
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221155078

A C-based synthesis system, Bach, and its application (invited talk)

Conference Paper · January 2001

DOI: 10.1145/370155.370309 · Source: DBLP

CITATIONS

17
READS

57

9 authors, including:

Some of the authors of this publication are also working on these related projects:

Rely and Guarantee View project

User Interface View project

Akihisa Yamada

Morita Holdings Corporation

28 PUBLICATIONS 161 CITATIONS

SEE PROFILE

Andrew Kay

Sharp Laboratories of Europe

16 PUBLICATIONS 142 CITATIONS

SEE PROFILE

All content following this page was uploaded by Andrew Kay on 18 March 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221155078_A_C-based_synthesis_system_Bach_and_its_application_invited_talk?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221155078_A_C-based_synthesis_system_Bach_and_its_application_invited_talk?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Rely-and-Guarantee?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/User-Interface-4?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Akihisa-Yamada-2?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Akihisa-Yamada-2?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Akihisa-Yamada-2?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew-Kay-6?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew-Kay-6?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Sharp_Laboratories_of_Europe?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew-Kay-6?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew-Kay-6?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_10&_esc=publicationCoverPdf

A C-based Synthesis System, Bach, and its Application

Takashi Kambe*, Akihisa Yamada*, Koichi Nishida*, Kazuhisa Okada*, Mitsuhisa Ohnishi*,
Andrew Kay**, Paul Boca**, Vince Zammit**, Toshio Nomura**

* Integrated Circuits Development Group,

Sharp Corporation
2613-1, Ichinomoto-cho, Tenri, Nara 632-8567, Japan

E-mail: {kambe, yamada, k_nishi, okada, ohnishi}
@icg.tnr.sharp.co.jp

** Sharp Laboratories of Europe,
Edmund Halley Road, Oxford Science Park,

Oxford OX4 4GB, United Kingdom
E-mail: {akay, ppb, vince, tosh}@sharp.co.uk

Abstract
In system LSI design, a desirable system is one that allows the
designer to describe, partition, and verify systems, and to generate
circuits efficiently. In this paper, we describe a C-based system
LSI design system called Bach which we have developed. Using the
example of an MEPG-4 video codec design, we summarize its
design flow, effects and current issues.

1 Introduction

Recently a number of behavioral synthesis methods have been
described. These methods enable the generation of an RTL
description from a behavioral one without any a priori hardware
structure[1]. With such tools the designer should be able to
concentrate properly on algorithms and high-level architecture,
and quickly see the consequences (to the circuit) of each
structural change. However, most modern applications are
implemented as a combination of several communicating
processes, whereas existing high-level synthesis approaches are
dedicated to individual module-level design: they cannot handle
whole circuits which consist of multiple communicating
processes.
 For computationally intensive circuits such as image and
video processing, however, we need a design environment
where we can construct and verify the hardware algorithm for
the whole system and synthesize it too. To design hardware
efficiently at a high level, several synthesis methods using C-
like input languages have been proposed[2-9]. Most of those
approaches are still for module level design and not suitable for
whole system-level design, because they do not have
communication model.

Regarding input languages, since ANSI C/C++ does not
support parallelism or bit-accurate operations, some extend it[3-
5,9] while others introduce class libraries that support these
features[2,6-8]. To exchange designs among these tools, several
groups are working on the standardization of a C-based system-
level design language[10,11]. Although SpecC[10] has been
proposed as a system-level design language, no hardware
synthesizers have been developed for it yet. SystemC[11] is
gaining support in the EDA community. However, it has a
timed semantics and so is not suitable for high-level design.
 In this paper, we describe a new EDA environment, called
Bach, for VLSI design. Its distinctive features are:

• It has a C-based user language, with untimed semantics,
suitable for large-scale circuit design.

• It has a synthesizer that can compile a program (written
in this language) describing the untimed behavior of
hardware into RTL VHDL. It can also automatically
generate interface circuits for data transfer between
processes.

• It has a simulator that handles bit-accurate operations at
the C level and is 10-100 times faster than HDL
simulators.

Bach’s input language, Bach C, is based on the ANSI C
language, with extensions to support explicit parallelism,
communication between parallel processes and bit-width
specification of data types and arithmetic. The semantics for
parallelism and communication based on CSP[12] and occam
[13].
 Circuits synthesized using Bach consist of a hierarchy of
sequential threads, all running in parallel and communicating
via synchronized channels and shared variables. Using Bach,
the user can develop parallel algorithms, explore the design
space of architectural choices and generate complex circuits in a
much shorter time than previously. There is an interactive
simulation environment for source-level simulation and
debugging. Bach also provides a tool for converting Bach C
into ANSI C for fast validation.

We have already applied the Bach system to several
commercial designs, among which we describe the design of an
MPEG-4 video codec in this paper. We show its design flow
and effect. We also describe future work.

2 Issues in Conventional Design Process

General issues of conventional methods can be summarized as
follows:
1) Most EDA tools available commercially do not facilitate

automated high level design and synthesis of
communicating multiple processes. Hardware for
communication between subsystems has to be designed
manually.

2) Validation of the design has to be done in both software (e.g.
C) and hardware (e.g. VHDL) languages.

3) The test-bench has to be created manually in two versions,
for software and hardware languages.

4) If memory resources such as RAMs and ROMs are to be
shared, we may have to design arbitration circuits manually
to avoid access conflicts.

3 Bach System

The Bach system was developed in order to design efficient
system VLSIs more quickly, taking into account the issues
described above.
 Bach C has the statement par added to support explicit
parallelism (concurrency). It also supports the declaration chan
for synchronized channel communication, as in CSP or occam.
Using par and chan, we can specify the behavior of a complete
system, including communications between parallel subsystems.
 The Bach synthesizer automatically generates interfaces for
channel communications or external storage (RAM/ROM). It
determines the timing of communications of synchronized
channels to ensure data transfer, if possible. Otherwise,
handshake circuits are created for synchronized channels.
 The designer may build a test-bench in Bach C to test any
particular design. Bach can generate a VHDL test-bench with
the same simulation behavior, so that the resulting circuit can
be tested without having to manually recode the test-bench (see
Figure 1).

3.1 Bach C Language
Bach C supports almost all constructs in ANSI C, and adds a
few more which are specially tailored for simulation and
hardware description.

3.1.1 Untimed Semantics
The semantics of Bach C is untimed, which means that you
cannot tell from examining the source in which clock cycle any
particular operation will occur. This means that the designer
does not have to worry about timing issues and also that Bach
can apply various types of hardware optimization to the design.
The Bach synthesizer ensures that data is never lost due to
timing differences. Readers should compare this to the

semantics of VHDL and the Handel hardware compiler[14,15]
which assumes an exact timing to each statement.
3.1.2 ANSI C features
Bach C supports almost all ANSI C constructs, including
while, if, switch, do, for, static, struct,
typedef, multi-dimensional arrays, strings and all integer
arithmetic, binary, logical and type coercion operators. Floating
point may be used in test-benches. Union and pointer types are
not supported.

3.1.3 Basic data types
Bach C allows each data type to be represented by a given
number of bits, and these can be signed or unsigned. The
arithmetic rules for these types extend the usual C notion of
automatic type coercion.
 This example declares two variables, a and b, of widths 24
and 16 respectively. Inside the loop the value of b is
automatically extended to 24 (signed) bits to allow the
subtraction to occur:

int#24 a=(101*100)/2;
unsigned#16 b=1;
while (a) { a -= b++; }

The simulation and synthesis tools support arithmetic to any
number of bits of precision, e.g. a 128-bit bus. Unlike SystemC,
there is no syntactic difference between big numbers and small
ones.

3.1.4 Bit-manipulation operations
Several bit-manipulation operations have been added to allow
certain operations to be performed more succinctly and cheaply.
The symbol @ is used for concatenation of two bit strings. The
grab operator [..] is used to select a subset of bits from an
expression. For example:

b = a[23..8] ; // b=16 top bits of a
a = a[0..23] ; // reverse bits of a
b = b[7..0]@b[15..8];
 // to swap byte order of b

source level
simulator and
debugger RTL VHDL

synthesizer

simulatable
VHDL

testbench
generator

ANSI C

ANSI C
translator

floor-planning,
layout, VLSI
fabrication

Gate-level
VHDL

other VHDL
sourcesVHDL

simulation

behavioral &
logic synthesis

Bach C

fast
simulator

Figure 1: Design Flow with Bach

Bach System

3.1.5 Stream types
Input and output streams are supported to allow interaction with
files and the console (for test-bench simulation only). Integers
can be written and read to arbitrary precision, in binary, octal,
decimal or hexadecimal.

3.1.6 Parallelism and communications
The par keyword is used to make a collection of sub-processes
execute concurrently. The sub-processes may be arbitrary
compound processes, and may themselves contain further par
statements. When a par statement executes, all of its sub-
processes are executed concurrently. The par statement
terminates when all the sub-processes have terminated. Unlike
VHDL and SystemC, parallelism is not restricted to the top-
level.
 There are two ways to communicate between different
concurrent processes (threads). The first is by synchronous
channels, declared with the keyword chan. Each channel
transfers data of a given type synchronously from one thread to
another. The sender uses the function send(ch,v) to send
the value v down a channel ch of the same type. The receiver
can use receive(ch) to receive the value. Both sender and
receiver must be ready in order for the transfer to occur. If they
are not ready, they just wait. The test ready(ch) is available
to the receiver to check whether data is waiting.
 In this example the values 9,..,0 are sent from the first
sub-process to the second, which prints them to the standard
output in hexadecimal (where HEX is a macro defined to be 16):

chan int#4 ch;
par{{
 int#4 x=10;
 while(x--) send(ch, x);
 }{
 int y;
 do{y=receive(ch);
 putint(stdout,HEX,0,y);
 }while (y);
 }}

The second method uses asynchronous channels, denoted by the
keyword achan. Each achan may be written to and read
from as many threads as desired, and so behaves as a global
variable. However, since it is asynchronous, the exact time of
each read or write cannot be predicted at source simulation time.
 In the following (unlikely) example, the three assignments
could be scheduled in any order:

achan a = 99;
par {a=f(0); a=f(1); b=a;}

 achans are cheaper to implement than chans in most
cases, but the price is that the code may be slightly harder to
understand. Both achans and chans may be used as the
interface between the Bach circuit and the outside environment.

Syntactically, this is achieved by declaring them as arguments
to the top-level circuit description function.

3.1.7 Call by reference
Bach C does not have pointers; nevertheless, it is often useful to
pass parameters to functions by reference. This is always the
case for chan, achan and array, but by default simple
variables are passed by value. We borrow some syntax from
C++ for call by reference, using the ampersand (&) in the
function declaration. Note, as shown in this example, that
dereferencing in the procedure body occurs automatically (as in
C++), and does not require the dereference operator (*).
Similarly, the caller does not require the reference (&) operator
for its arguments:

void swap(int &a, int &b) {
 int temp = a;
 a = b; // no ‘*’ needed
 b = temp;} // no ‘*’ needed
void main(void) {
 int a=1, b=2;
 swap(a,b);} // no ‘&’ needed

3.1.8 Timing Specification
Although untimed semantics may be sufficient to specify
behaviors of computationally intensive subsystems, the notion
of real time is essential for embedded systems. Bach supports C
pragma statements for specifying certain timed behaviors
explicitly; for example, for I/O synchronization and throughput
specification.

3.1.9 Controlling resource use
It is possible to give instructions to the Bach synthesizer to
control the way that resources are used. These instructions do
not change the external or simulation behavior of the program.
We give them using pragmas. The most important pragmas in
this class are those which control the mapping of arrays to
external RAM or ROM.

3.2 Synthesizer
The Bach system has a behavioral synthesizer[16] which
compiles a parallel algorithm into several communicating
modules, and generates I/O interfaces between them. Its output
is RTL circuits in VHDL which is synthesizable with
commercial logic synthesis tools, e.g. [17].
 Generally, synchronous channels, chans, are implemented
with the handshake protocol circuitry. Users can specify the
level of handshaking (e.g. receiver ready, sender ready) for
different I/O with the aid of pragmas.
 Asynchronous channels, achans, are mapped to shared
storage (registers, RAM or ROM) and their interfaces are
automatically generated. If there exists conflict among shared
storage, arbitration logic will be generated.
 Finally, a top-hierarchy is generated to bind together all the
modules and resource entities and to propagate clock and reset
signals.

3.3 Simulation and Validation
As well as the source-level simulator and debugger, Bach can
convert Bach C code into ANSI C for fast behavioral validation.
Also Bach C test-benches can be converted into VHDL and
used for validating the generated circuit.

4 Real LSI design: MPEG-4 video codec

The most recent application of Bach to a real LSI design for
consumer products is MPEG-4. We show its design flow
and current issues to be solved in this section.

4.1 Design Flow
We started from an ANSI C program developed by
algorithm designers.

encoding
decoding

+

-

Picture
(Y, Cr, Cb)

MPEG-4
video

VLC/
VLD

Frame
memory

Error
concealment

DCT/IDCT
Q/IQ

Motion
estimation

Motion
compensation

Motion vector
estimation /

compensation

Figure 2: Data flow of MPEG-4 video codec.

rate ctrl.,
VLC/VLD

ARM7TDMI

Hard Wired
Logic

DMAC Frame
 memory

System
I/F

ROM

Data I/O

Bus
bridge

SRAM

Motion Estimation
DCT/IDCT

Q/IQ

Figure 3: Architecture diagram for MPEG-4 video codec.

a) Architectural Design (HW/SW partitioning)
Figure 2 shows an overview of the MPEG-4 video codec
algorithm, which includes rate control and error
concealment suitable for SW as well as motion estimation
and DCT suitable for HW. We partitioned the given
algorithm into the HW and SW parts and implemented the
hard-wired logic. The SW part executes on an ARM7 (see
Figure 3).

b) Bach C design
Although Bach C supports most data types and constructs
such as if, while, and for available in ANSI C, it does not
support pointers and recursive function calls. Thus we had
to modify the code to allow us to use the Bach simulator.
Then we refined the code for circuit optimization. The main
tasks were:

• to insert par to specify block partitioning explicitly;
• to specify the bit width of each variable and

operation;
• to modify loops such as for and while into efficient

ones.
Loops have an impact on the registers and functional units
used and also affect the performance of synthesized circuits.
Thus we analyzed the area and performance of the
synthesized circuit and modified the loops accordingly.

 The simulation time at the Bach C level is about 100
times faster than the corresponding VHDL simulation. Thus
checking functionality at the Bach C level avoids a lengthy
design loop.

c) Bach C compilation (Behavioral synthesis)
The Bach C code is compiled into RTL circuits using the
Bach synthesizer, meeting the given constraints. To achieve
this, the compiler uses a logic-synthesis tool to estimate the
delay and area of each functional unit in the design. The
estimates are stored in a cache file and reused.

Since the compilation time of the Bach synthesizer was
very short, we were able to explore different architectural
designs.

d) RTL simulation
The functionality of the synthesized circuit is verified at the
Bach C level. We checked its performance and data transfer
between external circuits through simulation of the
generated VHDL.

e) HW/SW Co-verification
To verify the behavior of the HW and SW parts, the SW part
executes on an ARM7, we used a co-verification tool and
bread-board with the VHDL generated by the Bach compiler.

4.2 Current Issues
Since the target of the Bach system is currently hardware
compilation, the following issues concerning HW/SW co-
design of the MPEG-4 video codec had to be solved as
follows:

a) HW/SW partitioning
The architectural design including HW/SW partitioning was
done by hand.

b) System level evaluation
The performance, area and power consumption of the total
system could not be evaluated at the Bach C level.

c) Interface circuit design between HW/SW
The Bach synthesizer generated the required AMBA bus I/F
circuits automatically[18]. Note that, at present, Bach does
not support other protocols.

d) IP reuse
It is sometimes more efficient to reuse optimized Intellectual
Property (IP) than to synthesize new IP from scratch.
Regarding the MPEG-4 design, DCT/IDCT IP optimized
for fast circuits was used. Since the Bach synthesizer cannot
introduce such IP into the synthesized circuit automatically,
we modified the VHDL code manually.

5 Remarks and Future Work

We described an overview of the Bach system and MPEG-4
design as one of its applications. The current Bach system is
hardware-design oriented and to establish the HW/SW co-
design flow shown in Figure 4, we are developing the next
generation Bach, which includes:

• System (HW/SW) partitioning,
• System level evaluation,
• Interface circuit generation, and
• Linkage to IP libraries.

System
Description

HW/SW
partitioning

HW
Description

(Bach C)

SW
Description
(ANSI C)

Bach
Syntheiszer C Compiler

B
U

S

Embedded
Processor

Program
ROM

Reused IP

Hard Wired
Logic

Simulation/
Profiling

Figure 4: HW/SW co-design flow using Bach.

References
[1] D. Gajski, A. Wu, N. Dutt, S. Lin, High-level Synthesis:

introduction to Chip and System Design, Kluwer
Academic Publishers, 1992.

[2] A. Ghosh, J. Kunkel, and S. Liao, “Hardware Synthesis
from C/C++,” in Proc. of Date’99, pp. 387-389, March
1999.

[3] G. Arnout, “C for System Level Design,” in Proc. of
DATE’99, pp. 384-386, March 1999.

[4] K. Wakabayashi, “C-based Synthesis Experiences with a
Behavior Synthesizer, “Cyber”,” in Proc. of DATE'99, pp.
390-393, March 1999.

[5] D. Gajski, J. Zhu, R. Domer, A. Gerstlauer, S. Zhao,
Spec C: Specification Language and Design
Methodology, Kluwer Academic Publishers.

[6] http://www.cynapps.com/
[7] http://www.cleveldesign.com/
[8] http://www.frontierd.com/
[9] A. Yamada, K. Nishida, R. Sakurai, A. Kay, T. Nomura,

T. Kambe, “Hardware synthesis with the Bach system,”
in Proc. of IEEE ISCAS'99, Vol. VI, pp.366-369, 1999.

[10] http://www.specc.org/
[11] http://www.systemc.org/
[12] C.A.R. Hoare, “Communicating Sequential Processes,”

Prentice-Hall, 1985.
[13] INMOS Ltd, “occam2 reference manual”, Prentice-

Hall International, 1988.
[14] I. Page and W. Luk, “Compiling occam into FPGAs,”

in W Moore and We Luk (eds.), FPGAs, pp. 271-283,
Abingdon EE&CS Books, 1991.

[15] http://www.celoxica.com
[16] K. Nishida, K. Okada, M. Ohnishi, A. Kay, P. Boca, A.

Yamada, T. Kambe, “A Behavioral Synthesizer for
Hardware Compiler –Bach-,” in Proc. of IPSJ DA
Symposium ‘99, pp. 95-100, 1999 (in Japanese).

[17] “Design Compiler Reference Manual,” ver. 1999.10,
Synopsis, 1999.

[18] M. Ohnishi, K. Nishida, K. Okada, A. Yamada, T.
Kambe, “A hardware/software co-design environment
with hardware compiler Bach,” in Proc. of IPSJ DA
Symposium 2000, pp. 13-18, 2000 (in Japanese).

View publication statsView publication stats

https://www.researchgate.net/publication/221155078

