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� Introduction

This paper describes a bundle�type method for minimizing a locally Lipschitz contin�
uous function f � RN � R� We assume that for each y � RN we can compute fy�

an arbitrary subgradient gy�
 i�e� one element of the subdi	erential �fy� called
generalized gradient in Clarke ������ and an N � N symmetric matrix Gy� as a
substitute for the Hessian matrix� The function f is often as in all problems that we
have solved� continuous �piecewise�C��
 i�e� RN is composed of regions inside which
both the gradient and the Hessian matrix exist and are continuous� In that case
 if
f is not twice di	erentiable at y
 we can take the gradient and the Hessian matrix at
some point �in�nitely close� to y as gy� and Gy�
 respectively� If f is convex
 then
for all y except in a set of zero Lebesgue� measure
 f is di	erentiable at y and has
second�order approximation around y see Hiriart�Urruty and Lemarechal �������
Our method is based on the following model
 which generalizes a long�known cut�

ting plane model due to Kelley ����� and Cheney and Goldstein ������ At step k

let x�� � � � � xk be the iterates and y�� � � � � yk be the trial points that have been gener�
ated
 together with the corresponding function values fy��� � � � � fyk�
 subgradients
g� � �fy��� � � � � gk � �fyk�
 matrices G� � Gy��� � � � � Gk � Gyk� and damping pa�
rameters �j � ��� ��
 j � �� � � � � k� We de�ne the quadratic approximation of f around
yj by

f�j x� � fyj� � gTj x� yj� �
�
�
�jx� yj�TGjx� yj�� j � �� � � � � k � ����

choose some index set Jk � f�� � � � � kg and de�ne the piecewise quadratic function
f�k x� � maxff�j x�jj � Jkg � ����

Minimizing this model is equivalent to the nonlinear programming problem

A� minimize
�x�z��RN��

z subject to f�j x� � z� j � Jk �

which can be solved by the sequential quadratic programming SQP� method
 whose
rate of convergence is of a second order see Fletcher ������� The iteration step of the
SQP method can be written as a quadratic programming QP� problem

B�
minimize
�x�z��RN��

z � �
�x� xk�

TWkx� xk�

subject to f�j xk� � g�j xk�
T x� xk� � z� j � Jk �

where
 if we denote by �kj � j � Jk
 the Lagrange multipliers at step k


Wk �
X

j�Jk��

�k��j �jGj � ����

g�j x� � rf�j x� � gj � �jGjx� yj�� j � �� � � � � k � ����

The idea of using a quadratic model is not new� Lemarechal in his pioneering work
����� proposed an algorithm where the following QP problem was solved in each step

C�
minimize
�x�z��RN��

z � �
�
x� xk�TAkx� xk�

subject to
h
fyj� � gTj xk � yj�

i
� gTj x� xk� � z� j � �� � � � � k �

�



where Ak was some symmetric positive de�nite N �N matrix
 which was intended to
accumulate information about the curvature of f around xk� Mi�in ����� slightly
modi�ed the algorithm and showed that if f is inf�compact and the matrices Ak stay
uniformly bounded and positive de�nite then at least one cluster point of fxkg is sta�
tionary� Later in Mi�in ������
 he considered the problem of minimizing f�� x� to
motivate algorithms having a subproblem
 which was similar to B�
 and investigated
conditions for obtaining better than linear convergence� Other ideas for developing a
rapidly convergent algorithm
 based on QP subproblem B�
 can be found in Mi�in
������ Kiwiel ����� presented the algorithm
 where subproblem C� was solved
 in
which he combined features of the ellipsoid and bundle methods and reduced the num�
ber of stored subgradients using two strategies� subgradient selection and aggregation�
Because our model uses more second�order information and follows closely the min�

imax analogy
 we expect faster convergence� Note that it is not necessary to evaluate
the matrices Gj analytically � when we used �nite di	erence approximation without
respecting discontinuities�
 the number of iterations was practically the same�
Our algorithm is based on a line search concept� We also mention two signi��

cant �rst order methods of Schramm and Zowe ����� and Kiwiel�����
 based on a
restricted step trust region� approach�
The paper is organized as follows� The algorithm is derived in Section �
 its global

convergence is proved in Section � and its superlinear convergence is studied in Section
�� Particularly
 under additional assumptions
 we show a �self�cleaning� property of
the algorithm and its reduction to the Newton method� In Section � some numerical
experience is reported
 which demonstrates faster convergence in comparison with �rst�
order bundle methods�
Throughout the paper
 we use k � k to denote the spectral matrix norm�

� Derivation of the method

The algorithm given below generates a sequence fxkg�k�� � RN that should converge
to a minimizer of f 
 search directions fdkg � RN and stepsizes ftkLg � ��� ��
 related by
xk�� � xk�tkLdk� k � �� The method also calculates trial points yk�� � xk�tkRdk � RN

for k � � with y� � x� 
 subgradients gk � �fyk�
 symmetric matricesGk and damping
parameters �k � ��� �� for k � �
 where tkR � �� �� are the auxiliary trial stepsizes�
We take a serious step from xk to xk�� 
 and set yk�� � xk�� if we �nd tkL satisfying

tkL � t� and
fxk��� � fxk� �mLt

k
Lvk � ����

where mL � �� �
�
�� t� � �� �� are parameters and vk � � is the predicted amount

of descent if vk � � the algorithm will stop with xk � see below�� Otherwise a short
step if ���� holds
 but tkL � �� t�� or a null step xk�� � xk will improve the quadratic
approximation f�k�� � Letting

fkj � f�j xk�� gkj � g�j xk� � gj � �jGjxk � yj�� j � �� � � � � k � k � � � ����

�



we can write B� equivalently in the form here z is not the same as in B��

D�
minimize
�x�z��RN��

z � �
�
x� xk�TWkx� xk�

subject to ��kj � x� xk�T gkj � z� j � Jk �

where �kj � fxk� � fkj � To guarantee the property that minx f
�

k x� � fxk� in

our model
 it would be useful to have � � �kj � fxk� � f�j xk�� j � Jk 
 because
then it would be the case that minx f�k x� � f�k xk� � fxk� by ����� Note that
it can happen that �kj � � even when f is convex� Furthermore
 f�k closely approx�
imates f only when trial points yj� j � Jk are in the neighbourhood of xk� Thus
we generalize the locality measures introduced by Kiwiel ����� and replace �kj by

	kj � max
h
jfkj � fxk�j� 
skj ��

i
for j � Jk the absolute value is not necessary
 but

signi�cantly improves numerical results�
 where

skj � jyj � xjj�
k��X
i�j

jxi�� � xij � jyj � xkj� j � �� � � � � k� k � � ����

and 
 � �� � � � are parameters Kiwiel ����� uses � � ���
Because the method needs a positive de�nite matrix in problem D�
 we replace

Wk by its positive de�nite modi�cation �Gk
p� To reduce the bundle size
 we use the

subgradient aggregation strategy of Kiwiel ������
We shall now state the method in detail�

Algorithm ���

Step � �Initialization�� Select the starting point x� � RN 
 a �nal accuracy tolerance
 � �
 a bundle dimension M � �
 a distance measure parameter 
 � �
 line search
parameters mL � �� ���� mR � mL� ��
 a lower bound for long serious steps t� � �� ��

an upper bound CS � � for distance between xk and yk
 an upper bound for damped
matrices CG � �
 a matrix selection parameter im � �
 a bundle reset parameter ir � �
and a locality measure parameter � � �� Set y� � x� and compute fy��� g� � �fy��
and a symmetric matrix G�� Initialize the iteration counter k � �
 the number of
consecutive null and short steps in � �
 the number of serious steps from the last
bundle reset is � �
 J� � f�g
 �� � �
 s�p � s�� � �
 f

�
p � f�� � fy��
 g�p � g� and

G�
p � G��

Step � �Direction �nding�� If both of the steps k � � and k � � were serious and
�k��k�� � � or if is � ir
 then set G � Gk
 otherwise set G � Gk

p� If in � im
 modify G
to obtain a positive de�nite matrix �Gk

p
 otherwise set
�Gk
p �

�Gk��
p � Find the solution

dk� �vk� to the k�th QP subproblem

P�
minimize �v � �

�d
T �Gk

pd over all d� �v� � RN �R
subject to �	kj � dT gkj � �v for j � Jk �

�	kp � dT gkp � �v if is � ir �

where
	kj � max�jfkj � fxk�j� 
skj ��� for j � Jk 
 �a�

�



	kp � max�jfkp � fxk�j� 
skp���
 �b�

which can be obtained by solving the k�th subproblem dual see Lemarechal �������
Find values of the multipliers �kj � j � Jk
 and �

k
p to

P ��
minimize �

�

�����Hk

� P
j�Jk

�jg
k
j � �pg

k
p

������
�

�
P
j�Jk

�j	
k
j � �p	

k
p

subject to �j � �� j � Jk� �p � �� P
j�Jk

�j � �p � ��

�p � � if is � ir �

with

dk � �H�
k

�
�X
j�Jk

�kj g
k
j � �kpg

k
p

�
A � ����

�vk � �dTk �Gk
pdk �

X
j�Jk

�kj	
k
j � �kp	

k
p � �����

where Hk �  �Gk
p�
����� If is � ir
 set is � �� Set

�gkp � �f
k
p � G

k��
p � �skp� �

X
j�Jk

�kj g
k
j � f

k
j � �jGj � s

k
j � � �kpg

k
p � f

k
p � G

k
p� s

k
p�� �����

�	kp � max�j �fkp � fxk�j� 
�skp���� �����

vk � �jHk�g
k
p j� � �	kp � �����

wk �
�
�
jHk�gkp j� � �	kp � �����

Step 	 �Stopping criterion�� If wk �  then stop�

Step 
 �Line search�� By a line search procedure as given below �nd step sizes
tkL� tkR such that � � tkL � tkR � � and such that the corresponding points xk�� �
xk � tkLdk� yk�� � xk � tkRdk satisfy the serious descent criterion ���� and either a
serious step tkL � tkR � t� is taken
 or a short step � � tkL � t�
 tkL � tkR or a null step
� � tkL � tkR occur� Calculate fk�� � fyk���� gk�� � �fyk��� and a symmetric matrix
Gk��� If tkL � t� set in � in � �
 otherwise set in � � and is � is � ��

Step � �Updating�� If in � �
 set �k�� � min��� CG�kGk��k�
 otherwise set �k�� � ��
Calculate the values

sk��j � skj � jxk�� � xkj� j � Jk 
 ��a�

sk��k�� � jxk�� � yk��j
 ��b�
sk��p � �skp � jxk�� � xkj
 ��c�

fk��j � fkj � xk�� � xk�
T gkj �

�
��jxk�� � xk�

TGjxk�� � xk�� j � Jk
 ��a�

fk��k�� � fk�� � xk���yk���T gk�� � �
��k��xk���yk���TGk��xk���yk���� ��b�

fk��p � �fkp � xk�� � xk�T �gkp �
�
�xk�� � xk�TGk��

p xk�� � xk�
 ��c�

gk��j � gkj � �jGjxk�� � xk�� j � Jk
 ��a�

gk��k�� � gk�� � �k��Gk��xk�� � yk���
 ��b�
gk��p � �gkp �Gk��

p xk�� � xk�� ��c�

�



Select a set Jk�� satisfying Jk�� � fk�M ��� � � � � k��g	f�� �� � � �g and k�� � Jk���

Step �� Increase k by � and go to Step ��

A few comments on the algorithm are in order�
The situation when is � ir and thus �p � � will be called the bundle reset
 signi��

cant only for the theory contained in Section ��
Note that one of the j constraints in P� may be the same as the p constraint
 e�g�

when k � �� it must be respected when solving P��
It follows from �����
 ����� that vk � � when the stopping criterion is not satis�ed�

This criterion is presented in the form usual in bundle methods
 but in practice it can
be advantageous to modify it e�g� to the form

if jHk�gkp j� � c � �	kp�jfxk�j� �� � � then stop


where c� � are suitable positive constants e�g� c � ���� � � �������
The condition in � � in Step � was established empirically� The choice �k �

min��� CG�kGkk�� k � �
 guarantees the boundedness of f�kGkg
 because we always
have

�kkGkk � CG� �����

The updating rules for sk��j � fk��j and gk��j � j � Jk�� follow from ����
 ���� and ����

respectively� Following Kiwiel�s ����� aggregation strategy we obtain the updating
rules for sk��p � fk��p and gk��p �
The parameters im� ir are not meant to improve the e ciency of the method� We

need them for convergence proofs�
We shall now present a line search algorithm and subsequent lemma given in similar

form by Kiwiel ������ The choice � � � is intended not to prevent rapid convergence
of some interpolation procedures at step vi� Kiwiel ����� uses � � ��� Note that
the termination conditions for short and null steps which occur when tkL � t�� in step
�v� of the following procedure correspond to

� 	k��k�� � dTk g
k��
k�� � mRvk � jxk�� � yk��j � CS� �����

Line Search Procedure ���

�i� Set tL � � and t � tU � �� Choose � � �� ���
 � � ��
�ii� If fxk � tdk� � fxk� �mLtvk set tL � t
 otherwise set tU � t�
�iii� If tL � t� set tR � tL and return�
�iv� Calculate g � �fxk � tdk�
 a symmetric matrix G and

� � min��� CG�kGk� if in � �� � � � otherwise


f � fxk � tdk� � tL � t�gTdk �
�
��tL � t��dTkGdk 


� � max�jf � fxk � tLdk�j� 
tL � t��jdkj��
at termination xk � tLdk and xk � tdk correspond to xk�� and yk��
 respectively��

�v� If �� � dTk g � �tL � t�Gdk� � mRvk and t � tL�jdkj � CS
 then set tR � t and
return�

�



�vi� Choose t � �tL� �tU � tL��� tU � �tU � tL��� by some interpolation procedure and
go to �ii��

Lemma���� Let f satisfy the following �semismoothness� hypothesis �see Lemma �����
and Remark ����� in Kiwiel ��	
���

for any x � RN � d � RN and sequences f�gig � RN and ftig � R� satisfying
�gi � �fx� tid� and ti 
 �� one has

lim sup
i��

�gTi d � lim infi��
�fx� tid�� fx���ti �

Then Line Search Procedure ��� terminates with tkL � tL and tkR � t satisfying ������

Proof� Assume
 for contradiction purposes
 that the search does not terminate� Let
ti� tiL� t

i
U � g

i� �i� Gi and �i denote the values taken on by t� tL� tU � g� �� G and �

respectively at the i�th iteration of the procedure
 hence ti � ftiL� tiUg for all i� Since
� � �� �

�
�
 tiU�tiL������ � �
 tiL � ti��L � ti��U � tiU and t

i��
U �ti��L � tiU�tiL���tiU�tiL��

for all i
 there exists �t � � satisfying tiL � �t� tiU 
 �t� Let

S � ft � �jfxk � tdk� � fxk� �mLtvkg�

Since ftiLg � S� tiL � �t and f is continuous
 we have

fxk � �tdk�� fxk� � mL�tvk � �����

i�e� �t � S� Let I � fijti �� Sg� We prove �rst
 that the set I is in�nite� If there existed
i� � I satisfying ti � S for all i � i�
 it would be t

i�
U � tiU 
 �t for all i � i�
 which

implies �t � ti�U �� S
 which is a contradiction� Thus I is in�nite and we have

fxk � tidk�� fxk� � mLt
ivk for all i � I�

By �����
 we obtain

�fxk � tidk�� fxk � �tdk���t
i � �t� � mLvk for all i � I�

hence

mLvk � lim inf
i��� i�I

fxk � �tdk � ti � �t�dk�� fxk � �tdk�

ti � �t � lim sup
i��� i�I

dTk g
i� �����

where gi � �fxk� tidk�� For su ciently large i we have t� tiL�jdkj � CS and by step
v� of the procedure

��i � dTk g
i � �itiL � ti�Gidk� � mRvk for all large i�

But �i � �� tiL � ti��idTkG
idk � � as i � 
 since tiL � �t� ti � �t
 f is continuous


subgradient mapping �f�� is locally bounded see Kiwiel ������ and f�ikGikg is
bounded by ������ Thus lim supi�� dTk g

i � mRvk and by ����� we obtain mLvk �
mRvk
 which contradicts � � mL � mR � � and vk � �� Therefore the search
terminates and obviously ���� holds at termination� �

�



� Global convergence

In this section we will establish the global convergence of the method
 generalizing
and modifying Kiwiel�s ����� nonconvex approach� We suppose that each execution
of Line Search Procedure ��� is �nite and that the values sk��j and gk��j are de�ned
by the updating rules ��a� and ��a�
 respectively
 also for j �� Jk
 i�e� for all j �
�� � � � � k� k � �
 and de�ne additional multipliers �kj � � for j � f�� � � � � kgnJk
 k � ��
Convergence results assume that the �nal accuracy tolerance  is set to zero�

Lemma ���� Suppose that k � � is such that Algorithm ��� did not stop before the
k�th iteration� Then there exist numbers ��kj � j � �� � � � � k� satisfying

Gk��
p � �gkp � �s

k
p� �

kX
j��

��kj �jGj � g
k
j � s

k
j �� ��kj � �� j � �� � � � � k�

kX
j��

��kj � �� ����

Proof� The proof will proceed by induction� If k � � then we can set ��k� � �� Suppose
that ���� holds for some k � �� Let

��k��j � �k��j � �k��p
��kj for j � k� ��k��k�� � �k��k�� �

Then ��k��j � � for all j � k � � and
Pk��

j��
��k��j �

Pk��
j�� �

k��
j � �k��p

�Pk
j��
��kj
	
� ��

From ����� and ���� we obtain

Gk��
p �

k��X
j��

�k��j �jGj � �k��p

�
� kX
j��

��kj �jGj

�
A

� �k��k���k��Gk�� �
kX

j��

�j�
k��
j � �k��p

��kj �Gj �
k��X
j��

��k��j �jGj�

and
 letting �k � xk�� � xk 


�gk��p � �sk��p � �
k��X
j��

�k��j gk��j � sk��j � � �k��p �gkp �Gk��
p �k� �s

k
p � j�kj�

�
k��X
j��

�k��j gk��j � sk��j � �
kX

j��

�k��p
��kj g

k
j � �jGj�k� s

k
j � j�kj�

� �k��k��g
k��
k�� � s

k��
k��� �

kX
j��

��k��j � �k��p
��kj �g

k��
j � sk��j �

�
k��X
j��

��k��j gk��j � sk��j �

from ��� and ���� The induction is then established with k � � replacing k� �

Lemma ���� Let �x � RN be given and suppose that there exist matrices �Gj� vectors
�q� �yj� �gj and numbers �sj � ��j for j � �� � � � � L� L � �� satisfying

�q� �� �
LX
j��

��j�gj � �Gj�x� �yj�� �sj�� ��j � �� j � �� � � � � L�
LX
j��

��j � �� ����

�



j�yj � �xj � �sj � �gj � �f�yj�� j � �� � � � � L� ����

Then �q � �f�x��

Proof� Let J � fjj��j � �g� By ����
 �sj � � for all j � J 
 hence ���� implies
�yj � �x� j � J 
 so �gj � �f�x� for all j � J � Thus we have �q �

P
j�J
��j�gj � ��j � � for

j � J�
P

j�J
��j � �
 so �q � �f�x� by the convexity of �f�x�� �

Lemma ���� If Algorithm ��� terminates at the k�th iteration� then the point �x � xk
is stationary for f �

Proof� If the algorithm terminates at step � due to wk � �
 then
 since  � � and
�	kp � �
 we have �gkp � �
 �	

k
p � �skp � � by ����� and nonsingularity of Hk� From

���� we obtain jyj � �xj � skj for j � k� Using Lemma ���
 ���� and Lemma ��� with

L � k� �Gj � �jGj � �q � �g
k
p � �yj � yj� �gj � gj � �sj � skj �

��j � ��kj for j � k we have
� � �q � �f�x�� �

From now on we suppose that the algorithm does not terminate
 i�e� wk � � for all k�

Lemma ���� Suppose that N �vectors p� g�! and numbers c� v� w� �� m � �� ��� 	 � �
satisfy

w � �
�
jpj� � 	� v � �jpj� � 	�� �� � gTp � mv� c � max �jgj� jpj�p	� � ����

Let
Q�� � �

�j�g � �� ��p �!�j� � �� � � � ��	 for � � R� ����

Then

minfQ��j� � ��� ��g � w � w� ��m��

�c�
� �cj!j� �

�
j!j��

Proof� Simple calculations yield

Q�� � Q��� �Q����

where

Q���
	
� jpj��� � 	� ��jpj� � 	� � � pT g� � w � �v � � � pT g��

Q���
	
� �����jp �!� gj� �!T p �!���� � ��� � �g��

From ���� we have for � � ��� ��

Q��� � w � ���m�v � w � �� �m�w�

Q��� � ������c � j!j�� � ��� � ��j!j� � �cj!j
� �c��� � �c��j!j� �� ������j!j� � �cj!j
� �c��� � �cj!j� j!j����

Denoting �Q�� � �c��� � �� � m�w� we check that �Q is minimized by �� �
��m�w��c�� � � � ����c���c�� � �
 yielding �Q��� � ���m��w���c��� �� � ��� ��

which completes the proof� �

�



We de�ne  �wk is the optimal value of the k�th QP subproblem P ���

�x� � lim inf
k��

max�wk� jxk � xj� for x � RN � ����

�	kp �
P
j�Jk

�kj	
k
j � �kp	

k
p � �wk �

�
�jHk�gkp j� � �	kp � ����

Lemma ���� �i� At the k�th iteration of Algorithm ���� one has

�	kp � �	kp � wk � �wk � ����

�ii� Suppose that there exist �x � RN and an in�nite set K � f�� �� � � �g satisfying

xk
K�� �x� Then fxk� 
 f�x� and tkLvk � ��

Proof� i� By �����
 �����
 ��
 ���� and
 since the functions � � 
j�j� for 
 � �

� � � and �� ��� max��� �� are convex


�	kp � max



�X
j�Jk

�kj jfkj � fxk�j� �kpjfkp � fxk�j�
X
j�Jk

�kj 
s
k
j �
� � �kp
s

k
p�

�

�


� X
j�Jk

�kj max
h
jfkj � fxk�j� 
skj ��

i
� �kpmax

h
jfkp � fxk�j� 
skp��

i
� �	kp �

which yields �����

ii� Let xk
K�� �x� Continuity of f implies fxk�

K�� f�x�
 so fxk� 
 f�x� follows
from the monotonicity of ffxk�g due to ����� Since mL � �� ���� tkL � �� vk � � and
���� is always ful�lled
 we have � � �tkLvk � �fxk��fxk�����mL � �
 which implies
tkLvk � � and completes the proof� �

Lemma ���� Suppose that fxkg is bounded �e�g� when the level set fx � RN jfx� �
fx��g is bounded for some � � �� and ��x� � � for some point �x � RN � Then
� � �f�x��

Proof� By ���� there exists an in�nite set K � f�� �� � � �g such that xk K�� �x


wk
K�� �� Let I � f�� � � � � N � �g� From Lemma ��� and the Caratheodory theorem

see Hiriart�Urruty and Lemarechal ������ we deduce the existence of vectors gk�i� sk�i

and numbers �k�i for i � I
 k � �
 satisfying

�gkp � �s
k
p� �

X
i�I

�k�igk�i� sk�i�� �k�i � �� i � I�
X
i�I

�k�i � �� ����

with gk�i� sk�i� � fgkj � skj �jj � �� � � � � kg � RN �R
 i � I� k � �� In view of ���� we
can assign to every k � � and every i � I an index j � jk� i�� � � j � k
 satisfying

gk�i � gkj � gj � �jGjxk � yj�� sk�i � skj � �����

with gj � �fyj�� �j � ��� ��� By ����� and the fact that xj � yj for serious steps
 we
always have jxj � yjj � CS� Thus fyjg is bounded and there exist points �yi� i � I


and an in�nite set K� � K satisfying yj�k�i� � �yi as k
K���  for i � I� By the

local boundedness and the upper semicontinuity of �f see Kiwiel ������
 there exist

�



vectors �gi � �f�yi�� i � I� and an in�nite set K� � K� satisfying gj�k�i�
K��� �gi for i � I�

Since f�jGjg� f�k�ig are bounded by �����
 there exist matrices �Gi
 numbers ��i� i � I�

and an in�nite set �K � K� satisfying �j�k�i�Gj�k�i�


K�� �Gi
 �k�i

K�� ��i for i � I�

Letting k � �K approach in�nity in ���� and ����� we obtain �gkp

K�� P

i�I
��i�gi �

�Gi�x� �yi�� 	
� �q� From wk

K�� �
 �����
 ����� and combining ����� with Lemma ���

we have �gkp
K�� � � �q and �	kp

K�� �
 which yields �skp
K�� �
 hence �k�isk�i

K�� � for

i � I� k � � by ���� and nonnegativity of all �k�isk�i� Therefore from �k�i

K�� ��i
 i � I

and ���� we obtain sk�i

K�� �si � j�x � �yij
 setting �si � � for ��i �� �� If ��i � � we set

�si � j�x� �yij� Obviously ��i � �� i � I�
P

i�I
��i � �
 so � � �q � �f�x� by Lemma ���� �

Lemma ���� Let �x � RN be given and suppose that fHkg is bounded and there

exists an in�nite set K � f�� �� � � �g such that xk
K�� �x� ��x� � �� Then for any i � �

xk�i � �x and tk�iL � � as k
K�� � Moreover� for any �xed r � � there exists �k � �

such that wk�i � ��x��� and tk�iL � t� for all k � �k� k � K and � � i � r�

Proof� i� We shall �rst establish xk�i
K�� �x for any i � �� For i � � it is true by

assumption� By induction
 let it be true for any �xed i � �� Since fHkg� ftkLg are
bounded
 we have

jxk�i�� � xk�ij � tk�iL jH�
k�i�g

k�i
p j � kHk�ik

q
tk�iL

q
�tk�iL vk�i � �

by ��
 ����������� and Lemma ���ii�
 which implies xk�i��
K�� �x and completes the

induction�
ii� Next we show that tk�iL

K�� � for any �xed i � �� We assume that it is not true

i�e� that there exist �t � � and an in�nite set �K � K
 satisfying tk�iL � �t for all k � �K�
By �����
 ����� and Lemma ���ii� we get � � �twk�i � �tk�iL vk�i � � for k � �K


which yields wk�i

K�� �
 so ��x� � �
 since xk�i


K�� �x� It is a contradiction
 yielding
the desired assertion�
iii� Let r � � be �xed� For any i � �
 since xk�i K�� �x together with ��x� � � and


since tk�iL
K�� �
 there exist ki � �
 satisfying wk�i � ��x��� and tk�iL � t� for all

k � ki� Setting �k � maxfkij� � i � rg completes the proof� �

Note that the boundedness of fHkg can be provided numerically� If we modify the
matrix Gk

p in Step � using a factorization method by P�E� Gill and W� Murray �����

then there exists a constant c � � satisfying k �Gk

p�
��k � c for all k � �� This follows

easily from the fact that �Gk
p � LkDkL

T
k 
 where Dk is a diagonal matrix with elements

greater than some positive constant and Lk is a unit lower�triangular matrix with
bounded o	�diagonal elements�

Theorem ��	� Suppose fxkg and fHkg are bounded� Then every accumulation point
of fxkg is stationary for f �

Proof� Suppose xk
K�� �x� In view of Lemma ���
 it su ces to show that ��x� � ��

For contradiction purposes
 let ��x� � � or ��x� � ��
As in the proof of Lemma ��� we establish boundedness of fykg
 f�kGkg
 fgkg and

also of fgkkg
 fHkg
k
kg and f	kkg by ��b�
 ��b�
 ��b� and continuity of f � Since the

��



multipliers �k � �� �j � � for j � Jknfkg and �p � � are feasible for the k�th dual
subproblem P �� for all k � �
 it holds �wk � ����jHkg

k
k j� � 	kk� k � �
 and using

���� and ����� we deduce that fwkg
 fHk�gkpg
 f�gkpg and f�	kpg are bounded and ��x�
is �nite� Denote

c � supfjHkg
k
k j� jHk�gkp j�

q
�	kp jk � �g� !k � Hk��gk��p � �gkp �� k � ��

� � ��x���� �c � ���mR���c�� r � ����c���c� � im �

�����

Arguing as in the �rst part of the proof of Lemma ��� and from ��c� and Lemma ���ii�
we obtain xk�� � xk � �
 sk��p � �skp � �
 fxk��� � fxk� � �� Combining �����

with Lemma ��� and using ��c� and ��c� we get fk��p � �fkp � � and !k � ��
Since for � � � the function � � �� is Lipschitz continuous on any bounded subset
of R
 �skp � �	kp�
�

��� for k � � and f�	kpg is bounded
 there is a constant cL � �
such that jsk��p �� � �skp��j � cLjsk��p � �skpj for k � �� Using �b�
 ����� and relation
jmax�a� b��max�c� d�j � ja� cj� jb� dj
 holding for a� b� c� d � R
 we have for k � �

j	k��p � �	kpj � jmax�jfk��p � fxk���j� 
sk��p ����max�j �fkp � fxk�j� 
�skp���j
� jfk��p � �fkp j� jfxk���� fxk�j� 
cLjsk��p � �skpj � �

and thus there exists a number �k � � satisfying

�cj!kj� j!kj��� � j	k��p � �	kpj � �c� for all k � �k� �����

Let �k be the number de�ned in Lemma ���� Choose k� � K satisfying k� �
max��k� �k�
 any integer i � �im� r� and set k � k� � i� It follows from Lemma ��� that
wk � �
 tkL � t� and in � im after Step � of Algorithm ���� Thus �Gk��

p � �Gk
p in the next

Step � and Hk�� � Hk� Since no bundle resetting occurs i�e� is � ir� for short and
null steps
 the multipliers �k�� � �� �j � � for j � Jk��nfk� �g
 �p � �� �
 � � ��� ��
are feasible for the k � ���th dual subproblem P �� and we get by ���� and ����

wk�� � �
�

����Hk��g
k��
k�� � ����Hk��g

k��
p

����� �	k��k�� � ����
h
�	kp � 	

k��
p � �	kp�

i
� �����

In view of ����� we can apply Lemma ��� with p � Hk�gkp � �H��
k��dk
 g � Hk��g

k��
k��


! � !k
 v � vk
 w � wk
 � � 	k��k��
 	 � �	
k
p and m � mR
 to obtain

wk�� � wk � w�
k

��mR��

�c�
� �cj!kj� �

�
j!kj� � j	k��p � �	kpj � wk � �c�� �����

where the �rst inequality follows from Lemma ��� and the second from the de�nition
of �c in �����
 the fact that wk � � and ������ For the largest n � r it follows from
�����
 ����� and the de�nition of c and r in ����� that

wk��n�� � wk��im � �c�n� � � im� � c��� � c� � �c�r � im� � ��

which is impossible� Therefore ��x� � �
 yielding the desired result� �

��



� Superlinear convergence

In this section we show that the convergence rate of Algorithm ��� is superlinear and
from some index on we have Newton iterations under the following assumptions� the
trial points sequence fykg converges to �x
 the problem function f is strongly convex
with modulus CF � � i�e� fx��CF���jxj� is convex� and has continuous second order
derivatives in some neighbourhood B�x� of �x
 the number of serious steps is in�nite

the locality measure parameter � � � and Gk are the Hessian matrices r�fyk��
We suppose that the �nal accuracy tolerance  � � and CF is large enough to ensure

that in Step � of Algorithm ��� the matrices Gk are not modi�ed for all yk � B�x��

Lemma ���� Let the number of serious steps generated by Algorithm ��� be in�nite�
Then for each k� � �� there is a number k� � k� such that Jk � fk�� k� � �� � � �g and

Gk��
p � gk��p � sk��p ��

kX
j�k�

��kj �jGj � g
k��
j � sk��j �� ��kj � �� k� � j � k�

kX
j�k�

��kj �� ����

for all k � k��

Proof� Choose k� � k� �M � � M � � is the bundle dimension� such that in the
k��th step the bundle resetting was performed
 i�e� �k�p � �� Let k � k��
The bundle de�nition yields Jk � fk �M � �� � � � � kg � fk�� k� � �� � � �g
 which

implies �kj � � for j � k�� Thus
 letting ��kj be the same as in Lemma ���
 we have
��kj � �kp

��k��j for j � k� from the proof of Lemma ���� Since �k�p � �
 we obtain by

induction for k � k�� k� � �� � � �
 that ��kj � � in ���� for j � k�� Using ���
 ��� and
���� we get

�
gk��p � sk��p

	
�

�
�gkp �Gk��

p xk�� � xk�� �s
k
p � jxk�� � xkj

	

�
kX

j�k�

��kj
�
gkj � �jGjxk�� � xk�� s

k
j � jxk�� � xkj

	

�
kX

j�k�

��kj
�
gk��j � sk��j

	
�

which together with ���� completes the proof� �

Lemma ���� Let the assumptions of Lemma ��� be satis�ed� Suppose that fxkg� fykg
are sequences generated by Algorithm ���� yk � �x� the function f has locally Lipschitz
continuous �rst derivatives at �x� fHkg is bounded and � � �� Then rf�x� � � and
there exists a number �k such that the QP subproblem P� has only one active constraint
with the index k whenever k � �k and yk � xk�

Proof� By assumption there exists a neighbourhood B�x� of �x and a constant CL

satisfying
jgi � gj j � CLjyi � yjj for all yi� yj � B�x�� ����

By ����� and in virtue of xj � yj for serious steps
 we always have jxk � ykj � CS�
Therefore fxkg is bounded and since the set fkjxk � ykg is in�nite by assumption
 we

��



can apply Theorem ���
 obtaining � � �f�x� � frf�x�g by continuity of rf at �x see
Clarke ������� Thus gk � � and we can choose a number k� such that yk � B�x� and

CL � CG�C
�
Hjgkj � 
 ����

for all k � k�
 where CH � supfkHkk jk � �g and 
 is the distance measure parameter�
Let �k be a number k� determined by Lemma ��� and suppose that k � �k and

yk � xk� Then 	
k
k � � and g

k
k � gk by �a�
 ��b�
 ��b� and ��b�
 and the reduced

QP subproblem

R� minimize
�u�z��RN��

z � �
�
uT �Gk

pu subject to � 	kk � uTgkk � z

similar to the QP subproblem P�� has the solution
uk � �H�

kgk� zk � �uTk �Gk
puk � gTk uk � ����

Since k � �k
 we deduce from Lemma ��� that j � k� for any j � Jk and
 hence

yj � B�x�� By ����
 ���� and �����

gkj � gk�
Tuk � jgj � gk � �jGjyj � xk�j � jukj � CL � CG�C

�
Hjgkjjyj � xkj

for all j � Jk� Observe that the assumption xk � yk can be ful�lled only for serious
or short steps xk �� xk���
 hence skj � � for j � k by ��a�� Thus
 since � � � is
assumed
 one always has

gkj � gk�
Tuk � 
skj � 	kj ����

for all j � Jknfkg by ����
 ���� and �a�� Similarly ����
 ���� and �b� imply

gkp � gk�
Tuk �

k��X
j�k�

��k��j gkj � gk�
Tuk � 


k��X
j�k�

��k��j skj � 
skp � 	kp � ����

From ��������� we get �	kj � uTk g
k
j � zk for j � Jknfkg and �	kp � uTk g

k
p � zk �

hence uk� zk� also solves the QP subproblem P�
 which completes the proof� �

Lemma ���� Let the assumptions of Lemma ��� be satis�ed� Suppose that the func�
tion f is strongly convex with modulus CF � � and has continuous second order
derivatives in some neighbourhood of �x� Then there exists a number �k such that
yk�� � xk�� � xk �G��k gk �Newton step� for all k � �k�
Proof� Let K � fkjxk � yk and �Gk

p � Gkg�
�i� At �rst we establish the existence of a number k� such that yk�� � xk�� � xk � dk
for all k � K
 k � k�� Suppose that k � K
 k � �k
 where �k is de�ned in Lemma ����
Then
 by Lemma ���
 �kk � � and �

k
j � � for all j �� k� Hence
 we have �	kp � 	kk � �

and �gkp � gkk � gk by �����
 �����
 ��b�
 ��b� and ��b�
 which gives

dk � �G��k gk� vk � gTk dk � �dTkGkdk ����

by �� and ������ Reasoning as in the proof of Lemma ���
 we obtain gk � �
 hence
dk � � by the boundedness of fHkg� A Taylor series about xk and ���� yield

fxk � dk�� fxk� � dTk gk � ����d
T
kGkdk �!k � vk�� � !k� ����

��



where !k � odTk dk� by continuity of r�f � It follows from the strong convexity of f
with modulus CF that the smallest eigenvalue of r�f is minorized by CF see Hiriart�
Urruty and Lemarechal ������� Thus there exists k� � �k such that

!k � ��� �mL�CF jdkj�� dTGkd � CF jdj� for all d � RN � k � K� k � k�� ����

From ��������� we obtain

fxk � dk�� fxk� � vk�� � ��� �mL�d
T
kGkdk � mLvk �

hence ���� with tkL � � holds for k � K� k � k��
�ii� Choose �k � k� � �k such that in the �k�th step the bundle resetting was performed�
Then �k � K and thus the �k�th step is serious by the part �i� of the proof� Since the
�k����th step was serious
 it follows from Lemma ���
 the positive de�niteness of G
k��

and Algorithm ��� that �k � � � K� Now we can complete the proof by induction� �

In view of ���� the strong convexity and second order di	erentiability assumptions
of Lemma ��� imply the boundedness of fG��k g and
 hence
 the boundedness of fHkg
which is assumed in Lemma ����

Theorem ���� Let the assumptions of Lemma ��� be satis�ed� Then� after a su�cient
number of steps� Algorithm ��� generates Newton iterations purely and fxkg converges
to �x superlinearly�

Proof� Suppose that k � �k
 where �k is de�ned by Lemma ���� Write ek � xk��x� Since
rf�x� � � by e�g� Lemma ���
 we obtain from yk � xk and yk�� � xk�� � xk �G��k gk

ek�� � �G��k gk �Gkek� � �G��k
h
rf�x� ek��rf�x��r�fxk�ek

i
�

By continuity of r�f and in view of the boundedness of fG��k g
 easy calculations give

jek��j�jekj � kG��k k �
���R �� �r�f�x� �ek��r�f�x� ek��d�

���� �� �

� Numerical examples

The above concept was implemented in FORTRAN �� as BNL� In this section we
compare our results for �� standard examples from literature with those obtained by
the ellipsoid bundle method EB� of Kiwiel �����
 by the BT algorithm trust region
concept� of Schramm and Zowe ����� and by our implementation of the proximal
bundle method PBL
 line search concept�� Problems ���� are described in M"kel"
�����
 problems ����� and also ����� in Kiwiel ������ In Table � we give optimal
values of tested functions�
The parameters of the algorithm had the valuesM � N��
 � � mL � ����
 � � �


mR � ���
 t� � �����
 CS � CG � ����
 im � ir � ���� The algorithm of Luk#an
����� was employed for solving the QP subproblem� To cut o	 useless iterations
 the
algorithm stopped�

��



if jHk�gkp j� � ����	kp�jfxk�j� ������ � � � ����
or jfyk�� fxk���j��max��� jfyk�j� � ��� in two consecutive iterations�

Our results are summarized in Table �
 in which the following notation is used� Ni is
the number of iterations
 Nf is the number of objective function and also subgradient
and matrix Gk� evaluations
 F is the objective function value at termination and 
 is
the distance measure parameter value values of 
 were chosen experimentally��

Nr� N Problem Minimum Nr� N Problem Minimum

� � Rosenbrock ��� �� � Rosen �����
� � Crescent ��� �� � Shor ���������
� � CB� ��������� �� �� Maxquad� ����������
� � CB� ��� �� �� Maxq ���
� � DEM ���� �� �� Maxl ���
� � QL ���� �� � Colville ����������
� � LQ ���������� �� �� shell dual ���������
� � Mi�in� ���� �� �� mxhilb ���
� � Mi�in� ���� �� �� l�hilb ���

Table �� Test problems

BNL � � � BNL � � � PBL
Nr� Ni Nf F 
 Ni Nf F 
 Ni Nf F
� �� �� ����E��� ��� �� �� ����E��� ��� �� �� ����E���
� � � ����E��� ���� � � ����E��� ����� �� �� ����E���
� � �� ��������� ���� � � ��������� ��� �� �� ���������
� �� �� ��������� ���� �� �� ��������� ��� �� �� ���������
� �� �� ���������� ��� �� �� ���������� ���� �� �� ����������
� � � ��������� ����� � � ��������� ����� �� �� ���������
� �� �� ���������� ����� �� �� ���������� ����� �� �� ����������
� �� �� ���������� ��� �� �� ���������� ���� �� �� ����������
� �� �� ���������� ����� �� �� ���������� ����� �� �� ����������
�� �� �� ���������� ����� �� �� ���������� ����� �� �� ����������
�� � � ��������� ����� � � ��������� ����� �� �� ���������
�� �� �� ���������� ���� �� �� ���������� ���� �� �� ����������
�� �� �� ����E��� ����� �� �� ����E��� ����� ��� ��� ����E���
�� �� �� ����E��� ����� �� �� ����E��� ����� �� �� ����E���
�� �� �� ���������� ���� �� �� ���������� ���� �� �� ����������
�� ��� ��� ��������� ���� ��� ��� ��������� ���� ���� ���� ���������
�� �� �� ����E��� ����� �� �� ����E��� ����� ��� �� ����E���
�� �� �� ����E��� ����� �� �� ����E��� ����� ��� �� ����E���P

��� ��� ��� ��� ���� ����
time � ���� sec time � ����� sec time � ����� sec

Table �� Our test results

��



In Table � we compare our results with those obtained by the EB and BT methods�

BT BT EB
Nr� Ni Nf F Nr� Ni Nf F Ni Nf F
� �� �� ����E��� �� �� �� ��������� �� �� ��������
� �� �� ����E��� �� �� �� �������� �� �� ��������
� �� �� �������� �� �� �� ��������� �� �� ��������
� �� �� �������� �� ��� ��� ��� � � �
� � �� ��������� �� �� �� ��� � � �
� �� �� �������� �� � � � �� �� ��������
� �� �� ��������� �� � � � ��� ��� �������
� �� �� ��������� �� � � � �� �� ���E��
� � �� ��������� �� � � � �� �� ���E��

Table �� Test results for EB and BT methods
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