ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/221155078
A C-based synthesis system, Bach, and its application (invited talk)

Conference Paper - January 2001

DOI: 10.1145/370155.370309 - Source: DBLP

CITATIONS READS
17 57

9 authors, including:

Akihisa Yamada Andrew Kay
1
¥ Morita Holdings Corporation Sharp Laboratories of Europe
28 PUBLICATIONS 161 CITATIONS 16 PUBLICATIONS 142 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

roject Rely and Guarantee View project

roject User Interface View project

All content following this page was uploaded by Andrew Kay on 18 March 2014.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/221155078_A_C-based_synthesis_system_Bach_and_its_application_invited_talk?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/221155078_A_C-based_synthesis_system_Bach_and_its_application_invited_talk?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Rely-and-Guarantee?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/User-Interface-4?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Akihisa-Yamada-2?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Akihisa-Yamada-2?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Akihisa-Yamada-2?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew-Kay-6?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew-Kay-6?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Sharp_Laboratories_of_Europe?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew-Kay-6?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Andrew-Kay-6?enrichId=rgreq-dd59249a2272dd777dd50042d31bbbba-XXX&enrichSource=Y292ZXJQYWdlOzIyMTE1NTA3ODtBUzo5Nzc1MzA2NTU5MDc5NkAxNDAwMzE3NTU1OTc2&el=1_x_10&_esc=publicationCoverPdf

A C-based Synthesis System, Bach, and its Application

Takashi Kambe*, AkihisaY amada*, Koichi Nishida* , Kazuhisa Okada* , Mitsuhisa Ohnishi*,
Andrew Kay**, Paul Boca**, Vince Zammit**, Toshio Nomura* *

* Integrated Circuits Development Group,
Sharp Corporation
2613-1, Ichinomato-cho, Tenri, Nara 632-8567, Japan
E-mail: {kambe, yamada, k_nishi, okada, ohnishi}
@icg.tnr.sharp.co.jp

Abstract
In system LS design, a desirable system is one that allows the
designer to describe, partition, and verify systems, and to generate
circuits efficiently. In this paper, we describe a C-based system
LSl design system called Bach which we have developed. Using the
example of an MEPG-4 video codec design, we summarize its
design flow, effectsand current issues.

1 Introduction

Recently a number of behaviora synthes's methods have been
described. These methods enable the generation of an RTL
description from abehavioral onewithout any a priori hardware
sructuref1]. With such tools the designer should be able to
concentrate properly on agorithms and high-level architecture,
and quickly see the consequences (to the circuit) of each
sructural change. However, most modern applications are
implemented as a combination of severa communicating
processes, wheress exigting high-level synthesis approaches are
dedicated to individua module-level design: they cannot handle
whole circuits which conss of multiple communicating
processes.

For computationally intensive circuits such as image and
video processing, however, we need a design environment
where we can congruct and verify the hardware agorithm for
the whole system and synthesize it too. To design hardware
efficiently a a high level, severa synthes's methods usng C-
like input languages have been proposed[2-9]. Mogt of those
approaches are ill for module level design and not suitable for
whole sysem-level design, because they do not have
communication mode.

Regarding input languages, since ANSI C/C++ does not
support paralldism or bit-accurate operations, some extend it[3-
5,9] while others introduce dlass libraries that support these
featureq2,6-8]. To exchange designs among these tools, severa
groups are working on the standardization of a C-based system-
levd design language10,11]. Although SpecC[10] has been
proposed as a sysem-level desgn language, no hardware
synthesizers have been devdoped for it yet. SysemC[11] is
gaining support in the EDA community. However, it has a
timed semanticsand so isnat suitable for high-level design.

In this paper, we describe a new EDA environment, cdled
Bach, for VLS design. Itsdigtinctive festuresare:

** Sharp Laboratories of Europe,
Edmund Halley Road, Oxford Science Park,
Oxford OX4 4GB, United Kingdom
E-mail: {akay, ppb, vince, tosh} @sharp.co.uk

It has a C-based user language, with untimed semantics,

suitablefor large-scale circuit design.

» It hasasynthesizer that can compile a program (written
in this language) describing the untimed behavior of
hardware into RTL VHDL. It can also automatically
generate interface circuits for data tranfer between
processes.

e It hasasmulator that handles bit-accurate operations at
the C levd and is 10-100 times fagter than HDL
smulators.

Bach's input language, Bach C, is based on the ANSI C
language, with extensions to support explicit pardldism,
communication between parald processes and bit-width
specification of data types and arithmetic. The semantics for
paralleiism and communication based on CSF[12] and occam
[13].

Circuits synthesized usng Bach consst of a hierarchy of
sequentia threads, al running in parald and communicating
via synchronized channels and shared variables. Using Bach,
the usr can develop parald dgorithms, explore the design
space of architectural choices and generate complex circuitsin a
much shorter time than previoudy. There is an interactive
smulation environment for sourcelevd smulation and
debugging. Bach aso provides a todl for converting Bach C
into ANS! C for fast validation.

We have aready applied the Bach sysem to severa
commercia designs, among which we describe the design of an
MPEG-4 video codec in this paper. We show its design flow
and effect. We a so describe future work.

2 Iswesin Conventional Design Process

Genera issues of conventional methods can be summarized as

follows:

1) Mogt EDA tools available commercialy do not facilitate
automated high level desgn and synthess of
communicating multiple processes. Hardware for
communication between subsystems has to be designed
manualy.

2) Vadlidation of the design has to be done in both software (e.g.
C) and hardware (e.g. VHDL) languages.

Bach System

synthesizer

source level
simulator and
debugger

Bach C

ANSI C
translator

o
\\

behavioral &
logic synthesis

floor-planning,
layout, VLSI
fabrication

e

Gate-level

VHDL

;e:rtnt;?;t%? simulatable (— 9| VHDL | €— other VHDL
sources

fast < ! ANSI C VHDL simulation

simulator

Figure1: Design Flow with Bach

3) The test-bench has to be crested manually in two versions,
for software and hardware languages.

4) If memory resources such as RAMs and ROMs are to be
shared, we may have to design arbitration circuits manually
to avoid access conflicts.

3 BachSygem

The Bach system was developed in order to design efficient
sydem VLSIs more quickly, taking into account the issues
described above,

Bach C has the statement par added to support explicit
paralleism (concurrency). It aso supportsthe declaration chan
for synchronized channel communication, asin CSPor occam
Using par and chan, we can specify the behavior of a complete
system, including communications between pardld subsystems.

The Bach synthesizer automatically generates interfaces for
channd communications or externa storage (RAM/ROM). It
determines the timing of communications of synchronized
channds to ensure data trander, if possble Otherwise,
handshake circuits are created for synchronized channels.

The designer may build a test-bench in Bach C to test any
particular desgn. Bach can generate a VHDL test-bench with
the same smulation behavior, so that the resulting circuit can
be tested without having to manually recode the test-bench (see
Figurel).

31 BachC Language

Bach C supports amogt all congructs in ANS C, and adds a
few more which are specidly talored for smulation and
hardware description.

311 Untimed Semantics

The samantics of Bach C is untimed, which means that you
cannot tel from examining the source in which dock cycle any
particular operation will occur. This means that the designer
does not have to worry about timing issues and aso that Bach
can apply various types of hardware optimization to the design.
The Bach synthesizer ensures that data is never logt due to
timing differences. Readers should compare this to the

semantics of VHDL and the Handel hardware compiler[14,15]
which assumes an exact timing to each statement.

312 ANS Cfeatures

Bach C supports amost al ANSI C congtructs, induding
while, if, switch, do, for, static, struct,
t ypedef, multi-dimensonal arrays, strings and all integer
arithmetic, binary, logical and type coercion operators. Hoating
point may be used in test-benches. Union and pointer types are
not supported.

313 Badcdatatypes

Bach C alows each data type to be represented by a given
number of bits, and these can be sgned or unsgned. The
arithmetic rules for these types extend the usual C notion of
automatic type coercion.

Thisexample declares two variables, a and b, of widths 24
and 16 respectivdy. Insde the loop the value of b is
automatically extended to 24 (dgned) hits to alow the
subtraction to occur:

i nt#24 a=(101*100)/2;
unsi gned#16 b=1;
while (a) { a -= b++; }

The smulation and synthesis tools support arithmetic to any
number of bits of precison, e.g. a 128-hit bus. Unlike SystemC,
there is no syntactic difference between big numbers and small
ones.

3.14 Bit-manipulation operations

Severa bit-manipulation operations have been added to alow
certain operationsto be performed more succinctly and chesply.
The symbol @is used for concatenation of two bit strings. The
grab operator [. .] is usad to sdect a subset of bits from an
expresson. For example

b =a[23..8] ; // b=16 top bits of a
a =a[0..23] ; [/l reverse bits of a
b =b[7..0] @[15..8];

/] to swap byte order of b

315 Streamtypes
Input and output streams are supported to allow interaction with
files and the console (for test-bench smulation only). Integers
can be written and read to arbitrary precision, in binary, octa,
decimal or hexadecimal.

316 Parallelism and communications

The par keyword is used to make a collection of sub-processes
execute concurrently. The sub-processes may be arbitrary
compound processes, and may themsdves contain further par
datements. When a par datement executes, dl of its sub-
processes are executed concurrently. The par statement
terminates when al the sub-processes have terminated. Unlike
VHDL and SystemC, pardldism is not restricted to the top-
leve.

There are two ways to communicate between different
concurrent processes (threads). The first is by synchronous
channds, dedared with the keyword chan. Each channd
transfers data of a given type synchronoudy from one thread to
another. The sender usss the function send(ch, v) to send
the value v down a channe ch of the sasmetype. The recaiver
can user ecei ve(ch) torecavethevaue Both sender and
receiver must be reedy in order for the transfer to occur. If they
arenct ready, they just wait. Thetest r eady(ch) isavailable
to the receiver to check whether dataiswaiting.

In this example the values 9, . ., 0 are sent from the first
sub-process to the second, which prints them to the standard
output in hexadecima (where HEX isamacro defined to be 16):

chan int#4 ch;
par {{
i nt#4 x=10;
whi l e(x--) send(ch, x);
H
int y;
do{ y=r ecei ve(ch);
puti nt (st dout, HEX 0, y);
}while (y);
}}

The second method uses asynchronous channels, denoted by the
keyword achan. Each achan may be written to and read
from as many threads as desired, and s0 behaves as a global
variable. However, since it is asynchronous, the exact time of
each read or write cannot be predicted at source Smulation time.

In the fallowing (unlikely) example, the three assignments
could be scheduled in any order:

achan a = 99;
par {a=f(0); a=f(1); b=a;}

achans are chegper to implement than chans in most
cases, but the price is that the code may be dightly harder to
undersand. Both achans and chans may be used as the

interface between the Bach circuit and the outside environment.

Syntacticaly, this is achieved by declaring them as arguments
to thetop-leve circuit description function.

317 Call byreference

Bach C does not have pointers, neverthdess, it is often useful to
pass parameters to functions by reference. This is always the
cax for chan, achan and array, but by default smple
variables are passed by vdue. We borrow some syntax from
C++ for cdl by reference, using the ampersand (&) in the
function declaration. Note, as shown in this example, that
dereferencing in the procedure body occurs automaticaly (asin
C++), and does not require the dereference operator (*).
Similarly, the caller does not require the reference (&) operator
for itsarguments:

void swap(int &, int &) {
int tenp = a;
a=»b;, // no"'* needed

b=tenp;} // no‘* needed
voi d nmai n(void) {

int a=1, b=2;

swap(a,b);} // no ‘& needed

3.1.8 Timing Specification

Although untimed semantics may be sufficient to specify
behaviors of computationally intensive subsystems, the notion
of real time isessentia for embedded systems. Bach supports C
pragna dsatements for soecifying certain timed behaviors
explicitly; for example, for 1/O synchronization and throughput
specification.

319 Controlling resourceuse

It is posshble to give indructions to the Bach synthesizer to
control the way that resources are used. These ingtructions do
not change the external or smulation behavior of the program.
We give them using pragmas. The most important pragmas in
this class are those which contral the mapping of arrays to
externd RAM or ROM.

32 Synthesizer

The Bach sysem has a behaviora synthesizer[16] which
compiles a parald dgorithm into several communicating
modules, and generates 1/O interfaces between them. Its output
is RTL drcuits in VHDL which is synthesizable with
commercia logic synthesistoals, eg. [17].

Generdly, synchronous channels, chans, are implemented
with the handshake protocol circuitry. Users can specify the
levd of handshaking (eg. receiver ready, sender reedy) for
different I/O with the aid of pragmas.

Asynchronous channels, achans, are mapped to shared
dorage (regigers, RAM or ROM) and their interfaces are
automatically generated. If there exists conflict among shared
storage, arbitration logic will be generated.

Finally, a top-hierarchy is generated to bind together dl the
modules and resource entities and to propagate clock and reset
signals.

33 Smulation and Validation

As well as the source-level smulator and debugger, Bach can
convert Bach C codeinto ANS C for fast behaviora validation.
Also Bach C test-benches can be converted into VHDL and
used for validating the generated circuit.

4 Real LS desgn: MPEG-4 video codec

The most recent application of Bach to areal LS| design for
consumer products is MPEG-4. We show its design flow
and current issues to be solved in this section.

4.1 Design Flow
We started from an ANSI C program developed by
algorithm designers.

Picture
(Y, Cr, Ch)
A DCT/IDCT Y e
HO_’ AQ € VLD
H A H
A
\ A
. : Error
Motion H
o o :_ conceal ment
N Moti.on
estinB.Iion MPEG-4
¢ video
Motion vector
imation / H .
o?lmm?on € =P encodi ng
""" » decoding

Figure 2: Data flow of MPEG-4 video codec.

Datal/0 ¢— Sflj"fm

{ (o]
bridge t Jt
! |
Frame DMAC Hard Wi red 1t
memory > Logic
otion Estimation |ARM7TDMI|

DCT/IDCT Py
QQ VLC/VLD

Figure 3: Architecture diagram for MPEG-4 video codec.

a) Architectural Design (HW/SW partitioning)

Figure 2 shows an overview of the MPEG-4 video codec
algorithm, which includes rate control and error
concealment suitable for SW as well as motion estimation
and DCT suitable for HW. We partitioned the given
algorithm into the HW and SW parts and implemented the
hard-wired logic. The SW part executes on an ARM7 (see
Figure 3).

b) Bach C design
Although Bach C supports most data types and constructs
such asif, while, and for available in ANSI C, it does not
support pointers and recursive function calls. Thus we had
to modify the code to alow us to use the Bach simulator.
Then we refined the code for circuit optimization. The main
tasks were:
» toinsert par to specify block partitioning explicitly;
 to specify the bit width of each variable and
operation;
» to modify loops such as for and while into efficient
ones.
Loops have an impact on the registers and functional units
used and also affect the performance of synthesized circuits.
Thus we analyzed the area and performance of the
synthesized circuit and modified the loops accordingly.

The simulation time at the Bach C level is about 100
times faster than the corresponding VHDL simulation. Thus
checking functionality at the Bach C level avoids a lengthy
design loop.

¢) Bach C compilation (Behavioral synthesis)
The Bach C code is compiled into RTL circuits using the
Bach synthesizer, meeting the given constraints. To achieve
this, the compiler uses a logic-synthesis toal to estimate the
delay and area of each functional unit in the design. The
estimates are stored in a cache file and reused.

Since the compilation time of the Bach synthesizer was
very short, we were able to explore different architectural
designs.

d) RTL simulation

The functionality of the synthesized circuit is verified at the
Bach C level. We checked its performance and data transfer
between external circuits through simulation of the
generated VHDL.

€) HW/SW Co-verification

To verify the behavior of the HW and SW parts, the SW part
executes on an ARM7, we used a co-verification tool and
bread-board with the VHDL generated by the Bach compiler.

4.2 Current I'ssues

Since the target of the Bach system is currently hardware
compilation, the following issues concerning HW/SW co-
design of the MPEG-4 video codec had to be solved as
follows:

a) HW/SW partitioning
The architectural design including HW/SW partitioning was
done by hand.

b) System level evaluation
The performance, area and power consumption of the total
system could not be evaluated at the Bach C levd.

¢) Interface circuit design between HW/SW

The Bach synthesizer generated the required AMBA bus I/F
circuits automatically[18]. Note that, at present, Bach does
not support other protocols.

d) IPreuse

It is sometimes more efficient to reuse optimized Intellectua
Property (IP) than to synthesize new IP from scratch.
Regarding the MPEG-4 design, DCT/IDCT IP optimized
for fast circuits was used. Since the Bach synthesizer cannot
introduce such IP into the synthesized circuit automatically,
we modified the VHDL code manually.

5 Remarksand Future Work

We described an overview of the Bach system and MPEG-4
design asone of its applications. The current Bach system is
hardware-design oriented and to establish the HW/SW co-
design flow shown in Figure 4, we are developing the next
generation Bach, which includes:

e System (HW/SW) partitioning,
» System leve evaluation,

» Interfacecircuit generation, and
» Linkageto IPlibraries.

5
System
Description

Simulation/
Profiling

HW/SW
partitioning

HW Sw
Description Description
(Bach C) (ANSI C)

Bach)
Syntheiszer C Compiler
— A4
]| HardWired __| Program
i ROM
— Logic g
— »
— | Embedded
] Reused IP — |1 Processor
]

Figure 4: HW/SW co-design flow using Bach.

References

[1] D. Gagjski, A. Wu, N. Dutt, S. Lin, High-level Synthesis:
introduction to Chip and System Design, Kluwer
Academic Publishers, 1992.

[2] A. Ghosh, J. Kunkel, and S. Liao, “Hardware Synthesis
from C/C++,” in Proc. of Date' 99, pp. 387-389, March
1990.

[3] G. Arnout, “C for System Level Design,” in Proc. of
DATE' 99, pp. 384-386, March 1999.

[4] K. Wakabayashi, “C-based Synthesis Experiences with a
Behavior Synthesizer, “Cyber”,” in Proc. of DATE'99, pp.
390-393, March 1999.

[5] D. Gagjski, J. Zhu, R. Domer, A. Gerstlauer, S. Zhao,
Sec C: Specification Language and Design
Methodol ogy, Kluwer Academic Publishers.

[6] http://mwww.cynapps.com/

[7] http://www.clevel design.com/

[8] http://www.frontierd.com/

[9] A. Yamada, K. Nishida, R. Sakurai, A. Kay, T. Nomura,
T. Kambe, “Hardware synthesis with the Bach system,”
in Proc. of IEEE ISCAS99, Voal. VI, pp.366-369, 1999.

[20] http://www.specc.org/

[11] http://www.systemc.org/

[12] C.A.R. Hoare, “Communicating Sequential Processes,”
Prentice-Hall, 1985.

[13] INMOS Ltd, “occan® reference manual”, Prentice-
Hall International, 1988.

[14] I. Page and W. Luk, “Compiling occaminto FPGAS,”
in W Moore and We Luk (eds.), FPGAs, pp. 271-283,
Abingdon EE& CS Books, 1991.

[15] http://Aww.celoxica.com

[16] K. Nishida, K. Okada, M. Ohnishi, A. Kay, P. Boca, A.
Yamada, T. Kambe, “A Behaviora Synthesizer for
Hardware Compiler —Bach-,” in Proc. of IPS] DA
Symposium ‘99, pp. 95-100, 1999 (in Japanese).

[17] “Design Compiler Reference Manual,” ver. 1999.10,
Synopsis, 1999.

[18] M. Ohnishi, K. Nishida, K. Okada, A. Yamada, T.
Kambe, “A hardware/software co-design environment
with hardware compiler Bach,” in Proc. of IPS] DA
Symposium 2000, pp. 13-18, 2000 (in Japanese).

https://www.researchgate.net/publication/221155078

