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Abstract—This paper proposes an FPGA-based System-on-
Chip (SoC) architecture with support for dynamic runtime
reconfiguration. The SoC is divided into two parts, the static
embedded CPU sub-system and the dynamically reconfigurable
part. An additional bus system connects the embedded CPU sub-
system with modules within the dynamic area, offering a flexible
way to communicate among all SoC components. This makes
it possible to implement a reconfigurable design with support
for free module placement. An enhanced memory access method
is included for high-speed access to an external memory. The
dynamic part includes a streaming technology which implements
a direct connection between reconfigurable modules. The paper
describes the architecture and shows the advantages in a smart
camera case study.

I. INTRODUCTION

The costs for application-specific integrated circuits (ASICs)
have steadily risen in recent years and development costs
can nowadays run into multi millions of dollars. Moreover,
ASICs cannot be modified once integrated into a system. To
overcome these drawbacks, field-programmable gate arrays
(FPGAs) provide a frequently applied alternative. FPGA-based
embedded systems are of increasing importance especially in
the signal and image processing domain. They offer a solution
to the implementation of flexible and high-performance image
processing modules [1]. For instance, intelligent embedded
systems for image processing, such as smart cameras, rely
on FPGA-based architectures [2], [3], [4]. One disadvantage
of FPGA-based systems is that the area requirements as well
as the power consumption are higher than those of ASIC
architectures [5]. But FPGAs support partial reconfiguration
which makes it possible to replace hardware modules at run-
time and thus enables the use of smaller FPGAs.

Partially reconfiguration of hardware offers further advan-
tages: First, offline design is more comfortable since only
parts of the system have to be re-synthesized after alterations,
and thus down-time during the design process and, as a
consequence, time-to-market can be reduced. Second, the SoC
can be programmed online during its operation. Parts of the
SoC can be altered without having to shutdown or even halt
the system. This enhances system customizability and mainte-
nance. Finally, reconfigurable SoCs allow the implementation
of adaptive embedded systems which incorporate so-called
self-x properties with the goals of self-optimization to meet
new requirements, self-organization of the system setup, and
self-adaptation to unpredictable changes in the environment,
as, e.g., shown in [6] for a self-organizing, FPGA-based smart
camera.

This paper addresses one of the main challenges in this
context. It presents a design to provide a system-wide commu-
nication infrastructure. This includes communication between
software and hardware modules via on-chip busses, as well
as between hardware modules and memory by direct memory
access (DMA). The presented architecture is tailored to sup-
port run-time hardware reconfiguration. We demonstrate the
usability of the proposed architecture by presenting a smart
camera application as a case study.

The paper is organized as follows. Section II presents some
related work. The proposed architecture is described in III.
Section IV illustrates the design flow. The smart camera case
study is described in Section V. The implementation and
experimental results are provided in Section VI before the
conclusion of this paper in Section VII.

II. RELATED WORK

A dynamic architecture based on reconfigurable hardware
for image processing applications is presented in the Auto-
Vision project [7]. Here, a hardware/software co-design for
driver assistance is presented [8] where image filters can be
dynamically exchanged. A comparison between two platforms
for implementing this algorithm is given in [9]. However,
both platforms only allow to load predefined image filter
modules as they use the partial reconfiguration flow from
Xilinx presented in [10]. In our paper, an architecture is
presented that allows a more flexible way to place hardware
modules with much finer granularity. In the Sonic-on-a-Chip
project [11], a reconfigurable system with advanced two-
dimensional integration capabilities of reconfigurable modules
has been developed for multimedia applications. The proposed
communication architecture suffers high throughput and lacks
DMA capabilities which are demanded by many video appli-
cations, including old value convolution or motion detection.

III. ARCHITECTURE

This research proposes a general architecture for flexible,
reconfigurable, bus-based SoCs. An example is presented in
Fig. 1. The system consists of the embedded CPU sub-
system and the reconfigurable part. The whole system is
located within a single FPGA. Furthermore, the SoC contains
an external memory for high-throughput data transfers and
the communication between the system components. In the
following, these components and the communication interfaces
between them are presented.
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Fig. 1. System overview of one possible partitioning of the heterogeneous
FPGA-based SoC platform consisting of CPU sub-system and reconfigurable
area. Reconfigurable modules can vary in size and be freely placed, allowing
a very good exploitation of the FPGA space. The ReCoBus (red) and the
I/O bar (blue) are routed through the dynamic part, allowing a system-wide
communication between hardware and software modules.

A. Embedded CPU Sub-system

The main purpose of the software part on the embedded
CPU is to control and manage the overall system. It contains
high-performance peripherals, interfaces, and other IP cores.
These are, for example, a memory controller to provide access
to an external RAM, a serial port interface for user commands,
and a module for accessing the integrated reconfiguration
interface of the FPGA. All components of the embedded CPU
sub-system are connected by the main on-chip system bus,
the processor local bus (PLB). This bus is designed for high
performance, allows burst oriented high throughput modes,
and is multi-master capable [12].

B. Reconfigurable Area

The FPGA area is divided into a static and a dynamic part.
This is illustrated in Fig. 1. The two dark-red areas on the
right top and bottom compose the dynamic part of the system.
Reconfiguration is only possible in the dynamic part which
contains a reconfigurable on-chip bus (ReCoBus1) and I/O bar
communication primitives to provide a communication infras-
tructure for dynamically loaded hardware modules. Three par-
tially reconfigurable modules are exemplary integrated into the
dynamic area (green, dark blue and turquoise). Both primitives
are provided by the framework ReCoBus-Builder [13], [14].

1name changed for blind review

Fig. 2. ReCoBus interleaving scheme. By providing multiple independent
interleaved and regular structured multiplexer chains, modules can be con-
nected to different sized interfaces via a variable amount of consecutive bus
slots. This scheme provides low latency for very fine-grained tile grids.

The I/O bar is used for streaming the data and establishing
point-to-point connections between hardware modules. Note
that the modules possess different sizes and that modules
can be placed in a two-dimensional manner. This materially
enhances FPGA utilization as modules can be fit into smaller
bounding boxes that must only provide the required logic and
memory resources.

1) Reconfigurable Bus: The ReCoBus [15] is an on-chip
bus that is suitable for dynamically integrating hardware
modules into an FPGA by partial reconfiguration. It consists
of an FPGA hard macro with a regular structure, allowing
partial reconfiguration at run time, even during bus transac-
tions. The bus permits connections between master and slave
hardware modules, including the communication to and from
components of the embedded CPU sub-system.

The basic idea of a ReCoBus is illustrated in Fig. 2. The bus
can provide all permutations of dedicated and shared as well
as read and write signals from and to partially reconfigurable
modules. This includes physical implementations of signals
for module selection, bus arbitration, read/write control, reset
generation and all kinds of data and address transfers. As
depicted in the figure, the size of the bus interface may vary by
using different amounts of consecutive bus slots for connecting
a partial module.

The structure of the ReCoBus provides resource slots for
dynamic module placement. These slots have a granularity
of one Configurable Logic Block (CLB) width and, in the
target implementation, 16 CLBs height. Since the signals
are interleaved (cf. Fig. 2), the module width determines
the maximal bandwidth for data transfers. A module with
a width of one CLB column is able to read and write 8
Bit of data. Modules with a width of at least six CLB
columns are then able to transfer up to 48 Bit data since
the present ReCoBus can implement up to six interleaved
signals. To allow burst-transactions from a reconfigurable
master module to the embedded CPU sub-system, these signals
can be used to transfer 32 Bit of data and up to 16 control-
signals which include, for instance, information about the
transfer length and synchronization. In the proposed design,
four ReCoBus macros have been instantiated for implementing
a two-dimensional ReCoBus architecture (cf. Fig. 1).

2) I/O bar: I/O bars provide point-to-point communication
between modules which are located in the dynamic area.
Details are described in [16]. The basic principle is that, in
each resource slot, a module is able to read the incoming data,
modify it if necessary, and pass it further to the next module.

For instance, the I/O bar can be used to stream video data
between the various reconfigurable processing modules, as
illustrated in Fig. 3. Here, modules can modify this stream
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Fig. 4. Simplified overview of the PLB/RCB Bridge. In this example, the
bridge connects four ReCoBus macros with the static part.

or generate additional output signals.

C. PLB/RCB Bridge

To allow communication between the embedded CPU sub-
system and the reconfigurable part, a PLB/RCB Bridge trans-
lates the ReCoBus protocol to the PLB protocol and vice versa.
Additionally, the bridge contains the arbiter for the ReCoBus,
as well as the logic needed to connect to the ReCoBus macros.
Handshaking coordinates the data flow between the bridge and
the buses. A structural overview of the bridge is shown in
Fig. 4.

The connect logic merges and distributes the signals from
and to the ReCoBus macros and implements a common
interface wrapper to the ReCoBus sub-system.

Since the request lines of a ReCoBus macro can be used as
interrupt signals as well as bus requests signals, they have to
be separated accordingly inside the bridge. For this purpose,
the request switch block includes mask registers which hold
information about the use of the request lines. This allows to
distinguish between interrupts and bus requests.

The arbiter coordinates the bus access between PLB and the
reconfigurable modules. It uses a round robin policy to grant
fair access to the bus for master modules connected to the
ReCoBus. Incoming requests from the PLB are priorized in
the proposed design. This is due to the fact that the CPU sub-
system is mainly performing short control transactions with the
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Fig. 5. The aligment logic multiplexes the data from a ReCoBus module
depending on the module-placement. The first slot of the module (green)
carries the first 8 Bit of data. The alignment register controls the multiplexer
depending on the active module, specified by the module-select signals.

ReCoBus modules, whereas reconfigurable modules mainly
run large memory intensive burst transactions. The arbiter is
able to stall data transfers initiated by hardware masters in
order to allow CPU requests to be processed. This is necessary
to avoid deadlocks which can emerge when a PLB master
wants to access a reconfigurable module which concurrently
tries to access a component of the CPU sub-system.

The switch shown in the upper half of Fig. 4 multiplexes the
data and address signals, allowing communication between all
parts of the system.

Since the ReCoBus modules can be freely placed within
the reconfigurable area and the data and address signals are
interleaved, these signals must be aligned correctly depending
on the destination of a transaction. This is done by the adapt
alignment block. The principle of this process is revealed
in Fig. 5 for the data-out lines of a module. The first slot
connected to the module always carries the first 8 Bit of
data, independent of the module placement. Thus, a set of
multiplexers is required to align the data into the correct order
(see also Fig. 2) depending on the module placement position.

Finally, the bridge provides access to the native port in-
terface (NPI) [17] of the memory using an additional hard-
ware module, which allows high-speed data transfers between
hardware masters and the memory controller without having
to access the PLB bus. A comparison of the transfer speeds
using PLB and NPI is given in Section VI-A.

D. Reconfigurable modules

The reconfigurable sub-system supports the integration of
partial master and slave modules with variable address ranges
and data widths. To allow independent master and slave access,
different select addresses can be set within the ReCoBus macro
with the help of Reconfigurable Select Generators (RSGs).
A RSG is basically a look-up table that can be updated to
decode a specific macro internal address vector. This process
is transparent to the reconfigurable modules. Consequently,
multiple instances of the same module can be integrated
into the system that can be individually accessed by setting
different address ranges inside the RSGs.

In order to physically implement request signals, the Re-
CoBus macro provides a regularily routed internal wire bundle.
By selectively manipulating switch matrix entries directly
inside the FPGA routing fabric, request signals from the
modules can be connected to drive a particular wire of this
bundle. Again, this is transparent to the entire module and
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multiple instantiations of the same module are possible by
utilizing different wires of the bundle.

The ReCoBus provides a fully PLB-compliant bus interface
for both master and slave operations. This makes it possible
to reuse existing PLB IP cores as partially reconfigurable
modules. The management of the ReCoBus resources and the
corresponding bitstream manipulations are fully encapsulated
in a driver API.

IV. DESIGN FLOW

To achieve partial reconfiguration as proposed in this paper,
a customized design flow is necessary which is presented in
Fig. 6. The flow is divided into four to five steps depending
on the design type (static or partial).

The static design, which includes the embedded CPU sub-
system, the bridge and the logic to conntect to the ReCoBus,
is a description for the entire FPGA. All routing and resource
units except the ones inside the partially reconfigurable area
are useable.

The partial design uses only the resources included in the
area which is defined by the dimensions of a partial module
inside the dynamic area.

The toolkit generates the macros for the ReCoBus and the
I/O bar, as well as constraints to prohibit the use of resource
units and a blocker for the routing resources. For the partial
design, a seperate tool makes it possible to cut the used content
of the module out of the bitstream.

V. SMART CAMERA CASE STUDY

An embedded design for tracking human motion is im-
plemented as case study for analyzing the flexibility of the
proposed methodology. The idea is to detect and track skin-
colored image regions, which is done by applying particle
filtering.

A. Particle Filtering

The basic framework is proposed in [18]. Let xt be the state
of a tracked object in a sequence of images and yt the current
measurement extracted from the camera image, then the goal is
to keep track of the probability distribution p(xt|yt:1) of the
object state given the sequence of measurements from time
step 1 to t. In the particle filter framework, this distribution is
represented by a set of N state samples with corresponding

weights St = {〈x
(i)
t , w

(i)〉
t }. The filtering mechanism basically

consists of three steps:
In the sampling step, a set of hypothesis about possible

object positions is generated by drawing samples from the
probability distribution St−1 according to their weights.
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Fig. 7. Schematic overview of the implemented probabilistic smart camera
case study with the hardware modules located in the reconfigurable area.
Depicted is the data flow of the video stream via the IO bar, and the data
flow between modules and memory.

In the propagation step, a position prediction is applied on
this set by propagating each sample according to a motion
model.

Finally, each propagated sample is evaluated based on mea-
surements performed on the input image. The weight of each
sample is set to the corresponding value of the measurement
probability distribution p(yt|xt).

B. Tracking Application

The application is based on skin color detection [19] which
is performed on the input image. A so-called region tracker
particle filter is applied for tracking the image position xt

of a skin color region. To track k regions, k of these filters
have to run. The filter implements the above framework as
follows: After the sampling step, each particle is propagated
by using a deterministic drift followed by a Gaussian diffusion.

Evaluation of a sample s
(i)
t ∈ Sk,t is performed by counting

the number of skin color pixels in a 9× 9 region around the

image position x
(i)
t .

To support tracking of multiple objects, a scout particle filter
is applied to recognize new objects entering the image. First,
image regions that are already tracked by a region tracker
are masked in the pre-processed image. Then, particles are
sampled. A fraction of the samples are not generated by
drawing from Sscout,t−1, but by distributing them uniformly
over the input image. Evaluation on the masked image is
performed as before. Whenever the standard deviation of
the samples Sscout,t and the average sample weight exceed
specific thresholds, a new region tracker is initialized at the
mean position of the samples for tracking the new region.

C. Implementation

The system is implemented on a Xilinx Virtex-II XUP
Pro board as illustrated in Fig. 7. The skin color detection
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is implemented as a hardware slave module that reads the
color values from the I/O bar and marks them as skin or
non-skin by comparing them with a color template. We have
implemented modules for RGB and YCbCr color spaces [19].
The classification is written as an additional signal onto the
I/O bar together with the unmodified video stream.

The framebuffer hardware master module is implemented to
store the current input image. This is done by double buffering
the images in the on-chip memory via the ReCoBus using the
NPI interface. We use 32 Bit for storing one pixel, with 24
Bit for the input RGB values and the remaining 8 Bit free for
classification results.

The particle filtering framework is partitioned into a soft-
ware and a hardware part. The set of particles is stored in
the on-chip DDR memory. The software part performs the
sampling and applies the motion model. The hardware part
is used as a co-processor to perform the evaluation steps. All
particles are loaded into the hardware module’s local buffer
and are then sequentially evaluated by loading the data of the
image region around each particle and calculating the weight
as described above. These weights are then stored together
with the sample states in memory and are used for sampling
in the next step.

The current implementation makes it possible to track up to
3 image regions. We have furthermore implemented a marker
module to display the tracking result in the camera image.
One marker module is used per region tracker. A simple tennis
game is implemented on top of this application, which can be
directly controlled by the hands of a person, using the results
of the tracker (see Fig. 10).

VI. IMPLEMENTATION RESULTS

The proposed SoC design is implemented on a Xilinx
Virtex-II XUP Pro board. The reconfigurable area is con-
stricted by the two power PCs and thus divided into two parts.
Each of the two reconfigurable parts is 24 CLB columns wide
and 32 CLB rows high.

The video input signal from a video board is routed over
the I/O bar and then streamed back to a VGA output. The
ReCoBus is connected with the PLB/RCB bridge which offers
a connection to the PLB and to the NPI, see Fig. 1.

The PowerPC is running with a clock of 300 MHz. The
remaining system is clocked at 100 MHz. The reconfiguration
is performed using a clock of 50 MHz. The video input format
is PAL 50 Hz with a resolution of 720× 576 pixels.

A. Data Transfer

The memory bandwidth may become a critical bottleneck
in video applications. Looking at a video stream with a frame
rate of 50 FPS and a resolution of 720 × 576 pixels, each
represented by 3 Bytes, 62 MB

s
are required to transfer all

frames into the memory. Accessing the data doubles the
amount of bandwidth needed. In Fig. 8, the data throughput for
PLB transactions over the burst rate is shown. Obviously, the
datarate is barely sufficient for the above example. In contrast,
the implemented NPI module increases the bandwidth near the
theoretical maximum of 400 MB

s
given by a clock of 100 Mhz

and a word length of 32 Bit.
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Fig. 8. Speed comparison between memory transactions via PLB, and by
using the NPI interface directly.
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B. Run-time Reconfiguration

A scenario for run-time reconfiguration is illustrated in
Fig. 9. It is triggered by the PowerPC. The image of the
static part is loaded from a CF card into the memory (see
steps 1 to 4 in Fig. 9). This is necessary, since reconfiguration
is done in frames which cover one complete vertical column
of the FPGA as illustrated in the figure. This means that for
partial reconfiguration also logic from the static part has to
be re-written. When configuring a partial module, its image
is loaded into the memory (via steps 1, 2, 3, 4). Then, it is
combined with the corresponding parts of the static image and
other partial modules which are already configured, to generate
the frames for reconfiguration. These are then loaded via steps
5 to 8 illustrated in Fig. 9).

Some of the partial modules of our case study are shown in
Table I. It lists the modules’ widths and heights in numbers
of CLB slots, the size of the modules’ images in Bytes
and whether interrupt and bus requests are required. The
reconfiguration periods of these modules are displayed in
Table II. It shows the durations of loading the modules from
the CF card, writing them onto the FPGA, and setting the
alignment and request parameters, separately.
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module slots (w/h) irq/req size(B)
marker 4/1 n/n 14.120

skin 7/1 n/n 24.683
accel. 7/2 y/y 49.323

TABLE I
MODULEDATA FROM THE SMART CAMERA CASE STUDY.

reconfiguration time (ms)
module load write connection all
marker 15,9 7,7 0,3 23,9

skin 27,9 13,2 0,3 41,4
accel. 56 13,3 4,5 73,8

TABLE II
RECONFIGURATION TIMES FOR MODULES FROM THE SMART CAMERA

CASE STUDY.

calculation time (ms)
E

S P
overall comm.

part. sw hw sw hw overhead
100 0,9-1,4 0,4 0,4 0,2 1,5-2,0 1,0 30 %
200 2,1-2,9 0,8 1,0 0,3 3,4-4,2 2,1 31 %
500 4,8-6,2 2,1 3,5 1,0 9,3-10,7 6,6 34 %

1000 9,0-12,2 4,2 7,1 1,9 18,0-21,2 13,2 38 %

TABLE III
HARDWARE ACCELERATION OF PARTICLE FILTER WITH TIME

REQUIREMENTS FOR PARTICLE EVALUATION (E), SAMPLING (S), AND

PROPAGATION (P).

As can be seen, most time is spent on reading the modules
from the CF card. This period can be bypassed by prefetching
the modules into the DDR memory. The time for loading
a module onto the FPGA is proportional to the size of the
module. Note that this is independent of the module’s height,
since reconfiguration is done by loading a complete frame.
Connecting the module is performed by setting the alignment
parameters. This requires the least amount of time. Here, most
of the time is spent on connecting the interrupts and bus
requests.

C. Case Study Results

Table III displays the speedup of the particle filtering
supported by hardware. The calculation of the observation
module is much faster. However, the memory bandwidth is the
limiting factor. Due to the small size of the image regions, only
small burst transmissions are possible. This leads to a poor
performance because of the latency of the external memory.
As can be seen, the communication between the PowerPC and
the hardware accelerator imposes 30% to 38% overhead.

Still, the proposed system makes it possible to track human
motion in real time with 50 FPS and a resolution of 720×576
pixels. By loading the video game hardware module, the
proposed SoC enables a person to control the paddles of
the game in real time, using the results of the tracked hand
positions. All processing is performed by the system and
displayed via the VGA output as illustrated in Fig. 10.

VII. CONCLUSION AND FUTURE WORK

This paper presents a flexible architecture for building
systems-on-chips on FPGA-based architectures. The presented
architecture offers a reconfigurable area which can be used
to dynamically load hardware modules. One benefit of such
an approach is that customizable and self-adaptive flexibility
can easily be implemented. The flexibility of the proposed

(a) The particle filter tracking three
objects.

(b) The object tracker used to play
a pong game.

Fig. 10. The particle filter in action. The framework tracks three image
regions (a person’s head and hands). The tracked hand positions are directly
used to control the paddles of the video game.

architecture is discussed by presenting an object tracking
application for smart cameras. The results are encouraging and
prove the flexibility of the architecture.
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