 43 45 -43.999999
11 7 8 22600173 1071 7 8 22.600173 10-1° 27 29 22.600162
12| 12 14 -.84140833 10=* | 12 14 -.84140833 0.01 80 81 -.84140833
13 38 39 .330E-08 107'°| 38 39 .330E-08 107'°| 161 162 .166E-07
14| 24 25 453E-08 107'1°| 24 25 453E-08 1071 39 40 .242E-12
15 | 18 20 -32.348679 0.08 | 18 20 -32.348679 0.25 62 64 -32.348679
16 | 247 258 32.348679 1073 [423 482 32.348680 0.06 | 1410 1501 32.349129
171 14 15 .500E-08 107'°| 14 15 .480E-08 107'°| 119 20 .424E-08
18 14 15 .141E-08 107°| 13 14 .110E-08 107'°| 119 20 .990E-09
o 1524 55T 705 786 2086 2206
time = 9.17 sec time = 12.80 sec time = 16.04 sec

Table 2: Our test results
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In Table 3 we compare our results with those obtained by the EB and BT methods.

BT BT EB

Nf F Nr.| Ni Nf F Ni  Nf F

79 88  130E-11 | 10 | 22 32 -43.99998 | 20 20 -43.9998
24 27 .944E-06 || 11 29 30 22.60016 | 45 45 22.60017
13 16 1.952225 || 12 | 45 56 -.8414083 | 58 58 -0.84135
13 21 2.000000 || 13 | 125 128 0.0 - - -

13 -3.000000 || 14 | 74 84 0.0 - - -
1217 7.200009 || 15 - - - 45 45 -32.3486
10 11 -1.414214 || 16 - - - 191 600 32.3538
49 74 -1.000000 || 17 - - - 15 15  13E-7
6 13 -1.000000 || 18 - - - 16 16  .77E-8

2
=
Z

O 00 -1 O T k= W N
Ne)

Table 3: Test results for EB and BT methods
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