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Introduction

The focus of the present exposition is visualization techniques. For this a simple
nonlinear business cycle model of multiplier-accelerator type is employed. There
have been presented numerous most interesting contributions to business cycle
modelling during the last decades, using more complicated relations, and involving
for instance the monetary sector of the economy in a more general Keynesian set-
ting.

It is, however, interesting to see how complex the scenarios can become with
even the most simplified assumptions, to which complications of the model can
only add even more complexity.

The procedure is as follows. We first outline the model studied, and relate it to
the historical roots, including an outline of some early results for particular cases.

Then follows a study of the fixed, or equilibrium point and its stability. The
Neimark-Sacker bifurcation of the fixed point is described in detail. Next, a refer-
ence diagram in the parameter plane, Figure 3, presents information on the stabil-
ity region for the fixed point, the region of divergence to infinity, and the existence
regions for attracting cycles of different periods. Then two particular routes of suc-
cessive bifurcations due to parameter changes are studied in some detail, and the
resulting attractors and basins (in cases of coexistence) are shown.

The Linear Multiplier-Accelerator Model

One of the first formal mathematical models for business cycles was due to Paul
Samuelson (1939). He combined the multiplier, recently emergent with Keynesian
macroeconomics, with the older “principle of acceleration”, to formulate some-
thing which essentially worked as a simple harmonic oscillator. The main short-
coming, provided one wanted to explain sustained cyclic change in the economy,
was that, except for one nongeneric boundary case, either movement would go to
extinction, or the system would explode. This always is the case with linear oscil-
lators. Ragnar Frisch (1933) argued that all systems be damped, but be kept going
through exogenous shocks. Sir John Hicks (1950) preferred the explosive case, but
introduced bounds (“floor” and “roof”), which not only removed the absurdities
of explosion, but actually made the system piecewise linear, i. e. nonlinear.

Let us so pin down the basics of the Samuelson-Hicks model. Productive capital
was assumed to be held in proportion to output (i.e. income in real terms), so
investment, being the change in capital stock, was in proportion to income change:

I =v (Y1 — Vi) (1)

with I; denoting investment and (Y;_; — Y;_2) denoting the change of income
between the two previous periods. The constant capital to output ratio v was the
“accelerator”. Likewise, consumption was a given proportion of income in the pre-
vious period:

Cr=(1-5) Y (2)

where 0 < s <1 was the complementary proportion saved, and 1/s was the Keyne-
sian multiplier. Introducing the accounting identity for a closed economy:

Y, =C;+ I; (3)

we can derive a simple recurrence equation in the income variable only, namely:

Yi=(1+v—s) Y1 —vY; o (4)
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For any nonzero initial condition, equation (4) will generate persistent oscillations
only for very special parameter values, i.e., v=1and 0 < s <4, which is implied
by 0 < s <1. In this case, the amplitude of oscillations depends entirely on initial
conditions. Notice that (4) is somewhat different from Samuelson’s own model
in which the accelerator was applied only to consumption, but, details apart, the
formulations are equivalent.

The Nonlinear Accelerator

As mentioned, Hicks (1950) assumed there were upper and lower bounds for in-
vestment I; < Iax,and Iy > Ii,. The latter bound was negative and represented
the disinvestment when no capital at all was replaced but depreciated at its natural
rate. Hicks’s objection to the linear investment function was mainly due to the fact
that an unbounded linear investment function would imply active destruction of
capital in depression phases of the business cycle. Goodwin (1951) proposed that
the limits be approached asymptotically, and the complete investment function
take the form of a hyperbolic or an arc tangent type. He was able to show that the
system then went to a limit cycle attractor.

In Puu (1989) a linear-cubic shape for the investment function was proposed as
an alternative. This had the additional feature of being back-bending. As a repres-
entation of the total investment, including the public sector, this can include the
realistic fact that governments tend to distribute infrastructure investment contra-
cyclically, partly as a means to fight depressions, partly as a means to profit from
lower input prices during slumps.

The investment function hence became:

I =v(Yie1 — Yia) — v (Yie1 — Yieo)® (s)

Hicks’s original model also included autonomous expenditures, by the public
sector and such by the private sector which were not cycle dependent. As is always
the case with linear systems, the autonomous expenditures just result in a positive
stationary value (these expenditures scaled up by the multiplier 1/s), so that Y;
has the meaning of a deviation from this stationary income, taking both positive
and negative values. We note that the inclusion of a cubic term does not make any
difference at all in this respect.

Further in Puu (1989) the consumption function was a bit different from what
Hicks assumed:

Ci=(1-5)Y,_1+5Y; o (6)

In the original setup incomes saved were assumed to be withdrawn from con-
sumption for eternity, whereas in the above function they were assumed to be kept
for just one period, and totally consumed one period later, hence the two lagged
contributions to consumption.

Again, substituting in the accounting identity Y; = C; + I; we now, using a
slight rearrangement of terms, have:

Y, =Y =(v—5)(Yie1 = Yia) —v (Vi1 — Yi2)° ?)
so introducing the new variable Y; — Y;_1 = Z;_;, we can restate the system as:

Yi=Y 1+ 24 (8)

Zi=(—8)Zs_1 —vZP | (9)

As we see the last equation is autonomous in Z;, income difference, whereas
the first just tells us how income is obtained as a successive sum of these income
differences. This was the great advantage of assuming saving to be for just one
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Figure 1: Bifurcation diagram and Lyapunov exponent for the autonomous cubic
iteration.

period. The assumption, admittedly, was special, but no more then the original
one. Later we will consider a more general case where a fraction of the savings
are spent and the rest is retained for ever. Rescaling both variables by the factor

v/ (14 v — s) /v transforms equation (9) into:
Zy =aZ;i1— (a+1) Z?—l (10)

where a = (v — s). The propensity to save is less than unity, s <1, whereas all past
empirical measurements of the accelerator resulted in v > 1, so we can take a > o.

The results of this iteration, obtained in Puu (1989), are summarized in Fig-
ure 1, in terms of a bifurcation diagram on top of the picture and a curve for the
Lyapunov exponent below. We see a scenario going from a zero equilibrium to two
coexistent nonzero equilibria Z = £4/(a — 1) / (a + 1), which split in coexistent
two-cycles at a = 2, after which there follow period doubling cascades to chaos. At
avalue of a= %\/g the chaotic attractors are no longer separate, but merge in one
single attractor.

A More General Consumption Function

A more general case was studied in Puu (1991), where the consumption function
took the form:
Cr=(1—5)Yi 1 +esYp s (1)

A fraction 0 < € <1 of savings was assumed to be spent after being saved for
one period. So, for € =1 the previous case is recovered, whereas € = o corresponds
to the original Hicks case.

Substituting from equations (5) and (11) into (3), again using the rescaling

v/ (1 + v — s) /v of variables, we can put the system in the form:

Yi=Yi1+ 24
Zi=aZiq—(a+1) 23 —bY; (12)
t t—1 b
where b= (1—¢)s represents a sort of eternal rate of saving. The equations are now
no longer uncoupled, and hence have a geometry in 2-dimensional phase space.
Figure 2 displays a series of pictures where we keep a =2, but let b decrease from
0.125, through 0.05 and 0.01, to a vanishing value. We see how the normal shape of
chaotic attractor from upper left to lower right transforms into a relaxation cycle
in the terminology of the perturbation literature, i.e. a combination of smooth
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Figure 2: Emergence of the relaxation cycle for the coupled system.

movement and sudden jumps, further with two inserted copies of the bifurcation
diagram from Figure 1.

In Puu (1991) mainly this scenario b — o was studied. Define a new variable
X; = bY;, form the quotient (Z; — Z;_1) / (Xt — X;—1) from (12), and divide by
b. Thus:

(Zy — Zy—1)
(X — Xi—1)

(a — 1) Zt—l + (a + 1) Zt371 — Xt—l
21

1
=3 (13)

As we see, the right hand side goes to infinity when b — o, i. e. trajectories become
vertical in the X, Z phase space, except when the cubic in the numerator is zero
too. Deleting indices, this means that:

(a—1)Z—(a+1)23=X (14)

This so called characteristic, in the terminology of perturbation studies, is a
curve in X, Z-phase space along which the system can move in directions other
than the vertical. Whenever this lying cubic turns around, the process must drop or
jump to a relevant unique portion of the curve. Such a cycle was called a relaxation
cycle in perturbation studies. We see it in the last picture of Figure 2, along with two
copies of the bifurcation diagram from Figure 1 inserted. The resulting process is a
cycle where the relaxation jump enters a chaotic zone from which the cycle again
simplifies through a period halving route to order. In terms of very rough realism
this could seem reasonable, as the disordered phases of the cycle would occur in
the transitions between phases of prosperity and depression.

This is but one scenario for the model. In the following we will study it in more
general cases, considering its bifurcations and various periodic, chaotic, and ex-
plosive regimes.

10 A Business Cycle Model with Cubic Nonlinearity



Dynamic Behavior of the Model

The question we discuss in this section concerns the different kinds of attracting
sets and their parameter dependent bifurcations, which show up when we study
the model (12) in its dynamic context, and even lead to chaos

Note that the system (12) is noninvertible, so global analyses which use the the-
ory of critical lines (Mira, 1987, Mira, ef al. 1996) apply. Noninvetibility means that
there exists a set in phase space where the Jacobian determinant of the map van-
ishes. The forward image of this set is called critical line LC'. The existence of such
a set brings a specific character into bifurcation scenarios, shapes of attracting sets
and their basins of attraction, etc., different from those known for invertible maps.

Fixed point bifurcation

Let us now change notation in the model (12): x := Y, y := Z. Thus, we consider
a dynamical system generated by a family of two-dimensional continuous nonin-
vertible maps F' : R? — R? given by

[ T T+y
F'<y>H<ay—(a—|—1)y3—bx>’ (15)

where a, b are real parameters such that a >0, 0<b<1.

The map F, obviously, has the single fixed point (¢, yo) = (0,0). Let us derive
the stability conditions for this (g, yo). The Jacobian matrix of F' depends only
on y and has the form

1 1
DF = ( —b a—3(a+1)y? > (16)

Corresponding eigenvalues at the fixed point (0, 0) are equal to

pr2=(a+1x+/(a—1)2—4b)/2.

One can easily get a triangle S of stability of the fixed point (0,0) in the (b, a)-
parameter plane for which |u1 2| <1. Necessary and sufficient conditions for sta-
bility are the following inequalities:

1+ |DF|+ trDF > 0,
1+ |DF| - trDF > 0,
1—|DF| >0,

where | DF'| and tr DF denote the determinant and the trace of D F’, respectively.
The above inequalities for the Jacobian matrix (16) at the fixed point (0, 0) become

24+2a+b>0,
b>0,
1—a—5b>0.

Taking into account that the map F' is defined only for a >0 and 0<b<1, the
triangle S is given by

S={(bya):0<b<1,0<a<1l-b}.

Let (b,a) € S. Then the fixed point (0, 0) is stable. It is a stable focus because
ft1,2 are complex conjugate for 1-2v/b<a<1+2v/b. One can easily see that this
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inequality is fulfilled for the triangle S. We can write 1112 as 112 = Repg o =
iIm 19 2, where

a+1 a—1)2—4b
Repro=—F—;Impu o= #
2 2
Let us now study the bifurcation of stability loss of the fixed point, which occurs
at

a=1-b (17)

when the eigenvalues cross the unit circle, i.e. |y 2| =1. It is known (see, e.g.,
Sacker, 1964, loss, 1979, Mira, 1987) that if there is no so-called strong resonance
1:k, k < 4, thatis

2wl
Reul,? 7é COS%; k S 4;

then a Neimark-Sacker bifurcation occurs and results in the appearance of an at-
tracting invariant closed curve (homeomorphic to a circle, in other words, a two-
dimensional torus) in the neighborhood of the fixed point. The map is reduced
to a rotation map on this curve. It can be shown that for the parameter range
considered strong resonance cannot occur, given the condition a > o. Indeed, the
resonance 1:2 occurs at a =-3, when g1 = o =1, the resonance 1:3 at a =—2, and
1:4 at a =—1. The case k=10ccurs ata =1, b=0, when p; = o =1.

The invariant circle can have a rational or an irrational rotation number, de-
pending on the parameters. In the case of a rational rotation number [/k, where
[/k is an irreducible fraction, this invariant circle consists of the unstable mani-
fold of a saddle cycle of period k approaching points of an attracting cycle of the
same period. The value k£ depends on a resonance region in which the eigenval-
ues have particular values after crossing the unit circle (Arnold et al., 1986). Such
regions reach the unit circle at points e>™*/* in the of form of densely packed nar-
row tongues. Thus, in the general case the eigenvalues cross a countable number
of the tongues near the unit circle. In the parameter space it corresponds to the
case when the parameter point crosses, near the bifurcation curve, the so-called
“Arnold tongues” associated with the attracting cycles of different periods. Note
that the map F’ is symmetric with respect to o. Thus a cycle of any odd period, by
necessity asymmetric, must then appear together with one more cycle of the same
period, such that they together provide for symmetry.

In the case of an irrational rotation number, typical trajectories of the map
are everywhere dense on the invariant circle. The probability for the eigenval-
ues to cross the unit circle at an irrational point is obviously larger then at a ra-
tional point (because the measure of the set of rational numbers is equal to o)
but soon after the bifurcation it is more probable to get an invariant circle with a
rational rotation number, i. e., an attracting cycle of rather high period. On a gen-
eric one-dimensional curve crossing the parameter plane close to the bifurcation
curve, the sequence of the regions, corresponding to the invariant circles with ra-
tional/irrational rotation numbers, is described by the behavior of the Devil’s stair-
case (reported in many textbooks), where “intervals” are associated with rational
rotations.

We can easily obtain the values a;, and by, of the parameters a and b, such that
an invariant circle with rotation number [ /k appears after stability loss of the fixed
point. In other words, we get the parameter values when attracting and saddle
cycles of period k are born (two pairs in the case of an odd period). This can be
obtained from the following equality:

2
Re 1,2 = cos T k>4,

kO
from which it follows that corresponding value of the parameter a is

27l
ak:2cos%—1,

12 A Business Cycle Model with Cubic Nonlinearity



Figure 3: The two-dimensional bifurcation diagram of the map F' in the (b, a)-
parameter plane where the existence regions of attracting cycles of the period k&,
k <32, are shown. The periods are indicated by corresponding numbers.

and from (17) it follows that corresponding value of the parameter b is
bk =1- ag.

Thus, for instance, an attracting cycle of period k = 6 appears together with a saddle
cycle of period 6 at a =0, b=1. Two attracting and two saddle period-7 cycles ap-
pear at @ =~ 0.24698, b =~ 0.75302. Attracting and saddle period-8 cycles appear at
a=+v2-1,b=2-+/2, and so on.

Figure 3 presents the two-dimensional bifurcation diagram in the (b, a)-para-
meter plane where the regions of existence of attracting cycles of periods k, k < 32,
and the region of divergence to infinity are shown. The above mentioned “Arnold
tongues” are clearly seen. An enlarged window of this diagram is shown in Figure 4
where the regions of coexistence of several attracting cycles can be observed. These
occur where there are overlapping tongues associated with cycles of different peri-
ods. The white region corresponds to the parameter values such that an attracting
set of the map F is either some cycle of period larger than 32, or a chaotic attractor,
or an invariant circle with irrational rotation number. The attracting sets of all
types can be coexisting.

Critical lines and absorbing area

Before the description of transitions to chaos we define the critical lines and the
absorbing area (see Mira, et al., 1996) for the map F'. A train of critical lines, tangent
to each other, bounds the absorbing area for the attractor. The initial line, said to
have rank —1, is obtained by equating the Jacobian determinant to zero. It is iterated
a sufficient number of times to completely bound the absorbing area, each forward
iterate taking a rank number higher by one. One starts numbering by zero (or
dropping the index) from the first iterate because its preimage does not yet bound
the absorbing area, but intersects it.

Dynamic Behavior of the Model 13



Figure 4: An enlarged window of Figure 3.

The critical line of rank —1 of the map F is obtained as the locus of points such
that | DF'| = o which yields two horizontal straight lines:

{Lc_l,w'_l}={(w)ER”yzi ﬁ}

The first iteration of LC_; and LC” | gives the critical lines LC and LC":

{LC,LC"} = {(x,y) ER?:y=—bzt 20a+b) | a+b }

3 3(a+1)

The critical lines of rank k are defined as LC), = F*(LC) and LC}, = F*(LC").
Note that, due to the symmetry of the map F, the set of lines LC}, and LC,’c are
mutually symmetric with respect to o.

The successive images of the critical lines define an absorbing area .4 such that
if some trajectory enters A it can never leave this area, and such that there exists
a neighborhood U (.A) whose points will be mapped into A in a finite number of
iterations. The boundary 9.4 is made up by portions of the images of LC and LC".
If we denote A N LC_4 by [by, ag] and A N LC’ ; by [b, ag], then for a suitable
integer m,

m m
0A = F*([bo, ao]) | F*([t6, ap),
k=1

k=1

which obviously is symmetric as well with respect to o set.

Figure 5 shows an example of the absorbing area together with an attractor of
the map F' at a=0.8, b=1, where the absorbing area is made up by 6 pieces of
critical lines. Some other examples of the absorbing area with attractors and their
basins of attractions for the map F’ are illustrated in (Puu, 2000).

14 A Business Cycle Model with Cubic Nonlinearity
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Figure 5: An example of the chaotic attractor and the absorbing area of the map F
ata=0.8,b=1.

-1 0 X 1

Figure 6: The invariant circle with rotation number 1/6 of the map F' at a=o0.3,
b=1. The points of the saddle period-6 cycle are shown by squares and of the at-
tracting period-6 cycle by circles.

Several scenarios of transition to chaos

What will happen with the phase portrait of the system if we fix the parameter val-
ues inside some tongue of periodicity (see Figure 3) and increase a? This question is
closely related to the problem of the breakdown of a two-dimensional torus, which
is well studied for diffeomorphisms (see, e. g., Afraimovich & Shil’nikov, 1983), but
is a more complicated task for noninvertible maps (see, e. g., Mira, 1987, Gardini, et
al., 1994).

In this subsection we consider two different routes to chaos. The first is connec-
ted to the period doubling cascade of the attracting period-6 cycle, which appears
after stability loss of the fixed point at a = 0, b=1. The second is related to a more
complicated sequence of bifurcations of the attracting period-8 cycle, which bifurc-
ates from the fixed point at a = V2-1,b=2-2.

Let us fix b =1, a = 0.3 (this parameter point is inside the 6-tongue of Figure 3),
and increase the value of a. The only attractor of the map F' is the attracting period-
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Figure 7: Two attracting period-6 cycles (the black and white circles) together with
their basins of attraction. The 1°¢ 6-saddle is indicated by the grey circles, the 2"¢
6-saddle by the grey squares and the 2-saddle by the white squares. The grey area is
the basin of infinity. Here a = 0.68, b=1.

6 cycle, shown in Figure 6 together with the saddle period-6 cycle (we call it the 15
6-saddle), and its unstable manifold, which forms an invariant circle.

At a = 0.667 the attracting period-6 cycle undergoes a pitchfork bifurcation
(its eigenvalue passes through 1): this period-6 cycle becomes a period-6 saddle
(called the 2"? 6-saddle) surrounded by two new attracting period-6 cycles. The
immediate basin boundary of the attracting period-6 cycles is formed by the stable
manifolds of the 2¢ 6-saddle and its preimage. This boundary approaches in the
limit the stable manifold of the 15 6-saddle. The boundary of infinity (i.e., the
region of points which diverge to infinity under iteration by the map F’) is formed
by the stable manifold of a saddle period-2 cycle (see Figure 7) which always exists.

Next bifurcations under increasing a are cascades of period doubling bifurc-
ations of the two attracting period-6 cycles: the first period doubling occurs at
a = 0.725 (one of the eigenvalues of each period-6 cycle passes through —1), the
second at a = 0.742, the third at @ =~ 0.746, and so on. Note that the period doub-
ling cascade is realized on some one-dimensional manifold that is impossible for
invertible maps: on the way an eigenvalue of some cycle, from 1 (when the cycle is
born) to —1 (the period-doubling bifurcation), this eigenvalue cannot pass through
0. Thus, to avoid o the eigenvalues move into complex plane, so that some rotation
in the phase space arises and the dynamics becomes two-dimensional.

After the cascade of the period doubling bifurcations, the resulting attracting
set of the map F' consists of two period-6 chaotic attractors (see Figure 8), which
merge into a one-piece chaotic attractor at @ = 0.7925 (see Figure 5), due to the
contact with the immediate basin boundary. This merging is accompanied by the
so-called “rare points phenomenon” (Maistrenko, et al., 1998), due to the fractal
structure of the basin boundary. The attractor disappears at a ~ 1.064 after the
boundary crisis, i. e. the contact with the basin of infinity (see Grebogi, et al., 1982,
Nusse & Yorke, 1994).

Let us now fix b= 0.6 and a = 0.8. This parameter point is inside the 8-tongue
of the bifurcation diagram shown in Figure 4. The only attractor of the map F’ is

16 A Business Cycle Model with Cubic Nonlinearity



-1 0.5 0 0.5 X 1

Figure 8: The two period-6 chaotic attractors and their basins of attraction at
a=0.755,b=1.

the attracting period-8 cycle. The unstable manifold of the period-8 saddle cycle
forms an invariant circle (see Figure 9).

We will increase a in a way shown in Figure 4 along the straight line with an ar-
row. At a = 0.935 the eigenvalues of the attracting period-8 cycle become complex-
conjugate and thus this cycle becomes an attracting period-8 focus.

At a = 1.02 a pitchfork bifurcation of the period-8 saddle cycle occurs: this
period-8 saddle becomes a repellor (a repelling node) but two new period-8 saddle
cycles appear (see Figure 10).

At a ~ 1.101 a subharmonic saddle-node bifurcation occurs resulting in attract-
ing and saddle cycles of the period 24, the points of which surround the points of
the attracting period-8 focus by clusters of three. After this bifurcation there are
two attracting sets: the period-8 focus, and the period-24 cycle, whose basins of at-
traction are shown in Figure 11. The immediate basin of attraction of a point of the
attracting period-24 cycle is bounded by the stable manifold of the saddle period-
24 cycle (we call it the 1%¢ 24-saddle). The boundary of infinity is formed, as in the
previous examples, by the stable manifold of a saddle period-2 cycle.

We continue to increase the value of a. At @ ~ 1.118 the attracting period-
24 cycle undergoes a pitchfork bifurcation (its eigenvalue passes through 1) after
which this cycle becomes a saddle (called by the 274 54-saddle) and two new at-
tracting 24-cycles are born. Now there are three attractors: the period-8 focus, and
two period-24 cycles. An enlarged part of the phase space in this case is presented
in Figure 12, where it can be seen that the stable manifold of the 1%¢ 24-saddle (the
black squares) forms the immediate basin boundary of the attracting period-8 fo-
cus, while the stable manifold of the 2"¢ 24-saddle (the white squares) forms the
immediate basin boundary of two attracting period-24 cycles. Such a structure, in
which the local stable manifold is part of a closed invariant curve, and approaches
the saddle point from both sides, is made possible due to noninvertibility of the
map F'.

Next transformations of the phase portrait are connected to cascades of the
period doubling bifurcations of both attracting period-24 cycles, resulting in two
period-24 chaotic attractors. Thus, for instance, at a = 1.125 there are three attract-
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Figure 9: The invariant circle with the rotation number 1/8 of the map F ata=0.8,
b=0.6. The points of the saddle period-8 cycle are shown by squares and of the
attracting period-8 cycle by circles.

ot . o ° (0,00 “

0 x
Figure 10: The phase portrait of the map F at a =1.03, b= 0.6. The points of the
two saddle period-8 cycles are shown by squares (black and white); the points of

the repelling period-8 cycle are white circles and of the attracting period-8 cycle are
black circles.

18 A Business Cycle Model with Cubic Nonlinearity
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Figure 11: The attracting period-8 focus (the white circles) and the attracting
period-24 cycle (the black circles) with their basins of attraction. The immediate
basin boundary is formed by the stable manifold of the 15! 24-saddle (the grey
circles). Here a =1.102, b= 0.6.

ors: the attracting period-8 focus and two period-24 chaotic attractors (see Fig-
ure 13).

The pairwise merger of the pieces of two chaotic attractors occurs at ¢ ~ 1.126,
due to the contact with the stable manifold of the 2”¢ 24-saddle (which is the
homoclinic bifurcation of this saddle). There are two attractors now: the period-8
focus and the period-24 chaotic attractor (see Figure 14).

Then at a = 1.1358 the period-24 chaotic attractor has a contact with the stable
manifold of the 1°¢ 24-saddle. In other words, a homoclinic bifurcation of the 15
24-saddle occurs. As a result of this bifurcation, the period-24 chaotic attractor
disappears, but the remnant of it, the period-8 invariant chaotic hyperbolic set,
called chaotic saddle, still exists. This set can be seen as a transient trajectory soon
after the bifurcation. The only attractor of the map F' now is the period-8 focus,
each point of which is surrounded by such a complicated set as the chaotic saddle.

To describe next bifurcations, let us argue in terms of the 8-th iteration of the
map F, i.e. the map F8, for which the period-8 focus is a fixed point (focus), the
period-24 saddle is the period-3 saddle, and so on. At a = 1.1451 the attracting
focus loses its stability via a Neimark-Sacker bifurcation (its complex eigenvalues
pass through the unit circle), producing an invariant circle in its neighborhood
(see Figure 15). As we increase a, the invariant circle moves nearer to the 15¢ 3-
saddle. Then at a = 1.14574 one branch of the stable manifold and one branch of
the unstable manifold of the 1! 3-saddle merge with the invariant circle, and this
circle disappears, but the period-3 chaotic saddle reveals itself becoming a period-3
chaotic attractor. Figure 16 shows this bifurcation schematically. Figure 17 presents
the resulting attractor for the map F'.

Finally, at a =~ 1.154, due to the contact of the period-8 chaotic attractor with the
stable manifold of the period-8 saddle (which forms the immediate basin bound-
ary of each piece of the attractor), a one piece chaotic attractor appears. Leaving
apart the transient bifurcations when cycles of other periods become attracting (see
Figure 4) we show in Figure 18 the one-piece chaotic attractor near the boundary
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Figure 12: The immediate basin boundary of the period-8 focus is formed by the
stable manifold of the 1%¢ 24-saddle (the black squares); the stable manifold of the
24 24-saddle (the white squares) forms the immediate basin boundary of the at-
tracting period-24 cycles.

Figure 13: A part of the phase space where a point of the attracting period-8 focus
(the black circle) and by three pieces of each period-24 chaotic attractor are shown
together with the basins of attraction. Here a =1.125, b= 0.6.
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Figure 14: A part of phase space with one point of the attracting period-8 focus
and three pieces of the period-24 chaotic attractor with the basins of attraction at
a=1.126,b=1.
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Figure 15: An invariant circle, the repelling focus (the black circle) and the 1¢ 3-
saddle (the black squares) of the map F'® at a =1.1457, b= 0.6.
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b)

£

at the bifurcation moment

after the bifurcation

Figure 16: The sketch of the bifurcation of destruction of the invariant circle (the
thin line in a)). The 1°¢ 3-saddle indicated by black squares, its unstable manifold
by dotted lines and stable by thick lines.

crises, which occurs at a ~ 1.471.

Thus, we have described two examples of successive transformations of the
phase portrait of the system under parameter variation. Taking the initial para-
meter point inside other tongues of periodicity, one can observe similar bifurcation
scenarios as well as other interesting consequences of bifurcations.
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Figure 17: The period-8 chaotic attractor of the map F' at a =1.148, b= 0.6.
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Figure 18: The chaotic attractor of the map F' near the boundary crises at a =1.46,
b=o.6.
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Discussion

The setup of the model discussed was symmetric. As there is no factual need what-
ever for the “floor” and “roof” of the Hicksian investment function to be located
at equal distances below and above the zero line, this case is not completely gen-
eral. Hence, we should introduce some asymmetry through introducing a quad-
ratic term along with the linear and cubic already present. Most certainly then
several conclusions are changed when symmetry is broken. This would provide
a point of departure for further study, in particular as we also get one more para-
meter associated with the quadratic term.
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