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Abstract. Let g be a cuspidal newform (holomorphic or Maass) of arbitrary level and nebentypus,

χ a primitive character of conductor q, and s a point on the critical line ℜs = 1
2
. It is proved that

L(g ⊗ χ, s) ≪ε,g,s q
1
2
−

1
8
(1−2θ)+ε,

where ε > 0 is arbitrary and θ = 7
64

is the current known approximation towards the Ramanujan–

Petersson conjecture (which would allow θ = 0); moreover, the dependence on s and all the
parameters of g is polynomial. This result is an analog of Burgess’ classical subconvex bound for
Dirichlet L-functions. In Appendix 2 the above result is combined with a theorem of Waldspurger
and the adelic calculations of Baruch–Mao to yield an improved uniform upper bound for the
Fourier coefficients of holomorphic half-integral weight cusp forms.

1. Introduction

Let g be a general cusp form, that is,

• a holomorphic form of integral weight kg > 1, level D, and nebentypus χg,

• or a Maass form of weight 0 or 1 (without loss of generality), level D, and nebentypus

χg having spectral parameter tg =
(
λ− 1

4

)1/2
, where λ is the Laplacian eigenvalue.

(1.1)

We suppose that g is “new” in the sense of Atkin-Lehner theory; in particular, g is an eigenform of
the Hecke operators Tn, n > 1, and we will denote by λg(n) its n-th Hecke eigenvalue. We shall be
concerned with the twist g⊗χ, where χ is a primitive character to a large modulus q. This is again
a newform (of level dividing Dq2), and its L-function L(g ⊗ χ, s) equals up to finitely many Euler
factors

∑
n λg(n)χ(n)n−s; to be precise, we have

L(g ⊗ χ, s) =
∑

n>1

λg⊗χ(n)

ns

=
∏

p∤(q,D)

(
1 − λg(p)χ(p)

ps
+
χ2 · χg(p)

p2s

)−1 ∏

p|(q,D)

(
1 − λg⊗χ(p)

ps
+
χg⊗χ(p)

p2s

)−1

.

In this paper we are interested in upper bounds for L(g⊗χ, s) when s is on the critical line ℜs = 1
2 .

In some respects, the weight kg of a holomorphic form and the spectral parameter tg of a Maass

form behave similarly, the reason being that if g is holomorphic of weight k, then yk/2g(z) is Maass
having spectral parameter t = ik−1

2 . For a uniform notation let us therefore define the infinity type
µ̃g of g as

µ̃g :=

{
kg−1

2 if g is holomorphic of weight kg

tg if g is a Maass form of weight 0 or 1 and Laplacian eigenvalue 1
4 + t2g,
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and let us write µg := 1 + |µ̃g|. Then the general convexity bound gives

L(g ⊗ χ, s) ≪ε (|s|µgqD)ε(|s|µg)
1
2D

1
4 q

1
2

for ℜs = 1
2 and for any ε > 0 which, however, is often not sufficient for applications. In particular, it

is of interest to break convexity in the q-aspect while keeping a polynomial control in the remaining
parameters |s|, µg, D.

The first breakthrough was obtained by Duke–Friedlander–Iwaniec [DFI93]. If g is holomorphic
of level D = 1 they proved the subconvex exponent

(1.2)
1

2
− 1

22
,

using the δ-symbol method. In the case of a general holomorphic cusp form of weight at least 2,
Bykovskĭı [By96] derived, by a different method, the stronger subconvex exponent

(1.3)
1

2
− 1

8

as long as (D, q) = 1. While it is unclear whether and to what extent Bykovskĭı’s method carries
over to the general case (1.1), the second and third author independently used the strategy from
[DFI93] to break convexity also in the Maass case [H03a, H03b, M04a]. As a notable feature of
[H03a], a very flexible variant of the δ-symbol method due to Jutila [J92, J96, J99] was introduced
into the argument.

Sarnak [S01] recently developed a new method using relatively deep spectral analysis and in
particular estimates for triple products of automorphic forms. Although not stated explicitly, his
method yields

(1.4)
1

2
− 1 − 2θ

14 + 4θ

when g is holomorphic; see also [Co03, CoPSS] for an explicit version in the more general context
of holomorphic modular forms over totally real fields. This is stronger than (1.2), but weaker than
(1.3). Here and henceforth, θ > 0 denotes any admissible constant, by which we mean that the
following approximation to the Generalized Ramanujan–Petersson conjecture is satisfied:

Hypothesis Hθ. For any cuspidal automorphic form π on GL2(Q)\GL2(AQ) with local Hecke

parameters α
(1)
π (p), α

(2)
π (p) for p <∞ and µ

(1)
π (∞), µ

(2)
π (∞), one has the bounds

|α(j)
π (p)| 6 pθ, j = 1, 2

(resp. |ℜµ(j)
π (∞)| 6 θ, j = 1, 2)

provided πp (resp. π∞) is unramified.

Currently, the best admissible constant is θ = 7
64 as follows from the work of Shahidi, Kim–

Shahidi, Kim and Kim–Sarnak [KS02, K03, KS03].
Eventually, Sarnak’s method and the bound (1.4) can be generalized to arbitrary g, but this

requires very delicate arguments from the theory of automorphic representations. However, these
difficulties can be avoided, and in this paper we combine various ideas from [Bl04b, HM04b] to
obtain the stronger exponent

(1.5)
1

2
− 1 − 2θ

8
,

valid in the general case (1.1). Precisely, we have

Theorem 1. Let g be a cuspidal automorphic newform (i.e., either a holomorphic form or a Maass
cusp form) as in (1.1), and let χ be a primitive character of conductor q. For any ε > 0 and for
ℜs = 1

2 one has

(1.6) L(g ⊗ χ, s) ≪ε (|s|µgDq)ε|s|AµBg DCq
1
2− 1

8 (1−2θ),
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where

A :=
31 + 4θ

16
, B :=

75 + 12θ

16
, C :=

9

16
,

and 0 6 θ < 1
2 is any real number such that Hypothesis Hθ is satisfied. Since θ = 7

64 is currently
admissible, the current subconvex exponent equals

1

2
− 25

256
=

103

256
= 0.40234375.

Remark 1.1. Unlike all previous bounds, our estimate is explicit in all the parameters of g which
turns out to be useful for applications. The numerical values of A, B, C can be improved with more
careful estimates.

Remark 1.2. The bound (1.6) should be compared with Burgess’ bound [B63] for Dirichlet L-
functions. Indeed, the square of L(χ, s) can be interpreted as the twisted L-function L(E ⊗ χ, s),
where E denotes the (derivative of the) standard weight zero Eisenstein series of level 1 and Laplacian
eigenvalue 1

4 . In this context, Burgess’ bound (in its hybrid version by Heath-Brown [HB78]) is
written as

L(E ⊗ χ, s) ≪ε (|s|q)ε|s| 12 q 1
2− 1

8 .

Thus the bound of Theorem 1 is the cuspidal analog of Burgess’ result under the Ramanujan–Peters-
son conjecture (i.e., θ = 0).

Remark 1.3. Under more restricted assumptions, the sharpest subconvex exponent for this problem
is due to Conrey–Iwaniec [CI00], namely

L
(
g ⊗ χ, 1

2

)
≪ε,µg

q
1
3+ε

for a quadratic character χ and for g either a cusp form of level 1 or g(z) = E(z, 1
2 +it) the Eisenstein

series of full level (here t ∈ R); in the latter case, one has

L
(
g ⊗ χ, 1

2

)
=
∣∣L
(
χ, 1

2 + it
)∣∣2 ,

so this bound is the exact analog of Weyl’s 1
6 bound for the Riemann zeta function. Note, however,

that the argument leading to this bound uses crucially the positivity of the central value L(g⊗χ, 1
2 )

and is therefore limited to the case of χ a quadratic character, g a self-dual modular form and to
the special value s = 1

2 .

Remark 1.4. It is a nice feature that our method permits a uniform treatment of all cusp forms
on GL2(Q)\GL2(AQ). Depending on the applications, Theorem 1 can be optimized with respect
to various auxiliary parameters, and it can be used as an ingredient for several other subconvexity
problems, some of which will be considered elsewhere. Here we want to focus on Rankin–Selberg
L-functions. Let f and g be two cuspidal newforms. Then for s on the critical line one has the
convexity bound

L(f × g, s) ≪ε,µf ,g,s q
1
2+ε,

where q denotes the level of f . The problem of improving this estimate was solved in [KMV02,
M04a, HM04a]. The hardest case is when the conductor of the nebentypus of f is large (if the
nebentypus is primitive for instance). In this configuration, the subconvexity problem for twisted
L-functions plays a key role. In [HM04a], we use the results of the present paper to obtain the
following corollary:

Corollary. There exist positive absolute constants A, δ > 0 with the following property. For any
two newforms f and g (holomorphic or Maass) of respective levels q, D and respective nebentypus
χf , χg such that χfχg is non-trivial, one has

L(f × g, s) ≪ (|s|µfµgD)Aq
1
2−δ
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for ℜs = 1
2 . Assuming Hypothesis Hθ we can take

δ =
(1 − 2θ)

8

(1 − 2θ)

202
− ε,

so that at the current state of knowledge δ = 1
2648 is admissible.

Combining some of the methods of [HM04a, Bl04b] and of the present paper it is possible to
reduce considerably the constant 202 above. We will return to this on another occasion.

Remark 1.5. Theorem 1 can be combined with the powerful results of Shimura and Waldspurger to
improve on the known upper bounds for the Fourier coefficients of half-integral weight holomorphic
or Maass cusp forms. The recent careful adelic calculations of Baruch–Mao enable one to derive
these estimates with proper uniformity in all the parameters of the underlying cusp form. The
details in the holomorphic case have been kindly worked out for us by Zhengyu Mao and have been
included in this paper as Appendix 2 (see Theorem 6).

Acknowledgements. The second author wishes to thank Université Montpellier II for its hospital-
ity during the week June 15–21, 2004. The third author would like to thank the American Institute
of Mathematics (Palo-Alto) and the organizers of the workshop “Emerging applications of measure
rigidity”—during which this work was initiated—for their kind invitation and the excellent working
conditions.

2. Some general results

In this section, we indicate our normalization for the Fourier coefficients of modular forms, recall
some of their properties and state various results from the spectral theory of automorphic forms; for
more background and references, we refer to [DFI02] and to [HM04a].

2.1. Fourier coefficients. We will follow the notation of [DFI02] to large extent. A Maass cusp
form g of weight k > 0 and Laplacian eigenvalue (1

2 + it)(1
2 − it) admits an expansion

g(z) =
∑

n∈Z
n6=0

ρg(n)W n
|n|

k
2 ,it

(4π|n|y)e(nx)

in terms of the Whittaker function Wα,it(y). Note that Wα,it(y) ∼ yαe−y/2 for y → +∞. For an
Eisenstein series Ea(z,

1
2 + it) attached to some cusp a of Γ0(D), we have a Fourier expansion of the

type

Ea

(
z, 1

2 + it
)

= δa=∞y
1
2 +it + ϕa

(
1
2 + it

)
y

1
2−it +

∑

n∈Z
n6=0

ρa(n, t)W n
|n|

k
2 ,it

(4π|n|y)e(nx).

Finally, when g(z) is a holomorphic cusp form of weight k, we write

(2.1) g(z) =
∑

n>1

ρg(n)(4πn)k/2e(nz),

keeping in mind that yk/2g(z) is a Maass form of weight k.
We will need the following general Voronoi-type summation formula ([HM04a, Proposition 2.1]).

Proposition 2.1. Let g be a cusp form (holomorphic or Maass) of weight k, level D and nebentypus
χg. Let c ≡ 0 (mod D), and let a be an integer coprime to c. If F ∈ C∞((0,∞)) is a Schwartz class
function vanishing in a neighborhood of zero, then

(2.2)
∑

n>1

√
nρg(n)e

(
n
a

c

)
F (n) =

χg(a)

c

∑

±

∑

n>1

√
nρ±g (n)e

(
∓na

c

)
F±
( n
c2

)
.
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In this formula,

ρ+
g (n) := ρg(n), ρ−g (n) :=

Γ
(

1
2 + it− k

2

)

Γ
(

1
2 + it+ k

2

)ρg(−n),

and

(2.3) F±(y) :=

∫ ∞

0

F (x)J±
g

(
4π

√
xy
)
dx,

where t = tg is the spectral parameter of g in the Maass case, and

•
J+
g (x) := 2πilJl−1(x), J−

g (x) := 0,

if g is induced from a holomorphic form of weight l;
•

J+
g (x) :=

−π
ch(πt)

{
Y2it(x) + Y−2it(x)

}
, J−

g (x) := 4 ch(πt)K2it(x),

if k is even, and g is not induced from a holomorphic form;
•

J+
g (x) :=

π

sh(πt)

{
Y2it(x) − Y−2it(x)

}
, J−

g (x) := −4i sh(πt)K2it(x),

if k is odd, and g is not induced from a holomorphic form.

2.2. Hecke operators. We recall that there is an action on the L2-space of modular forms of level
D and some given nebentypus by the commutative algebra T generated by the Hecke operators
{Tn}n>1. We denote by T(D) the subalgebra generated by {Tn}(n,D)=1 and call a holomorphic or

Maass cusp form a Hecke–Maass cusp form if it is an eigenform for T(D). For a Hecke–Maass cusp
form g we denote by χg its nebentypus and by λg(n) its n-th Hecke eigenvalue. If Hypothesis Hθ is
valid, one has

(2.4) |λg(n)| 6 τ(n)nθ,

where τ(n) denote the divisor function. Moreover, for (n,D) = 1 the following relations hold:

(2.5)
√
nρg(±n) = ρg(±1)λg(n),

(2.6)
√
mρg(m)λg(n) =

∑

d|(m,n)

χg(d)ρg

(m
d

n

d

)√mn

d2
,

(2.7)
√
mnρg(mn) =

∑

d|(m,n)

χg(d)µ(d)ρg

(m
d

)√m

d
λg

(n
d

)
.

If g is a Hecke form and belongs to the new subspace (in the sense of Atkin–Lehner theory), then g
an eigenform of all Hecke operators and the above relations hold with no restriction on n. In this
case, we say that g is a newform.

2.3. Kuznetsov’s formula and the large sieve. We make the following convention: if f and g
are two Maass cusp forms of the same weight, same level D, and same nebentypus, then we normalize
their Petersson inner product 〈f, g〉 as

(2.8) 〈f, g〉 =

∫

Γ0(D)\H
f(z)g(z)

dxdy

y2
;

if f and g are holomorphic of weight k, 〈f, g〉 is given as above with an extra yk factor. In particular,
we say that g is L2-normalized if 〈g, g〉 = 1.

For a character χ to modulusD, we denote by B(D;χ) = {fj}j>1 (resp. Bhk (D;χ)) an orthonormal
basis of the L2-space of weight 0 Maass cusp forms (resp. of the space of holomorphic cusp forms
of weight k) of level D and nebentypus χ. If χ is the trivial character, we simply omit it from the
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notation. We can always choose a basis formed of Hecke–Maass cusp forms, and we will pick a special
basis later in section 3.1. Let us now recall Kuznetsov’s trace formula (in the trivial nebentypus
case, see [I87, Theorems 9.4, 9.5, 9.7]).

Theorem 2. Let m,n,D be positive integers and ϕ ∈ C∞
c ((0,∞)). One has

1

4
√
mn

∑

c≡0 (D)

S(m,n; c)

c
ϕ

(
4π

√
mn

c

)
=

∑

k≡0 (2)

Γ(k)ϕ̃(k − 1)
∑

f∈Bh
k
(D)

ρf (m)ρf (n)

+
∑

j>1

ϕ̂(tj)

ch(πtj)
ρj(m)ρj(n) +

1

4π

∑

a

∫ +∞

−∞

ϕ̂(t)

ch(πt)
ρa(m, t)ρa(n, t) dt,

and

1

4
√
mn

∑

c≡0 (D)

S(m,−n; c)

c
ϕ

(
4π

√
mn

c

)
=

∑

j>1

ϕ̌(tj)

ch(πtj)
ρj(m)ρj(n) +

1

4π

∑

a

∫ +∞

−∞

ϕ̌(t)

ch(πt)
ρa(m, t)ρa(n, t) dt,

where the Bessel transforms are defined by

ϕ̃(k − 1) : =

∫ ∞

0

ϕ(x)ikJk−1(x)
dx

x
;

ϕ̂(t) : =

∫ ∞

0

ϕ(x)
−π

2 ch(πt)

{
Y2it(x) + Y−2it(x)

}dx
x

;(2.9)

ϕ̌(t) : =

∫ ∞

0

ϕ(x)4 ch(πt)K2it(x)
dx

x
.(2.10)

Remark 2.1. The kernels in (2.9) and (2.10) can be expressed alternatively as

−π
2 ch(πt)

{
Y2it(x) + Y−2it(x)

}
=

πi

2 sh(πt)

{
J2it(x) − J−2it(x)

}
;

4 ch(πt)K2it(x) =
πi

sh(πt)

{
I2it(x) − I−2it(x)

}
.

The next lemma is a variant of Lemma 7.1 of [DI82] and provides bounds for the various Bessel
transforms of the test functions ϕ above.

Lemma 2.1. Let ϕ(x) be a smooth function, compactly supported in (X, 2X), satisfying

ϕ(i)(x) ≪i (Z/X)i

for some Z > 1 and for any integer i > 0, the implied constant depending only on i. Then, for t > 0
and for any real k > 1, one has

ϕ̂(it), ϕ̌(it) ≪ 1 + (X/Z)−2t

1 +X/Z
for 0 6 t <

1

4
;(2.11)

ϕ̂(t), ϕ̌(t), ϕ̃(t) ≪ 1 + | log(X/Z)|
1 +X/Z

for t > 0;(2.12)

ϕ̂(t), ϕ̌(t), ϕ̃(t) ≪
(
Z

t

)(
1

t1/2
+
X

t

)
for t > 1;(2.13)

ϕ̂(t), ϕ̌(t), ϕ̃(t) ≪k

(
Z

t

)k (
1

t1/2
+
X

t

)
for t > max(2X, 1).(2.14)
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Proof. The inequalities (2.11), (2.12), (2.13) can be proved exactly as (7.1), (7.2) and (7.3) in [DI82].
The last inequality (2.14) is an extension of (7.4) in [DI82], but we only claim it in the restricted
range t > max(2X, 1). On the one hand, we were unable to reconstruct the proof of (7.4) in [DI82]
for the entire range t > 1; on the other hand, [DI82] only utilizes this inequality for t≫ max(X,Z)
(cf. page 268 there, and note also that for t ≪ Z the bound (2.13) is stronger). For this reason we
include a detailed proof of (2.14) in the case of ϕ̌(t). For ϕ̂(t) and ϕ̃(t) the proof is similar.

We may assume that k = 2j + 1 is a positive odd integer. The Bessel differential equation

x2K
′′

2it(x) + xK
′

2it(x) = (x2 − 4t2)K2it(x)

gives an identity

(2.15) ϕ̌(t) = (Dtϕ)∨(t),

where

Dtϕ(x) := x

(
xϕ(x)

x2 − 4t2

)′′

+ x

(
ϕ(x)

x2 − 4t2

)′

.

This transform Dtϕ is smooth and compactly supported in (X, 2X), and it is straightforward to
check that

‖(Dtϕ)(i)‖∞ ≪i (Z/t)2(Z/X)i for t > max(2X, 1).

By iterating (2.15) it follows that

ϕ̌(t) = (Dj
tϕ)∨(t),

where Dj
tϕ is a smooth function, compactly supported in (X, 2X), satisfying

‖(Dj
tϕ)(i)‖∞ ≪j,i (Z/t)2j(Z/X)i for t > max(2X, 1).

We bound (Dj
tϕ)∨(t) by (2.13) and obtain

ϕ̌(t) ≪j

(
Z

t

)2j+1 (
1

t1/2
+
X

t

)
for t > max(2X, 1).

�

Finally, we recall the large sieve inequalities from [DI82].

Theorem 3. Let D be a positive integer, M,K, T > 1, and let (am)m∼M be a sequence of complex
numbers supported on [M, 8M ]. Then, for any ε > 0,

(2.16)
∑

k≡0 (2)
k6K

Γ(k)
∑

f∈Bh
k
(D)

∣∣∣∣∣
∑

m

am
√
mρf (m)

∣∣∣∣∣

2

≪ε K
ε

(
K2 +

M

D

)∑

m

|am|2;

(2.17)
∑

|tj |6T

1

ch(πtj)

∣∣∣∣∣
∑

m

am
√
mρj(m)

∣∣∣∣∣

2

≪ε T
ε

(
T 2 +

M

D

)∑

m

|am|2;

(2.18)
∑

a

∫ T

−T

1

ch(πt)

∣∣∣∣∣
∑

m

am
√
mρa(m; t)

∣∣∣∣∣

2

dt≪ε T
ε

(
T 2 +

M

D

)∑

m

|am|2.
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3. A large sieve inequality

Theorem 4. Let D, q, r be positive integers. For M,N,C,Z > 1, let g(m,n; c) be a smooth function
compactly supported on

[M/2, 2M ]× [N/2, 2N ]× [C/2, 2C]

satisfying

∂i+j+k

∂mi∂nj∂ck
g(m,n; c) ≪i,j,k

Zi+j+k

M iN jCk
,

and let (am)m∈[M/2,2M ], (bn)n∈[N/2,2N ] be two sequences of complex numbers satisfying

am 6= 0 =⇒ q|m, (q,m/q) = 1,

bn 6= 0 =⇒ r|n, (r, n/r) = 1.
(3.1)

Then for any ε > 0 one has, under Hypothesis Hθ,

Σ±(M,N ;C) :=
∑

c≡0 (D)

∑

m

∑

n

ambn
S(m,±n; c)

c
g(m,n; c)

≪ε(qrDZMNC)ε(qr)θ
(

1 +
C√
MN

)2θ

× Z2

(
Z3/2 + Z

√
MN

C
+ Z2θ (q,D)M

qD

)1/2(
Z3/2 + Z

√
MN

C
+ Z2θ (r,D)N

rD

)1/2

‖a‖2‖b‖2.

Proof. This is a variant of Theorem 9 of [DI82]. We only treat the bound for Σ+(M,N ;C), the
bound for Σ−(M,N ;C) being similar. We first proceed as in [DI82], and put the test function in a
shape appropriate for the use of Kuznetsov’s trace formula: We define G by

g

(
x1, x2,

4π
√
x1x2

x

)
=

∫∫

R2

G(ξ1, ξ2;x) e(ξ1x1 + ξ2x2) dξ1dξ2,

so that by Fourier inversion one has

(3.2) G(ξ1, ξ2;x) =

∫ 2M

M/2

∫ 2N

N/2

g

(
x1, x2,

4π
√
x1x2

x

)
e(−ξ1x1 − ξ2x2) dx1dx2,

and
(3.3)

Σ+(M,N ;C) =

∫∫

R2

∑

c≡0(D)

∑

m

∑

n

ame(ξ1m)bne(ξ2n)
S(m,n; c)

c
G

(
ξ1, ξ2;

4π
√
mn

c

)
dξ1dξ2.

Note that G(ξ1, ξ2;x) as a function of the x variable is supported in the interval [X, 16X ] with

(3.4) X :=
π
√
MN

C
.

Let p1, p2, k be 3 positive integers. We integrate (3.2) by parts p1 times with respect to x1 and p2

times with respect to x2, and differentiate it k times with respect to x getting

(3.5)
∂k

∂xk
G(ξ1, ξ2;x) ≪p1,p2,k

(
Z

|ξ1|M

)p1 ( Z

|ξ2|N

)p2 (Z
X

)k
MN.

We postpone the integration over ξ1, ξ2 and the choice of p1, p2 to the end of section 3. Having
these parameters fixed for the moment, we simplify the notation and set

ϕ(x) := G(ξ1, ξ2;x),
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and by slight abuse of notation we denote by am and bn the complex numbers ame(ξ1m) and
bne(ξ2n), respectively. This, of course, does not change the values of ‖a‖2, ‖b‖2 or the support of
these sequences. We apply Theorem 2, so that the integrand in (3.3) is the sum of three terms:

(3.6) THolo + TMaass + TEisen,

where

THolo := 4
∑

k≡0 (2)

ϕ̃(k − 1)Γ(k)
∑

f∈Bh
k
(D)

(
∑

m∼M
am

√
mρf (m)

)(
∑

n∼N
bn
√
nρf (n)

)
,

TMaass := 4
∑

j>1

ϕ̂(tj)

ch(πtj)

(
∑

m∼M
am

√
mρj(m)

)(
∑

n∼N
bn
√
nρj(n)

)
,

TEisen :=
1

π

∑

a

∫ +∞

−∞

ϕ̂(t)

ch(πt)

(
∑

m∼M
am

√
mρa(m, t)

)(
∑

n∼N
bn
√
nρa(n, t)

)
dt.

3.1. Contribution of the cuspidal spectrum. In this section we bound the contribution from
the holomorphic and the Maass spectrum. The proof of the bound for THolo is similar to that of
TMaass, but sharper, so we only display the proof for TMaass. By Cauchy–Schwarz we have

(3.7)
∣∣TMaass

∣∣2 ≪


∑

j>1

|ϕ̂(tj)|
ch(πtj)

∣∣∣∣∣
∑

m∼M
am

√
mρj(m)

∣∣∣∣∣

2

 ×


∑

j>1

|ϕ̂(tj)|
ch(πtj)

∣∣∣∣∣
∑

n∼N
bn
√
nρj(n)

∣∣∣∣∣

2

 ,

so that it is sufficient to bound each factor separately. Our aim is to establish multiplicative proper-
ties of the coefficients am, bn in order to exploit the condition (3.1). Since the Hecke operators Tn
with (n,D) = 1 are normal and commute with the Laplacian, one may choose an orthonormal basis
{fj} of B(D) made of Hecke–Maass eigenforms. More precisely, it follows from Atkin–Lehner theory
that an orthonormal basis of Hecke–Maass eigenforms can be obtained as follows. Let f be any Maass
newform of level Df dividing D, then the complex vector space generated by {fd(z) := f(dz), d| DDf

}
is a τ(D/Df )-dimensional subspace of the space of cusp forms of level D formed of Hecke eigenforms
of the Tn, (n,D) = 1, with eigenvalues being the same as those of f , that is, λf (n). By Gram–

Schmidt there is an L2-orthonormal basis {f(d)(z), d| DDf
} of this subspace of the form

f(d)(z) =
∑

d′| D
Df

αd(d
′)f(d′z), αd(d

′) ∈ C,

(the αd(d
′) depend also on f but we suppress it from the notations). Now we form an orthonormal

basis of Hecke–Maass cusp forms of level D by the union of the {f(d)(z), d| DDf
} for f ranging over

the L2-normalized cuspidal newforms of level dividing D. Let us fix one of these basis elements f(d)
for a moment. We have for any m > 1,

√
mρf(d)

(m) =
∑

d′|D
αd(d

′)
√
mρfd′ (m) =

∑

d′|(D,m)

√
d′αd(d

′)
√
m/d′ρf (m/d

′),

where, in order to simplify notation, we made the convention that αd(d
′) = 0 if d or d′ does not

divide D/Df . We suppose now that m = qm′ with (q,m′) = 1. Setting q′ = (q,D), we obtain by
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(2.7) that

√
mρf(d)

(m) =
∑

d1|(D,m′)
d2|q′

√
d1d2αd(d1d2)

√
qm′

d2d1
ρf

(
qm′

d2d1

)

=
∑

d1|(D,m′)
d2|q′

√
d1d2αd(d1d2)λf

(
q

d2

)√
m′

d1
ρf

(
m′

d1

)
,

since f is a Hecke eigenform for all Hecke operators. For the same reason, we have the identity

λf

(
q

d2

)
= λf

(
q

q′
q′

d2

)
=

∑

d3|( q

q′
, q′

d2
)

χf (d3)µ(d3)λf

(
q

q′d3

)
λf

(
q′

d2d3

)
.

Since (q′,m′) = 1, we conclude that

√
mρf(d)

(m) =
∑

d3|( q

q′
,q′)

χf (d3)µ(d3)λf

(
q

q′d3

) ∑

d1|(D,m′)

d2| q′

d3

√
d1d2αd(d1d2)

√
q′m′

d3d2d1
ρf

(
q′m′

d3d2d1

)

=
∑

d3|( q

q′
,q′)

χf (d3)µ(d3)λf

(
q

q′d3

) ∑

d′|(D, q′m′

d3
)

√
d′αd(d

′)

√
q′m′

d3d′
ρf

(
q′m′

d3d′

)

=
∑

d3|( q

q′
,q′)

χf (d3)µ(d3)λf

(
q

q′d3

)√
q′m′

d3
ρf(d)

(
q′m′

d3

)
.

Hence it follows from (3.1) and (2.4) that for fj an element of Hecke eigenbasis described above (and

by writing d for q′

d3
),

∣∣∣∣∣
∑

m

am
√
mρfj

(m)

∣∣∣∣∣

2

6 τ(q)2q2θ
∑

d|(q,D)

∣∣∣∣∣∣

∑

(m′,q)=1

aqm′

√
dm′ρfj

(dm′)

∣∣∣∣∣∣

2

,

and therefore

(3.8)
∑

j>1

|ϕ̂(tj)|
ch(πtj)

∣∣∣∣∣
∑

m

am
√
mρj(m)

∣∣∣∣∣

2

6 τ(q)2q2θ
∑

d|(q,D)

∑

j>1

|ϕ̂(tj)|
ch(πtj)

∣∣∣∣∣∣

∑

m′∼M/q

aqm′

√
dm′ρj(dm

′)

∣∣∣∣∣∣

2

.

To estimate the j-sum we set

T0 := max(16X, (ZX)1/2, Z2/3),

where X is given by (3.4), and we split the sum as

∑

j>1

|ϕ̂(tj)|
ch(πtj)

∣∣∣∣∣∣

∑

m′∼M/q

aqm′

√
dm′ρj(dm

′)

∣∣∣∣∣∣

2

=
∑

|tj |61

. . . +
∑

1<|tj |6T0

. . . +
∑

T

∑

T<|tj |62T

. . . ,

where T runs through the numbers of the form 2νT0, ν ∈ N0.
By the large sieve inequality (2.17) combined with (3.5), (2.11) and (2.12), we obtain

∑

|tj |61

. . . ≪ε,p1,p2

(
(1 +X)Z

)2ε
(

Z

|ξ1|M

)p1 ( Z

|ξ2|N

)p2
MN

(
1 +

Z

X

)2θ (
1 +

dM

qD

)
‖a‖2

2.
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Similarly, a combination of (2.17), (3.5) and (2.12) shows that

∑

1<|tj |6T0

. . . ≪ε,p1,p2

(
(1 +X)Z

)2ε
(

Z

|ξ1|M

)p1 ( Z

|ξ2|N

)p2
MN

(
Z

Z +X

)(
T 2

0 +
dM

qD

)
‖a‖2

2

≪ε,p1,p2

(
(1 +X)Z

)2ε
(

Z

|ξ1|M

)p1 ( Z

|ξ2|N

)p2
MN

(
Z4/3 + ZX +

dM

qD

)
‖a‖2

2.

For each T = 2νT0 such that T 6 Z1+ε we can combine (2.17), (3.5) and (2.13) to see that

∑

T<|tj |62T

. . . ≪ε,p1,p2 Z
ε

(
Z

|ξ1|M

)p1 ( Z

|ξ2|N

)p2
MN

(
Z

T

)(
1

T 1/2
+
X

T

)(
T 2 +

dM

qD

)
‖a‖2

2

≪ε,p1,p2 Z
2ε

(
Z

|ξ1|M

)p1 ( Z

|ξ2|N

)p2
MN

(
Z3/2 + ZX +

dM

qD

)
‖a‖2

2.

The contribution of each T = 2νT0 such that T > Z1+ε is negligible as follows from (2.17), (3.5)
and (2.14) with k = 10/ε. In fact, we have Z < T 1−ε/2, therefore

∑

T<|tj |62T

. . . ≪ε,p1,p2 T
ε

(
Z

|ξ1|M

)p1 ( Z

|ξ2|N

)p2
MN

(
Z

T

)10/ε(
1

T 1/2
+
X

T

)(
T 2 +

dM

qD

)
‖a‖2

2

≪ε,p1,p2

(
Z

|ξ1|M

)p1 ( Z

|ξ2|N

)p2
MNT−2

(
1 +

dM

qD

)
‖a‖2

2.

By summing over all T > T0 and using also (3.8) we infer that

∑

j>1

|ϕ̂(tj)|
ch(πtj)

∣∣∣∣∣
∑

m

am
√
mρj(m)

∣∣∣∣∣

2

≪ε,p1,p2

(
(1 +X)Zq

)3ε
(

Z

|ξ1|M

)p1 ( Z

|ξ2|N

)p2
MN

× q2θ
(

1 +
1

X

)2θ (
Z3/2 + ZX + Z2θ (q,D)M

qD

)
‖a‖2

2.

We have a similar bound for the second factor in (3.7). Therefore we obtain, for any ε > 0,

(3.9) TMaass ≪ε,p1,p2

(
(1 +X)Zqr

)ε
(

Z

|ξ1|M

)p1 ( Z

|ξ2|N

)p2
MN

× (qr)θ
(

1 +
1

X

)2θ (
Z3/2 + ZX + Z2θ (q,D)M

qD

)1/2(
Z3/2 + ZX + Z2θ (r,D)N

rD

)1/2

‖a‖2‖b‖2.

The contribution of holomorphic forms is treated similarly using (2.16); however, since the Rama-
nujan–Petersson conjecture holds true for holomorphic forms, one obtains the stronger bound

(3.10) THolo ≪ε,p1,p2

(
(1 +X)Zqr

)ε
(

Z

|ξ1|M

)p1 ( Z

|ξ2|N

)p2
MN

×
(
Z3/2 + ZX +

(q,D)M

qD

)1/2(
Z3/2 + ZX +

(r,D)N

rD

)1/2

‖a‖2‖b‖2.

3.2. Contribution of the Eisenstein spectrum. We now evaluate TEisen in (3.6). By Cauchy–
Schwarz one has

∣∣TEisen
∣∣2 ≪



∫

R

|ϕ̂(t)|
ch(πt)

∑

a

∣∣∣∣∣
∑

m

am
√
mρa(m; t)

∣∣∣∣∣

2

dt


 ×



∫

R

|ϕ̂(t)|
ch(πt)

∑

a

∣∣∣∣∣
∑

n

bn
√
nρa(n)

∣∣∣∣∣

2

dt


 ,

and it is sufficient to bound each factor separately. We wish to imitate the argument given above, but
a slight difficulty occurs as the Eisenstein series Ea(z, s) are not Hecke eigenforms in general. The
problem of diagonalizing Hecke operators on the space of Eisenstein series was dealt with by Rankin
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[Ra90, Ra93, Ra92, Ra94]. However, we proceed (as in [M04a, HM04a]) by computing directly the
Fourier coefficients of the Eisenstein series. Recall (see [DI82, Lemma 2.3]) that the cusps {a} of
Γ0(D) are uniquely represented by the rationals

{ u
w

: w|D, u ∈ Uw
}
,

where, for each w|D, Uw is a set of integers coprime with w representing each reduced residue class
modulo w̃ := (w,D/w) exactly once. In the half-plane ℑt < 0 we have for m 6= 0 (see [DI82, (1.17)
and p.247]),

√
|m|ρa(m, t) =

π
1
2+it|m|it

Γ
(

1
2 + it

)
(

(w,D/w)

wD

) 1
2+it ∑

(γ,D/w)=1

1

γ1+2it

∑

δ (modγw), (δ,γw)=1
δγ≡u (mod w̃)

e

(
−m δ

γw

)

with analytic continuation to ℑt = 0. The congruence condition on δ can be analyzed by means of
multiplicative characters modulo w̃:

∑

(γ,D/w)=1

1

γ1+2it

∑

δ (modγw), (δ,γw)=1
δγ≡u (mod w̃)

e

(
−m δ

γw

)
=

1

ϕ(w̃)

∑

ψmod w̃

ψ(−u)
∑

(γ,D/w)=1

ψ(γ)

γ1+2it
Gψ(m; γw),

where

Gψ(m, q) :=
∑∗

b (mod q)

ψ(b)e

(
bm

q

)

is the Gauss sum. Note that we may replace ψ by its underlying primitive character, since we only
sum over b coprime with q. For brevity we write

Sψ(m;w) :=
∑

(γ,D/w)=1

ψ(γ)

γ1+2it
Gψ(m; γw),

so that

∑

a

∣∣∣∣∣
∑

m

am
√
mρa(m, t)

∣∣∣∣∣

2

=

π

|Γ(1
2 + it)|2

∑

w|D

w̃

wDϕ2(w̃)

∑

u∈Uw

∣∣∣∣∣∣

∑

ψmod w̃

ψ(−u)
∑

m

amm
itSψ(m;w)

∣∣∣∣∣∣

2

.

By Parseval it follows that

∑

a

∣∣∣∣∣
∑

m

am
√
mρa(m, t)

∣∣∣∣∣

2

=
π

|Γ(1
2 + it)|2

∑

w|D

w̃

wDϕ(w̃)

∑

ψmod w̃

∣∣∣∣∣
∑

m

amm
itSψ(m;w)

∣∣∣∣∣

2

.

In the following it will be useful to perform the summation over the primitive characters underlying
the ψ’s. For each character ψ mod w̃, we record by w∗ its conductor and by ψ∗ its underlying
primitive character, so that

(3.11)
∑

a

∣∣∣∣∣
∑

m

am
√
mρa(m, t)

∣∣∣∣∣

2

=

π

|Γ(1
2 + it)|2

∑

w∗2|D

∑∗

ψ∗ modw∗

∑

w∗|w| D
w∗

w̃

wDϕ(w̃)

∣∣∣∣∣
∑

m

amm
itSψ∗(m;w)

∣∣∣∣∣

2

,

where the ψ∗-sum is over primitive characters only. To compute Sψ∗(m;w), we decompose w as

w = w∗w′w′′, w′|(w∗)∞, (w′′, w∗) = 1.
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Our aim is now to establish (3.13) below, i.e. for m = qm′ with (q,m′) = 1 we want to express
Sψ∗(qm′, w) in terms of Sψ∗(dm′, ∗) with d | (q,D). Let us first note that according to our decom-
position of w the Gauss sum factors as

Gψ∗(m; γw) = ψ∗(γw′′)Gψ∗(m;w∗w′)r(m; γw′′) = δw′|mw
′ψ∗(γw′′)Gψ∗(m/w′;w∗)r(m; γw′′),

where r(m; q) := G1(m; q) is the Ramanujan sum and δw′|m = 1 if w′ | m and else it vanishes. With
this notation,

Sψ∗(m;w) =
δw′|mw

′ψ∗(m/w′)ψ∗(w′′)Gψ∗(1;w∗)

L(D)
(
ψ∗2, 1 + 2it

)




∑

γ|D∞

(γ,D/w)=1

ψ∗2(γ)

γ1+2it
r(m; γw′′)







∑

a|m
(a,D)=1

ψ∗2(a)

a2it




=
δw′|mw

′ψ∗(m/w′)ψ∗(w′′)Gψ∗(1;w∗)

L(D)
(
ψ∗2, 1 + 2it

) Rψ∗(m;w′′)ηψ∗(m),

say, where the superscript (D) indicates that the local factors at the primes dividing D have been
removed. We consider the γ-sum

Rψ∗(m;w′′) =
∑

γ|D∞

(γ,D/w)=1

ψ∗2(γ)

γ1+2it
r(m; γw′′).

Since (γ, w∗) = (γ,D/w) = 1, it follows that in fact γ|(w′′)∞ (justifying our notation), and one has

Rψ∗(m;w′′) =
∏

pα‖w′′

pα‖D


∑

β>0

ψ∗2(pβ)

pβ(1+2it)
r
(
pvp(m); pα+β

)

 .

We suppose now that m is of the form m = qm′ with (q,m′) = 1, and we factor w′, w′′ (recall that
they are coprime) as

w′ = w′
qw

′(q), w′′ = w′′
qw

′′(q), where w′
q , w

′′
q |q∞ and

(
w′(q)w′′(q), q

)
= 1.

Moreover, since (q,m′) = 1 and w′|qm′, it follows that w′
q = (w′, q). With these notations we find

that

Sψ∗(qm′;w) = δw′
q|qw

′
qψ

∗
(
q

w′
q

)
ψ∗(w′′

q

)
Rψ∗

(
q;w′′

q

)
ηψ∗(q)

× δw′(q)|m′w′(q)ψ∗
(
m′

w′(q)

)
ψ∗(w′′(q)) Gψ∗(1;w∗)

L(D)
(
ψ∗2, 1 + 2it

)Rψ∗

(
m′;w′′(q))ηψ∗(m′).

Setting

vq :=

(
w′′

(w′′, 2)
, q

)
and ṽq :=

∏

pα‖w′′
q

α6vp(q)+1

pα,

an explicit calculation shows that Rψ∗

(
vq; ṽq

)
is nonzero and in fact

(3.12)

∣∣∣∣∣
Rψ∗

(
q;w′′

q

)

Rψ∗

(
vq; ṽq

)
∣∣∣∣∣ 6

∏

p|(q,D)

(
vp(q) + 1

)1 + 1
p

κ(p)
6 3τ(D)τ(q),

where

κ(p) :=

{
1
2 , p = 2;

1 − 2
p , p > 2.
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Note also that w′
qvq|(q,D) and ṽq|w′′

q . In particular, (w′
qvq,m

′) = 1 and ηψ∗(w′
qvq) = 1, therefore

by the above formula

(3.13) Sψ∗(qm′;w) = δw′
q|qψ

∗
(

q

w′
qvq

)
ψ∗
(
w′′
q

ṽq

)
Rψ∗

(
q;w′′

q

)

Rψ∗

(
vq; ṽq

)ηψ∗(q)Sψ∗

(
w′
qvqm

′;w∗w′ṽqw
′′(q)).

Combining (3.12) with (3.13) and noting that |ηψ∗(q)| 6 τ(q) we obtain by a trivial estimation

∣∣∣∣∣
∑

m

amm
itSψ(m;w)

∣∣∣∣∣

2

6 9τ(D)2τ(q)2
∑

d|(q,D)

∣∣∣∣∣∣

∑

(m′,q)=1

aqm′(m′)itSψ
(
dm′;w∗w′ṽqw

′′(q)
)
∣∣∣∣∣∣

2

.

Given w∗ such that w∗2|D and given w such that w∗|w| Dw∗ , the number w1 := w∗w′ṽqw′′(q) also

satisfies w∗|w1|w| Dw∗ . Moreover, if we set w̃1 := (w1, D/w1), one has

w̃

ϕ(w̃)
6 τ(D)

w̃1

ϕ(w̃1)
,

so we deduce from this discussion and from (3.11) that

∑

a

∣∣∣∣∣
∑

m

am
√
mρa(m, t)

∣∣∣∣∣

2

69τ(D)3τ(q)2
∑

d|(q,D)

π

|Γ(1
2 + it)|2

×
∑

w∗2|D

∑∗

ψ∗ modw∗

∑

w∗|w1|D

w̃1

w1Dϕ(w̃1)

∣∣∣∣∣∣

∑

(m′,q)=1

aqm′(m′)itSψ(dm′;w1)

∣∣∣∣∣∣

2

=9τ(D)3τ(q)2
∑

d|(q,D)

∑

a

∣∣∣∣∣∣

∑

(m′,q)=1

aqm′

√
dm′ρa(dm

′, t)

∣∣∣∣∣∣

2

.

We are now in a similar situation as in (3.8). Applying the large sieve inequality (2.18) we obtain
analogously the bound

(3.14) TEisen ≪ε,p1,p2

(
(1 +X)DZqr

)ε
(

Z

|ξ1|M

)p1 ( Z

|ξ2|N

)p2
MN

×
(
Z3/2 + ZX +

(q,D)M

qD

)1/2(
Z3/2 + ZX +

(r,D)N

rD

)1/2

‖a‖2‖b‖2

for any ε > 0.

Collecting (3.4), (3.9), (3.10), (3.14), and integrating over the ξ1, ξ2 variables (with p1 = 0
if |ξ1| 6 Z/M , and p1 > 1 if |ξ1| > Z/M and similarly for (ξ2, p2)) we conclude the proof of
Theorem 4. �

4. A shifted convolution problem

Let q, ℓ1, ℓ2 be positive integers, and g be a cuspidal newform of level D and nebentypus χg and
Hecke eigenvalues λg(n), n > 1. Let F (x, y) be a smooth function supported on [X/2, 2X ]×[Y/2, 2Y ]
which satisfies

(4.1)
∂i+j

∂xi∂yj
F (x, y) ≪ Zi+j

X iY j

for some X,Y, Z > 1 and for all i, j > 0, the implied constant depending only on i, j.
In this section we estimate, for positive integers ℓ1, ℓ2, q, the following average of shifted convolu-

tion sums:
D(g, ℓ1, ℓ2, q) :=

∑

h 6=0

φ(qh)
∑

ℓ1m−ℓ2n=qh

λg(m)λg(n)F (ℓ1m, ℓ2n),
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where by symmetry we may assume that Y > X and φ(qh) is a redundancy factor (borrowed from
[DFI94a] to ease the forthcoming computations) arising from a smooth even function φ such that
φ|[−2Y,2Y ] ≡ 1, suppφ ⊂ [−4Y, 4Y ] and φ(i)(x) ≪i Y

−i. Our analysis follows closely Sections 4.1–5.2
of [HM04a], but we also make use of the essential ingredients of [Bl04b], namely the square mean
bound for shifted convolution sums taken from [J96] and the spectral large sieve of [DI82] in our
improved form of Theorem 4. The proof of Proposition 2.4 of [HM04a] yields the following uniform
estimate for exponential sums associated with g:

(4.2) Sg(α, x) :=
∑

n6x

λg(n)e(nα) ≪ε (Dµgx)
εωgD

1/2µ1/2
g x1/2,

where

ωg :=
‖g‖∞
‖g‖2

.

In the same proof we also demonstrated by an elementary argument that

(4.3) ωg ≪ε (Dµg)
εD1/2µ3/2

g .

With this bound at hand we derive the following square mean bound for shifted convolution sums,
a variant of Lemma 3 in [J96] (cf. Lemma 3.2 in [Bl04b]): for ℓ1, ℓ2 ∈ Z and x, y > 1 we have by
Rankin–Selberg theory

∑

h′∈Z

∣∣∣∣∣∣∣∣

∑

m6x, n6y
l1m±l2n=h′

λg(m)λg(n)

∣∣∣∣∣∣∣∣

2

=

∫ 1

0

∣∣Sg(−ℓ1α, x)Sg(±ℓ2α, y)
∣∣2 dα

≪ε (Dµgx)
εω2

gDµgx

∫ 1

0

∣∣Sg(±ℓ2α, y)
∣∣2 dα

= (Dµgx)
εω2

gDµgx
∑

n6y

|λg(n)|2

≪ε (Dµgxy)
2εω2

gDµgxy(4.4)

the implied constant depending on ε alone. Our goal is

Theorem 5. Assume Hypothesis Hθ. Set

T := qDµgℓ1ℓ2XY Z,

and assume (by symmetry) that Y > X. Then

D(g, ℓ1, ℓ2, q) ≪ε T
εωgDµ

63
4 +3θ
g Z

25
4 +θqθ−

1
2 Y

((
Y

X

)1/2

+
(q,Dℓ1ℓ2)

qDℓ1ℓ2
Y

)1/2

.

The remaining part of this section is devoted to the proof of this theorem.

4.1. Setting up the circle method. We detect the summation condition ℓ1m− ℓ2n− qh = 0 by
means of additive characters:

D(g, ℓ1, ℓ2, q) =

∫

R

G(α)1[0,1](α) dα

with

G(α) := H(α)K(α) :=
∑

h 6=0

φ(qh)e
(
−αqh) ×

∑

m,n>1

λg(m)λg(n)F (ℓ1m, ℓ2n)e
(
α(ℓ1m− ℓ2n)

)
.

As in [H03a, HM04a, Bl04b], we apply Jutila’s method of overlapping intervals [J92, J96] to ap-
proximate the characteristic function of the unit interval I(α) = 1[0,1](α) by sums of characteristic
functions of intervals centered at well chosen rationals. Let C > Y be a large parameter to be
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chosen later, and let w be a smooth function supported on [C/2, 3C] with values in [0, 1] equal to 1
on [C, 2C] such that w(i)(x) ≪i C

−i. We also set

δ := C−1, D′ := Dℓ1ℓ2, L :=
∑

c≡0 (D′)

w(c)ϕ(c), P := TC = qDµgℓ1ℓ2XYZC.

Note that, assuming C > D′, L satisfies the inequality

(4.5) L≫ε
C2−ε

Dℓ1ℓ2

for any ε > 0. The approximation to I(α) is provided by

Ĩ(α) :=
1

2δL

∑

c≡0 (D′)

w(c)
∑

a (mod c)
(a,c)=1

1[ a
c
−δ, a

c
+δ](α)

(which is supported in [−1, 2]), and by the main theorem in [J92] one has

(4.6)

∫

[−1,2]

|I(α) − Ĩ(α)|2dα ≪ε
C2+ε

δL2
≪ε C

3ε (Dℓ1ℓ2)
2

C
.

Next, we introduce the corresponding approximation of D(g, ℓ1, ℓ2, q):

D̃(g, ℓ1, ℓ2, q) :=

∫

[−1,2]

G(α)Ĩ(α) dα.

Then it follows from (4.6) that

|D(g, ℓ1, ℓ2, q) − D̃(g, ℓ1, ℓ2, q)| 6 ‖I − Ĩ‖2‖G‖2 ≪ε C
2εDℓ1ℓ2
C1/2

‖G‖2.

By Parseval,

‖G‖2 6 ‖H‖2‖K‖∞ ≪
(
Y

q

)1/2

‖K‖∞,

while an integration by parts shows that

K(α) = ℓ1ℓ2

∫ ∞

0

∫ ∞

0

F (1,1)(ℓ1x, ℓ2y)Sg(−ℓ1α, x)Sg(−ℓ2α, y) dx dy,

so that by (4.1) and (4.2),

‖K‖∞ ≪ε T
2εω2

gDµgZ
2

(
XY

ℓ1ℓ2

)1/2

.

Collecting the above estimates, we find that

(4.7) D − D̃ ≪ε P
2εω2

gD
2µgZ

2

(
ℓ1ℓ2XY

2

qC

)1/2

.

4.2. D̃ as a sum of Kloosterman sums. We have

D̃ =
1

L

∑

c≡0 (D′)

w(c)
∑

a (mod c)
(a,c)=1

Iδ,a
c
,

where

Iδ, a
c

:=
∑

h

e

(−aqh
c

)∑

m,n

λg(m)λg(n)e

(
aℓ1m

c

)
e

(−aℓ2n
c

)
E(m,n, h)

and

E(x, y, z) := F (ℓ1x, ℓ2y)φ(qz)
1

2δ

∫ δ

−δ
e
(
α(ℓ1x− ℓ2y − qz)

)
dα.
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By applying Proposition 2.1 to the variables m,n and by summing over a, c, we get (observe that
the factor χg(a) from the m-sum is cancelled by χg(a) coming from the n-sum) together with (2.5)

D̃ =
∑

±,±
ε±g ε

±
g D̃±,±,

where

(4.8) D̃±,± :=
1

L

∑

m,n

λg(m)λg(n)
∑

c≡0 (D′)

∑

h 6=0

S(qh,∓ℓ1m± ℓ2n; c)

c
E±,±(m,n, h; c),

and

E±,±(m,n, h; c) :=
ℓ1ℓ2w(c)

c

∫ ∞

0

∫ ∞

0

E(x, y, h)J±
g

(
4πℓ1

√
mx

c

)
J±
g

(
4πℓ2

√
ny

c

)
dx dy

and where ε+g = 1 and ε−g = ±1 is the sign of g if it is not induced from a holomorphic form, i.e.,

ε−g satisfies ρg(−n) = ε−g
Γ( 1

2+it+ k
2 )

Γ( 1
2+it− k

2 )
ρg(n) for all n > 1.

4.3. Estimates for E±,± and its derivatives. Notice that the definition of E and the various
assumptions made so far imply that

(4.9) E(x, y, z) = 0 unless x ∼ X/ℓ1, y ∼ Y/ℓ2, |qz| 6 4Y.

Moreover,

(4.10) E(i,j,k)(x, y, z) ≪i,j,k
Zi+jℓi1ℓ

j
2q
k

X iY j+k
,

so that for any fixed h

(4.11) ‖E(i,j,k)(∗, ∗, h)‖1 ≪i,j,k
Zi+jℓi−1

1 ℓj−1
2 qkXY

X iY j+k
,

and therefore

‖E(i,j,k)‖1 ≪i,j,k
Zi+jℓi−1

1 ℓj−1
2 qk−1XY 2

X iY j+k
.

Next, we evaluate E±,±(m,n, h; c) and its partial derivatives. Depending on the case, E±,±(m,n, h; c)
can be written as a linear combination (with constant coefficients) of integrals of the form

(4.12)
ℓ1ℓ2w(c)

c

∫ ∞

0

∫ ∞

0

E(x, y, h)J1,ν1

(
4πℓ1

√
mx

c

)
J2,ν2

(
4πℓ2

√
ny

c

)
dx dy,

where
{
J1,ν(x), J2,ν(x)

}
⊂
{ Yν(x)

ch(πt)
, ch(πt)Kν(x)

}

with ν ∈ {±2itg} if g is a Maass form of weight 0 and spectral parameter tg; or

{
J1,ν(x), J2,ν(x)

}
⊂
{ Yν(x)

sh(πt)
, sh(πt)Kν(x)

}

with ν ∈ {±2itg} if g is a Maass form of weight 1; or

J1,ν(x) = J2,ν(x) = Jkg−1(x),

if g is a holomorphic form of weight kg.
In order to estimate (4.12) efficiently, we integrate by parts i (resp. j) times with respect to x

(resp. y), where i (resp. j) will be determined later in terms of m (resp. n) and ε. Using (6.1),
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we see that E±,±(m,n, h; c) can be written as a linear combination (with constant coefficients) of
expressions of the form

ℓ1ℓ2w(c)

c

(
ℓ1
√
m

c

)−2i(
ℓ2
√
n

c

)−2j ∫ ∞

0

∫ ∞

0

∂i+j

∂xi∂yj
{
E(x, y, h)W−ν1

1 W−ν2
2

}

×W ν1+i
1 W ν2+j

2 J1,ν1+i(W1)J2,ν2+j(W2) dx dy,

where {ν1, ν2} ⊂ {±2itg} (or ν1, ν2 = kg − 1) and

W1 :=
4πℓ1

√
mx

c
∼

√
mℓ1X

C
, W2 :=

4πℓ2
√
ny

c
∼

√
nℓ2Y

C
,

in view of (4.9). Using (4.11) and Proposition 6.2 in the slightly weaker form

J1,ν1+i(W1) ≪i,ε µ
i+ε
g

(
1 +W−1

1

)i+2|ℑtg |+ε(
1 +W1

)−1/2
,

J2,ν2+j(W2) ≪j,ε µ
j+ε
g

(
1 +W−1

2

)j+2|ℑtg |+ε(
1 +W2

)−1/2
,

we can deduce for any i, j > 0 that

E±,±(m,n, h; c) ≪i,j,ε P
ε(µ2

gZ)i+j

{
C2

ℓ1mX
+

(
C2

ℓ1mX

)1/2
}i{

C2

ℓ2nY
+

(
C2

ℓ2nY

)1/2
}j

Ξ(m,n),

where

(4.13) Ξ(m,n) :=
XY

C

{(
1 +

C2

ℓ1mX

)(
1 +

C2

ℓ2nY

)}|ℑtg|{(
1 +

ℓ1mX

C2

)(
1 +

ℓ2nY

C2

)}−1/4

.

This shows, upon choosing i and j appropriately, that E±,±(m,n, h; c) is very small unless

(4.14) q|h| 6 4Y, c ∼ C, m≪ε P
ε
µ4
gZ

2C2

ℓ1X
, n≪ε P

ε
µ4
gZ

2C2

ℓ2Y
,

and in this range we retain the bound (by taking i = j = 0)

(4.15) E±,±(m,n, h; c) ≪ε P
εΞ(m,n).

The partial derivatives

minjhkcl
∂i+j+k+l

∂mi∂nj∂hk∂cl
E±,±(m,n, h; c)

can be estimated similarly. We shall restrict our attention to the range (4.14). The same argument
as above yields that outside this range the partial derivatives are very small. By (6.1) applied to
the m and n variables and (6.2) applied to the c variable, the above partial derivative is a linear
combination of integrals of the form

Rl(tg)c
a3
∂a3

∂ca3

(
w(c)

c

)∫ ∞

0

∫ ∞

0

hk
∂k

∂hk
E(x, y, h)W a1

1 W a2
2 J1,ν1−a1(W1)J2,ν2−a2(W2) dx dy,

where Rl is a polynomial of degree 6 l and the nonnegative integers a1, a2, a3 satisfy

a1 + a2 + a3 6 i+ j + l.

Therefore we obtain using (4.14)

minjhkcl(E±,±)(i,j,k,l)(m,n, h; c) ≪i,j,k,l,ε P
ε

(
q|h|
Y

)k
µlg

(
1 +

√
ℓ1mX

C
+

√
ℓ2nY

C

)i+j+l
Ξ(m,n)

≪i,j,k,l,ε P
εµlg(P

εµ2
gZ)i+j+lΞ(m,n).(4.16)
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4.4. Bounding D̃±,± via the large sieve. We only treat D̃−,−, the other terms being similar. To
simplify notation, we rename D̃−,− as D̃ and E−,− as E . We collect the terms in the definition (4.8)
according to

h′ := ℓ1m− ℓ2n.

Thus we have the natural splitting

D̃ = D̃0 + D̃+ + D̃−,

where

D̃0 :=
1

L

∑

ℓ1m=ℓ2n

λg(m)λg(n)
∑

c≡0 (D′)

∑

h 6=0

r(qh; c)

c
E(m,n, h; c)

with

r(qh; c) = S(qh, 0; c) =
∑

c′|(qh,c)
µ(c/c′)c′

the Ramanujan sum, and

(4.17) D̃± :=
1

L

∑

c≡0 (D′)

∑

h 6=0

∑

±h′>0

S(qh, h′; c)

c

∑

ℓ1m−ℓ2n=h′

λg(m)λg(n)E(m,n, h; c).

4.4.1. Bounding D̃0. We set ℓ′1 := ℓ1/(ℓ1, ℓ2), ℓ
′
2 := ℓ2/(ℓ1, ℓ2); then

D̃0 =
1

L

∑

m>1

λg(ℓ
′
2m)λg(ℓ

′
1m)

∑

c≡0 (D′)

1

c

∑

h 6=0

r(qh; c)E(ℓ′2m, ℓ
′
1m,h; c).

The c-sum equals
∑

c′′

µ(c′′)

c′′

∑

D′

(c′′,D′)
|c′

∑

h 6=0

E
(
ℓ′2m, ℓ

′
1m,

c′

(c′, q)
h; c′c′′

)
,

therefore by (4.14) and (4.15) it is bounded by

≪ε P
εY

q
Ξ(ℓ′2m, ℓ

′
1m)

∑

c′′

∑

D′

(c′′,D′)
|c′

c′c′′∼C

µ(c′′)(c′, q)

c′c′′
≪ P ε

(q,Dℓ1ℓ2)

Dℓ1ℓ2

Y

q
Ξ(ℓ′2m, ℓ

′
1m).

In summing over the m variable we may restrict ourselves to the range

[ℓ1, ℓ2]m≪ε P
εµ4
gZ

2(C2/Y ),

as the remaining contribution is negligible. If Y/X ≪ε P
εµ4
gZ

2, then we split the m-sum into three
parts,

∑

[ℓ1,ℓ2]m<C2/Y

. . . +
∑

C2/Y6[ℓ1,ℓ2]m<C2/X

. . . +
∑

C2/X6[ℓ1,ℓ2]m≪εP εµ4
gZ

2(C2/Y )

. . . ,

and combine (4.5) and (4.13) with basic properties of the Hecke eigenvalues λg(n) to infer that

D̃0 ≪ε P
2ε (q,Dℓ1ℓ2)

q[ℓ1, ℓ2]1−θ
XY 2

C

(
X−θY θ−1 +X−3/4Y −1/4 + µ2

gZX
−1/4Y −3/4

)
.

If Y/X ≫ε P
εµ4
gZ

2, then we split the m-sum into two parts,
∑

[ℓ1,ℓ2]m<C2/Y

. . . +
∑

C2/Y6[ℓ1,ℓ2]m≪εP εµ4
gZ

2(C2/Y )

. . . ,

and infer similarly that

D̃0 ≪ε P
2ε (q,Dℓ1ℓ2)

q[ℓ1, ℓ2]1−θ
XY 2

C

(
X−θY θ−1 + µ3−4θ

g Z3/2−2θX−θY θ−1
)
.
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In both cases we conclude that

(4.18) D̃0 ≪ε P
3εµ2

gZ
X3/4Y 5/4

C
.

4.4.2. Bounding D̃±. Following [Bl04b], we decompose the inner sum in (4.17) as

(4.19)

∫ ∞

1

∑

n6y
ℓ1m−ℓ2n=h′

λg(m)λg(n)
∂

∂y
E(x, y, h; c) dy,

where the variables x and y are connected by the equation

(4.20) ℓ1x− ℓ2y = h′

(note that h′, y > 0 implies x > 0). Then D̃+ decomposes accordingly as

(4.21) D̃+ =
1

L

∫ ∞

1

D̃+(y) dy,

where

(4.22) D̃+(y) :=
∑

c≡0 (D′)

∑

h 6=0

∑

h′>0

by,h′

S(qh, h′; c)

c
gy(qh, h

′; c)

and

(4.23) by,h′ :=
∑

n6y
ℓ1m−ℓ2n=h′

λg(m)λg(n), gy(h, h
′; c) :=

∂

∂y
E
(
ℓ2y + h′

ℓ1
, y,

h

q
; c

)
.

In particular, gy(h, h
′; c) and all its partial derivatives are very small unless

(4.24) |h| 6 4Y, c ∼ C, x≪ε P
ε
µ4
gZ

2C2

ℓ1X
, y ≪ε P

ε
µ4
gZ

2C2

ℓ2Y
,

and in this range they obey by (4.16) and (4.20) the bound

hih′jckg(i,j,k)
y (h, h′; c) =

(
h

q

)i(
h′

ℓ1

)j
ck
{
ℓ2
ℓ1
E(1+j,0,i,k)

(
x, y,

h

q
; c

)
+ E(j,1,i,k)

(
x, y,

h

q
; c

)}

≪i,j,k,ε µ
2+2j+3k
g (P εZ)1+j+ky−1Ξ(x, y).

Using the definition (4.13) it can be checked that in the range (4.24) we have the uniform bound

(4.25) (xy)1/2Ξ(x, y) ≪ε P
εµ2
gZC

(
XY

ℓ1ℓ2

)1/2

=: W,

so that in fact

hih′jckg(i,j,k)
y (h, h′; c) ≪i,j,k,ε µ

2+2j+3k
g (P εZ)1+j+kWx−1/2y−3/2.

This also shows that we can decompose gy(h, h
′; c) dyadically in the h and h′ variables such that

gy(h, h
′; c) =

∑

H,H′>1

gy,H,H′(h, h′; c),

where H and H ′ run through the powers of 2 independently, and gy,H,H′(h, h′; c) as a function of h
(resp. h′) is supported on H/2 6 |h| 6 2H (resp. H ′/2 6 h′ 6 2H ′) and satisfies

(4.26) g
(i,j,k)
y,H,H′(h, h

′; c) ≪i,j,k,ε

P εµ2
gZW

x̃1/2y3/2
· Z̃j+k

HiH ′jCk
,

where

(4.27) Z̃ := P εµ3
gZ,
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and x̃ is connected to y by the equation

ℓ1x̃− ℓ2y = H ′.

The same argument also shows that all these partial derivatives are very small unless

(4.28) H 6 8Y, H ′ ≪ε P
ε
µ4
gZ

2C2

X
, c ∼ C, y ≪ε P

ε
µ4
gZ

2C2

ℓ2Y

Accordingly, D̃+(y) of (4.22) decomposes into a double sum over the H and the H ′. We further
decompose all the pieces according to the q-part of the h variable and we find (after replacing qh by
h) that

(4.29) D̃+(y) =
∑

H,H′>1

∑

q′|q∞
D̃+
H,H′,q′(y),

where

D̃+
H,H′,q′(y) :=

∑

c≡0 (D′)

∑

qq′|h
( h

qq′
,qq′)=1

∑

h′>0

by,h′

S(h, h′; c)

c
gy,H,H′(h, h′; c).

We are ready to apply the large sieve for the sums D+
H,H′,q′(y). By Theorem 4 and (4.26),

D̃+
H,H′,q′(y) ≪ε

P εµ2
gZW

x̃1/2y3/2
(q′P )2ε(qq′)θ

(
1 +

C√
HH ′

)2θ

× Z̃2

(
Z̃3/2 + Z̃

√
HH ′

C
+ Z̃2θ (qq′, D′)H

qq′D′

)1/2(
Z̃3/2 + Z̃

√
HH ′

C
+ Z̃2θH

′

D′

)1/2 (
H

qq′

)1/2

‖by‖2 .

Here, by (4.23) and (4.4),

‖by‖2 ≪ε P
εωgD

1/2µ1/2
g (x̃y)1/2.

If we choose C > Z̃2D′Y , then by our general assumption Y > X it follows that in the range (4.28)

(
1 +

C√
HH ′

)2θ
(
Z̃3/2 + Z̃

√
HH ′

C
+ Z̃2θH

′

D′

)1/2(
H

qq′

)1/2

≪ε P
εµ2
gZZ̃

θC

(
Y

qq′D′X

)1/2

.

These additional estimates yield (for the relevant range (4.28))

D̃+
H,H′,q′(y) ≪ε y

−1(q′P )5εωgD
1/2µ

11
2
g Z

5
2 Z̃

11
4 +θCW (qq′)θ

×
(

Y

qq′D′X

)1/2
((

Y

X

)1/2

+
(qq′, D′)

qq′D′ Y

)1/2

,

and by the definition of W and Z̃ (see (4.25) and (4.27)) the right hand side is

≪ε y
−1 C

2

ℓ1ℓ2
(q′P )11εωgµ

63
4 +3θ
g Z

25
4 +θ(qq′)θ−

1
2 Y

((
Y

X

)1/2

+
(q,D′)

qD′ Y

)1/2

.

Finally, by (4.29), (4.28), (4.21) and (4.5) we conclude that

(4.30) D̃+ ≪ε P
12εωgDµ

63
4 +3θ
g Z

25
4 +θqθ−

1
2Y

((
Y

X

)1/2

+
(q,Dℓ1ℓ2)

qDℓ1ℓ2
Y

)1/2

.
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The treatment of D̃− is very similar to that of D̃+ except that instead of (4.19) we decompose
the inner sum in (4.17) as

∫ ∞

1

∑

m6x
ℓ1m−ℓ2n=h′

λg(m)λg(n)
∂

∂x
E(x, y, h; c) dx.

4.5. Concluding Theorem 5. Theorem 5 follows immediately from (4.7), (4.18) and (4.30) upon
choosing C to be a large power of T , say

C := (qDµgℓ1ℓ2XY Z)100.

5. Application to subconvexity bounds for twisted L-functions

Let g be a cuspidal newform (i.e., either a holomorphic or a Maass cusp form) as in (1.1), let
ℜs = 1

2 , and let χ be a primitive character of conductor q.

5.1. Approximate functional equation. Using the functional equation of the L-function attached
to the cuspidal automorphic representation πg ⊗ χ =

⊗
v(πg,v ⊗ χv) and a standard technique

involving Mellin transforms, we can express the special value L(g ⊗ χ, s) = L(πg ⊗ χ, s) as a sum of

two Dirichlet series of essentially
√
C terms, where

C := C(πg ⊗ χ, s) 6 |s|2µ2
gDq

2

is the analytic conductor defined by [IS00]. For example, Theorem 1 in [H02] shows that

L(g ⊗ χ, s) =
∑

n>1

λπg⊗χ(n)

ns
W
( n

C1/2

)
+ κ

∑

n>1

λπg⊗χ(n)

n1−s W
( n

C1/2

)
,

where κ is of modulus one, λπg⊗χ(n) are the coefficients of the Dirichlet series L(g⊗χ, s), and W is
a smooth bounded function of (0,∞) (depending on πg ⊗ χ and s) satisfying the uniform estimates

xiW (i)(x) ≪i,A (1 + x)−A

for any x > 0, any integer i > 0 and any A > 0 with implied constants depending only on i and A.
The coefficient λπg⊗χ(n) may be complicated for n not coprime with qD, however for ℜs > 1 one
has

L(g ⊗ χ, s) =
∏

p|qD

1 − λg(p)χ(p)p−s + χ(p2)p−2s

L−1(πg,p ⊗ χp, s)

∑

n>1

λg(n)χ(n)

ns
,

so that by (2.4)

∑

n>1

λπg⊗χ(n)

ns
W
( n

C1/2

)
≪ε

∑

d|(qD)∞

1

d1/2−θ−ε

∣∣∣∣∣∣

∑

n>1

λg(n)χ(n)

ns
W

(
dn

C1/2

)∣∣∣∣∣∣

for any ε > 0, the implied constant depending only on ε.
By the rapid decay properties ofW , the contribution of the d, n such that dn > C1/2+ε is negligible

for any given ε > 0. For the rest of the sum we apply a smooth dyadic decomposition, so that we
are left with estimating O(logC) sums of the form

N−1/2Σ(g ⊗ χ,N) = N−1/2
∑

n>1

λg(n)χ(n)WN,s(n),

where 1 6 N 6 C1/2+ε and WN,s is some smooth function supported in [N, 2N ] satisfying

xiW
(i)
N,s(x) ≪i |s|i,

the implied constant depending only on i.
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5.2. Amplification. We shall estimate the sums Σ(g⊗χ,N) by the amplification method of [DFI93].
That is, we choose some L so that logL ≍ log q and estimate the amplified second moment

S(g,N) :=
∑

χ′ (mod q)

∣∣∣∣∣
∑

L6ℓ62L

χ(ℓ)χ′(ℓ)

∣∣∣∣∣

2∣∣Σ(g ⊗ χ′, N)
∣∣2,

where χ′ runs over the characters modulo q and

Σ(g ⊗ χ′, N) :=
∑

n>1

λg(n)χ′(n)WN,s(n).

By orthogonality of characters one has (see [M04b])

S(g,N) 6 ϕ(q)
∑

L6ℓ1,ℓ262L

χ(ℓ1)χ(ℓ2)
∑

h

∑

ℓ1m−ℓ2n=hq

λg(m)λg(n)F (ℓ1m, ℓ2n),

where

F (x, y) := WN,s(x/ℓ1)WN,s(y/ℓ2).

The total contribution of h = 0 can be estimated by Cauchy–Schwarz and the Rankin–Selberg
bound: ∑

L6ℓ1,ℓ262L
ℓ1m=ℓ2n

λg(m)λg(n)F (ℓ1m, ℓ2n) ≪ε T
εNL, T := |s|µgDq.

For each pair ℓ1, ℓ2 coprime with q, the contribution of h 6= 0 can be estimated directly by Theorem 5
with the parameters (when ℓ1 6 ℓ2) X = ℓ1N , Y = ℓ2N , Z = |s|:

∑

h 6=0

∑

ℓ1m−ℓ2n=hq

λg(m)λg(n)F (ℓ1m, ℓ2n) ≪ε T
εUqθ−1/2NL

(
1 +

N

qL

)1/2

,

where we have put for convenience

(5.1) U := |s| 254 +θωgµ
63
4 +3θ
g D.

We also note that

(5.2) N 6 T εV q, V := |s|µgD1/2,

whence the obvious lower bound

N−1/2Σ(g ⊗ χ,N) ≪ε q
ε

(
S(g,N)

NL2

)1/2

together with the above estimates imply that

(5.3) L(g ⊗ χ, s) ≪ε T
4ε

{
q

L
+ Uq1/2+θL

(
1 +

V

L

)1/2
}1/2

.

The expression on the right hand side suggests that we choose L of the form

(5.4) L := q
1−2θ

4 /R,

where R ≫ 1 depends only on s, µg and D. If R is not too large then we can guarantee with the
help of the convexity bound

L(g ⊗ χ, s) ≪ε T
εV 1/2q1/2

that L > qδ with some δ > 0. More precisely, the bound (5.3) follows from the convexity bound
unless

Uq1/2+θL

(
1 +

V

L

)1/2

≪ V q,



24 V. BLOMER, G. HARCOS, AND P. MICHEL

which by (5.4) is equivalent to

max

{
U

V R2
,

(
U2

V R4

)1/3
}

≪ L.

Fixing any δ > 0, this inequality can be rewritten as

max

{
U

V R2
,

(
U2

V R4

)1/3
}1−δ (

q
1−2θ

4

R

)δ
≪ L,

which implies that

R
δ

1−δ ≪ max

{
U

V R2
,

(
U2

V R4

)1/3
}

=⇒ q
δ(1−2θ)

4 ≪ L.

This justifies the choice

(5.5) R :=

(
U2

V

) 1−δ
4−δ

,

since then (5.3) holds true either because L is admissible or as a consequence of the convexity bound.

5.3. Concluding Theorem 1. We choose L according to (5.4)–(5.5), where δ is a very small
positive number depending on ε and U, V are defined in (5.1)–(5.2). Then (5.3) implies that

L(g ⊗ χ, s) ≪ε T
4ε
{
UV 1/2q1/2+θL

}1/2

≪ε T
5εU1/4V 3/8q(3+2θ)/8.

In view of (4.3), this is the bound of Theorem 1.

Appendix 1: Bounds for Bessel functions

In this appendix we recall some facts about Bessel functions. Proofs of Propositions 6.1 and 6.2
can be found in the Appendix of [HM04a].

For s ∈ C, the Bessel functions satisfy the recurrence relations

(
xsJs(x)

)′
= xsJs−1(x),

(
xsYs(x)

)′
= xsYs−1(x),

(
xsKs(x)

)′
= −xsKs−1(x).

In particular, if r > 0 and Hs denotes either Js, Ys or Ks, then

(6.1)
d

dx

(
(r
√
x)s+1Hs+1(r

√
x)
)

= ±(r2/2)(r
√
x)sHs(r

√
x),

and for any j > 0,

(6.2) xj
dj

djx
Hs

( r
x

)
= Qj(s)Hs

( r
x

)
+Qj−1(s)

( r
x

)1

Hs−1

( r
x

)
+ · · · +Q0(s)

( r
x

)j
Hs−j

( r
x

)
,

where each Qi is a polynomial of degree i whose coefficients depend only on i and j.

Proposition 6.1. For any integer k > 1, the following uniform estimate holds:

Jk−1(x) ≪
{

xk−1

2k−1Γ(k− 1
2 )
, 0 < x 6 1;

kx−1/2, 1 < x.

The implied constant is absolute.
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Proposition 6.2. For any σ > 0 and any ε > 0, the following uniform estimates hold in the strip
|ℜs| 6 σ:

e−π|ℑs|/2Ys(x) ≪





(
1 + |ℑs|

)σ+ε
x−σ−ε, 0 < x 6 1 + |ℑs|;(

1 + |ℑs|
)−ε

xε, 1 + |ℑs| < x 6 1 + |s|2;
x−1/2, 1 + |s|2 < x.

eπ|ℑs|/2Ks(x) ≪
{(

1 + |ℑs|
)σ+ε

x−σ−ε, 0 < x 6 1 + π|ℑs|/2;

e−x+π|ℑs|/2x−1/2, 1 + π|ℑs|/2 < x.

The implied constants depend only on σ and ε.

Appendix 2: Improved bound for the Fourier coefficients

of holomorphic half-integral weight cusp forms

By Zhengyu Mao

In this appendix we apply the estimate obtained in Theorem 1 along with the work of [BM05] to
get an improved upper bound for the Fourier coefficients of holomorphic half-integral weight cusp
forms. For positive integers k and M and an even Dirichlet character χ modulo 4M let Sk+ 1

2
(4M,χ)

denote the space of holomorphic forms of weight k + 1
2 , level M , and nebentypus χ. The functions

f(z) in this space satisfy (cf. [Wa81])

(7.1) f

(
az + b

cz + d

)
= j(σ, z)2k+1χ(d)f(z), σ =

(
a b
c d

)
∈ Γ0(4M),

where

j(σ, z) := θ

(
az + b

cz + d

)
/θ(z), θ(z) :=

∞∑

n=−∞
e(n2z).

Let S′
k+ 1

2

(4M,χ) denote the orthogonal complement in Sk+ 1
2
(4M,χ) of the space of theta series in

one variable. Note that S′
k+ 1

2

(4M,χ) is the entire space Sk+ 1
2
(4M,χ) for k > 2, while for k = 1 it

equals the subspace V (4M ;χ) defined in [U93]. In the following we prove:

Theorem 6. Let B, C, θ be the constants as in Theorem 1. If

f(z) =

∞∑

n=1

ρf (n)(4πn)
k
2 + 1

4 e(nz)

is an L2-normalized cusp form in S′
k+ 1

2

(4M,χ) (cf. (2.1), (2.8)), then for ε > 0 and for n > 1 we

have

(7.2)
√
nρf (n) ≪ǫ (kMn)ǫ

(
Γ
(
k + 1

2

))−1/2
k

B+1
2 MC+1n

1
4− 1

16 (1−2θ).

Remark 7.1. A similar bound holds for Maass forms. For example, when

f(x+ iy) =
∑

n∈Z
n6=0

ρf(n)W n
|n|

1
4 ,it

(4π|n|y)e(nx)

is an L2-normalized Maass cusp form of weight 1
2 , level 4M , and Laplacian eigenvalue 1

4 +t2 (t ∈ R),
one has √

nρf (n) ≪ǫ ((1 + |t|)M |n|)ǫ(ch(πt))1/2(1 + |t|)B′

MC′ |n| 14− 1
16 (1−2θ)

for some positive constants B′ and C′. We leave the details to a future work.
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Remark 7.2. The first breakthrough in obtaining nontrivial bounds for the Fourier coefficients of
half-integral weight cusp forms was achieved by Iwaniec [I87] and reads with slight refinements as
(cf. Lemma 2 in [DSp90])

√
nρf (n) ≪ǫ (kMn)ǫ

(
Γ
(
k + 1

2

))−1/2
k

9
2n

1
4− 1

28

with the above normalization and under the above assumptions, providing that n is square-free.
Estimates that are valid for all n have been obtained in [Bl04a], Theorem 1 and Lemma 4.4, which
are particularly useful for applications with ternary quadratic forms. Combining (7.2) with Lemma
4.2 in [Bl04a] we see that equations (1.3)–(1.5) in [Bl04a] can be replaced with

(7.3) r(spnf, n) − r(f, n) ≪ε N
41
16n

1
2− 1

16 (1−2θ)+ǫ

which is stronger for large n.

7.1. Cusp forms and cuspidal automorphic representations. Let AQ be the ring of adeles of
the rational field Q. Define the additive character ψ of AQ such that ψ∞(x) = e2πix over Q∞ = R

and for x ∈ Qp, ψp(x) = e−2πix̂ where plx̂ ∈ Z for some integer l and x− x̂ ∈ Zp, the ring of integers
of Qp. The additive measures on Qv are defined to be self-dual with respect to ψv for v = p or ∞.

Let f(z) ∈ S′
k+ 1

2

(4M,χ), then associated to f(z) is a vector ϕ̃ = t(f) in the space of cuspidal

automorphic representations of S̃L2(AQ), the two-fold cover of SL2(AQ). Here ϕ̃ = t(f) is a function

on S̃L2(AQ) which is continuous and left-invariant under SL2(Q) and satisfies

(7.4)

((√
y x/

√
y

0 1/
√
y

)(
cos θ sin θ
− sin θ cos θ

)
, 1, 1, . . .

)
= y

k
2 + 1

4 ei(k+
1
2 )θf(x+ yi),

where y > 0, x ∈ R, and −π < θ 6 π. By the strong approximation theorem for SL2, we see that
ϕ̃ = t(f) is unique.

It is clear that ϕ̃ decomposes into a sum of ϕ̃i =
⊗

v ϕ̃i,v, where each ϕ̃i is a vector in some

irreducible cuspidal representation π̃i of S̃L2(AQ). We will first establish the bound (7.2) in the case

when ϕ̃ = t(f) itself is a vector ϕ̃ =
⊗

v ϕ̃v in an irreducible cuspidal representation π̃ of S̃L2(AQ).

In [Wa91] a map Sψ is defined from the set of irreducible cuspidal representations of S̃L2(AQ)
to the set of irreducible automorphic representations of PGL2(AQ). With our assumption of or-
thogonality to one-variable theta series, we see that π := Sψ(π̃) is a cuspidal representation. Let
ϕ =

⊗
v ϕv be the unique (up to scalar multiple) new vector in the space of π (cf. [Ca73, Sc02]).

Define

g(z) := ϕ(σ)(cz + d)−2k, σ =

(
a b
c d

)
∈ SL2(R), z :=

ai+ b

ci+ d
,

where SL2(R) is identified with its image in PGL2(AQ) under the embedding σ 7→ (σ, 1, 1, . . .).
Then g(z) is a newform of weight 2k, some level N , and trivial nebentypus. We can be more

precise on the size of N .

Lemma 7.1. We have N | (2M)∞ and N 6 (4M)2.

Proof. If p does not divide 2M , then π̃p is unramified, thus so is πp, which implies that N is not
divisible by p. Let c(π) denote the conductor of π (cf. [Sc02]), and let vp denote the p-adic valuation
on Q. Clearly, the conductor of the character χ over Q∗

p is at most vp(4M). We see from Section
1.3.2 of [Wa81] that the newform corresponding to the representation π ⊗ χ has level at most 2M ,
that is, c(πp⊗χ) 6 vp(2M). Then, from the table of conductors of local representations (see [Sc02]),
c(πp) 6 2vp(4M), which is equivalent to N 6 (4M)2. �

We adopt the notation (2.1) to the present situation, that is,

g(z) =
∑

n>1

ρg(n)(4πn)ke(nz).
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7.2. A theorem from [BM05]. We recall Theorem 4.3 in [BM05]. The statement we need is:

Theorem 7. Let π = Sψ(π̃). Let S = {∞}∪{p : p|2M} be a finite set of places. For all square-free

integers D > 1, either W̃D(ϕ̃) = 0 or

(7.5)
|W̃D(ϕ̃)|2

‖ϕ̃‖2
=

|W (ϕ)|2L
(
π ⊗ χD,

1
2

)

‖ϕ‖2

∏

v∈S
Ev(ϕv, ϕ̃v, ψv, D),

where

(7.6) Ev(ϕv, ϕ̃v, ψv, D) :=
e(ϕv, ψv)

e(ϕ̃v, ψDv )Lv
(
πv ⊗ χD,

1
2

)
|D|v

. �

The notations are as in [BM05] which we will explain along the way. χD is the quadratic character

A∗
Q/Q

∗ associated with the quadratic extension Q(
√
D). W̃D and W are Whittaker functionals

and are related to the Fourier coefficients:

(7.7) W̃D(ϕ̃) :=

∫
ϕ̃

((
1 x

1

))
ψ(−Dx) dx = e−2πD(4πD)

k
2 + 1

4 ρf (D),

(7.8) W (ϕ) :=

∫
ϕ

((
1 x

1

))
ψ(−x) dx = e−2π(4π)kρg(1).

The Petersson norms are related by (cf. (2.8))

(7.9)
‖ϕ‖2

‖ϕ̃‖2
=

〈g, g〉/ vol(Γ0(N)\H)

〈f, f〉/ vol(Γ0(4M)\H)
= 〈g, g〉vol(Γ0(4M)\H)

vol(Γ0(N)\H)
.

When v = ∞, ϕ̃v and ϕv are the lowest weight vectors in π̃∞ and π∞, respectively. The constant
Ev(ϕv, ϕ̃v, ψv, D) is computed in [BM05]; it equals

(7.10) E∞(ϕ∞, ϕ̃∞, ψ∞, D) =
1

2
e4π(1−D)Dk− 1

2π−kΓ(k)L
(
π∞ ⊗ χD,

1
2

)−1
.

Note that
L
(
π ⊗ χD,

1
2

)
= L∞

(
π∞ ⊗ χD,

1
2

)
L
(
g ⊗ χD,

1
2

)
l2(g,D),

where

l2(g,D) :=
L2

(
g ⊗ χD,

1
2

)

L2

(
π2 ⊗ χD,

1
2

)

is the quotient of the 2-factors of L(g ⊗ χD, s) and L(π ⊗ χD, s). Thus from Theorem 7 we have

(7.11) D|ρf (D)|2 ≪ |ρg(1)|24kΓ(k)

〈g, g〉/ vol(Γ0(N)\H)
M−1L

(
g ⊗ χD,

1
2

)
l2(g,D)

∏

p|2M
Ep(ϕp, ϕ̃p, ψp, D).

The method of [HL94] implies that (cf. [HM04a, Section 2.6], [DFI94b, p.219])

|ρg(1)|2Γ(2k)

〈g, g〉/ vol(Γ0(N)\H)
≪ǫ (kN)ǫ.

We note that by the duplication formula for the Gamma function we have

4kΓ(k)

Γ(2k)
=

2
√
π

Γ
(
k + 1

2

) ,

so that the above bound is equivalent to

(7.12)
|ρg(1)|24kΓ(k)

〈g, g〉/ vol(Γ0(N)\H)
≪ǫ (kN)ǫ

(
Γ
(
k + 1

2

))−1
.

As L2

(
g ⊗ χD,

1
2

)
6 2

(
√

2−1)2
and L2

(
π2 ⊗ χD,

1
2

)
> 2

(
√

2+1)2
, we see that

(7.13) l2(g,D) ≪ 1.
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Therefore in order to obtain an upper bound for |ρf (D)|, we only need to find upper bounds for
Ep(ϕp, ϕ̃p, ψp, D).

7.3. Estimating Ep(ϕp, ϕ̃p, ψp, D). In the definition (7.6) of Ev(ϕv, ϕ̃v, ψv, D), we have

e(ϕv, ψv) :=
‖ϕv‖2

|Lv(ϕv)|2
,

e(ϕ̃v, ψ
D
v ) :=

‖ϕ̃v‖2

|L̃Dv (ϕ̃v)|2
.

Here Lv and L̃Dv are the local (D-th) Whittaker functionals, ‖ϕv‖2 is the local Hermitian form
defined as

‖ϕv‖2 :=

∫ ∣∣∣∣Lv
(
πv

((
a

1

))
ϕv

)∣∣∣∣
2
da

|a|v
,

and ‖ϕ̃v‖2 is the local Hermitian form defined as

‖ϕ̃v‖2 :=
|2|v
2

∑

δ

∫ ∣∣∣∣L̃
Dδ
v

(
π̃v

((
a

a−1

))
ϕ̃v

)∣∣∣∣
2
da

|a|v
.

The δ is summed over the representatives of square classes of Q∗
v, and L̃Dδv are local Whittaker

functionals fixed to be compatible with L̃D.
When v = p with p|2M , ϕ̃p is a vector with

(7.14) π̃p(k)ϕ̃p = χp(k)ϕ̃p, k ∈ Kp(M),

where Kp(M) is the subgroup of SL2(Qp) consisting of matrices

(
a b
c d

)
with a, d ∈ Z∗

p, b ∈ Zp and

c ∈ 4MZ∗
p; χp(k) is some unitary character of the group Kp(M). We note that the double cover

S̃L2 splits over Kv(M), thus we can consider Kv(M) as a subgroup of S̃L2(Qv).

Lemma 7.2. When ϕ̃p satisfies equation (7.14), e(ϕ̃p, ψ
D
p )−1 6 2

|2|p (1 − p−1)−1 for any D ∈ Q∗
p.

Proof. Clearly,

‖ϕ̃p‖2
>

|2|p
2

∫

|a|p=1

∣∣∣∣L̃
D
p

(
π̃p

((
a

a−1

))
ϕ̃p

)∣∣∣∣
2

da.

When |a|p = 1,

(
a

a−1

)
∈ Kp(M) and we get, for some unitary character χ′,

π̃p

((
a

a−1

))
ϕ̃p = χ′(a)ϕ̃p.

As the Whittaker functional L̃D is a linear form, we see that the integrand is identically |L̃Dp (ϕ̃p)|2.
The integral thus gives (1− p−1)|L̃Dp (ϕ̃p)|2. From the definition of e(ϕ̃p, ψ

D
p ) we get the lemma. �

The vector ϕp is a new vector in πp. Let Fp(x) be its image in the Kirillov model of πp. Then
Lp(ϕp) = Fp(1) which we will assume to be 1, and

‖ϕp‖2 =

∫
|Fp(x)|2

dx

|x| .

Looking through the table of Fp(x) in [Sc02], we see either πp is an unramified representation or

|Fp(x)| 6 |x|1/2charZp
(x). In the latter case we get ‖ϕp‖2 6 1. In the former case we computed

‖ϕp‖2 in [BM05] and obtained

‖ϕp‖2 = (1 + p−1)|1 − p−2s−1|−2.
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Here s is a purely imaginary parameter (by the Ramanujan conjecture established by Deligne)
associated to πp. Thus we have

Lemma 7.3. e(ϕp, ψp) 6 (1 + p−1)(1 − p−1)−2. �

Clearly, |D|p > p−1. Looking through the table of L
(
πp,

1
2

)
in [Go70] we get

L
(
πp ⊗ χD,

1
2

)
> (1 + p1/2)−2.

Combining this with (7.6) and Lemmata 7.2–7.3 we get

Lemma 7.4. Ep(ϕp, ϕ̃p, ψp, D) 6 2
|2|p (1 + p−1)(p+ p1/2)2(1 − p−1)−3. �

7.4. Concluding Theorem 6. The above Lemma gives
∏

p|2M
Ep(ϕp, ϕ̃p, ψp, D) ≪ε M

2+ε.

Combining this estimate with (7.11), (7.12), (7.13), and Lemma 7.1 we obtain

D|ρf (D)|2 ≪ǫ (kM)ǫ
(
Γ
(
k + 1

2

))−1
ML

(
g ⊗ χD,

1
2

)
.

By Theorem 1 and Lemma 7.1,

L
(
g ⊗ χD,

1
2

)
≪ǫ (kMD)ǫkBM2CD

1
2− 1

8 (1−2θ).

Thus we get, for square-free D,

(7.15)
√
Dρf(D) ≪ǫ (kMD)ǫ

(
Γ
(
k + 1

2

))−1/2
k

B
2 MC+ 1

2D
1
4− 1

16 (1−2θ).

From the theory of the Shimura correspondence [Sh73], we see that for n = Dt2 with D square-

free, we have
√
nρf (n) =

√
Dρf (D)λ(t), where λ(t) is the t-th Hecke eigenvalue of a fixed newform

of weight 2k. By Deligne’s bound, |λ(t)| 6 τ(t) ≪ε n
ε which shows that (7.15) remains valid if D is

replaced by any positive integer n.
Now an arbitrary f(z) with 〈f, f〉 = 1 is a linear combination

∑
i bifi(z), where

fi(z) =
∑

ρfi
(n)(4πn)

k
2 + 1

4 e(nz),

〈fi, fj〉 = δi,j (thus
∑
i |bi|2 = 1), and the Fourier coefficients ρfi

(n) satisfy the bound of (7.15). By
Cauchy–Schwarz,

|ρf (n)|2 6
∑

i

|ρfi
(n)|2,

and by Theorem 4.2.1 of [Ra77], the dimension of S′
k+ 1

2

(4M,χ) is at most

k + 1
2

12
[SL2(Z) : Γ0(4M)] ≪ε kM

1+ε,

therefore we conclude the bound (7.2).

References to Appendix 2

[BM05] E. M. Baruch, Z. Mao, Central values of automorphic L-functions, preprint, January 2004 24, 26, 27, 28

[Bl04a] V. Blomer, Uniform bounds for Fourier coefficients of theta-series with arithmetic applications, Acta Arith.
114 (2004), 1–21. 25

[Ca73] W. Casselman, On some results of Atkin and Lehner, Math. Ann. 201 (1973) 301–314. 26
[DFI94b] W. Duke, J. Friedlander, H. Iwaniec, Bounds for automorphic L-functions. II, Invent. Math. 115 (1994),

219–239. 27
[DSp90] W. Duke, R. Schulze-Pillot, Representation of integers by positive ternary quadratic forms and equidistri-

bution of lattice points on ellipsoids, Invent. Math. 99 (1990), 49–57. 25



30 V. BLOMER, G. HARCOS, AND P. MICHEL

[Go70] R. Godement, Notes on Jacquet-Langlands theory, The Institute for Advanced Study (Princeton), 1970. 28
[HM04a] G. Harcos, P. Michel, The subconvexity problem for Rankin–Selberg L-functions and equidistribution of

Heegner points. II, Invent. Math. (to appear) 27
[HL94] J. Hoffstein, P. Lockhart, Coefficients of Maass forms and the Siegel zero, Ann. of Math. 140 (1994),

161–181. 27
[I87] H. Iwaniec, Fourier coefficients of modular forms of half-integral weight, Invent. Math. 87 (1987), 385–401.

25
[Ra77] R. A. Rankin, Modular forms and functions, Cambridge University Press, Cambridge–New York–

Melbourne, 1977. 29
[Sc02] R. Schmidt, Some remarks on local newforms for GL(2), J. Ramanujan Math. Soc. 17 (2002), 115–147.

26, 28
[Sh73] G. Shimura, On modular forms of half integral weight, Ann. of Math. 97 (1973), 440–481. 28
[U93] M. Ueda, On twisting operators and newforms of half-integral weight, Nagoya Math. J. 131 (1993), 135–205.

25
[Wa81] J.-L. Waldspurger, Sur les coefficients de Fourier des formes modulaires de poids demi-entier, J. Math.

Pures Appl. 60 (1981), 375–484. 25, 26
[Wa91] J-L. Waldspurger, Correspondances de Shimura et quaternions, Forum Math. 3 (1991), 219–307. 26

References

[Bl04b] V. Blomer, Shifted convolution sums and subconvexity bound for automorphic L-functions, Int. Math. Res.
Not. 2004, 3905–3926. 2, 4, 14, 15, 19

[B63] D. A. Burgess, On character sums and L-series, Proc. London Math. Soc. 12 (1962), 193–206.; II, ibid. 13
(1963), 524–536. 3
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