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ABSTRACT

The paper describes a software library developed in C language for the

automated analysis of the fringe patterns which are obtained by the

interferometric techniques most frequently employed in experimental

mechanics. Since the images acquired are generally affected by high-

frequency noise (particularly significant in the case of speckle

interferometry), it has been necessary to develop special procedures for

determining peak location using the minimum amount of local

information.

INTRODUCTION

Experimental mechanics relies on several non-contact optical methods

capable of giving full-field information. Information is usually encoded in

the form of fringe patterns which represent the contour loci of the

quantities detected. Although sometimes the desired data can be directly

extracted, more often further processing is needed (e.g. when the quantity

which is the object of the investigation is not directly represented by the

fringe patterns or whenever a pointwise quantitative analysis is required).

A more and more advanced treatment of the data is furthermore

demanded by the increasing interaction between theoretical modeling and

experimental analysis required by the new hybrid analytical/experimental

approaches.

Current availability of advanced instrumentation and computers

enables the analyst to record and process a larger amount of information

than ever before; digital image processing techniques have hence recently

been introduced in experimental mechanics to automate the data

reduction process [1]. However, although specific algorithms can be

successfully developed for particular classes of problems [2], a general and
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automated fringe analysis system, capable of interpreting the

experimental data without any user intervention, is still far from being

available [3,4,5].

In the present paper a small library of user-callable functions,

specifically developed for fringe pattern analysis, is described. The library

has been structured in such a way that it can be used to develop either

simple application programs with a high degree of man/machine

interaction or more complex and automated procedures addressed to

specific problems. Procedures are provided for retrieving the experimental

data as accurately as possible also when a high noise level is present.

The library consists of several functions, transparent to the user,

which operate on a data base, hidden to the user, containing information

on the screen coordinates and gray level of the pixels to be processed. The

same functions return information, more directly utilizable by the user, in

terms of real world coordinates.

The library, devised to be machine independent, has been developed

under Unix System V in C language on a general purpose image

processing computer system.

LIBRARY STRUCTURE

Figure 1 shows schematically a general overview of the interconnections

between the user application program and the fringe processing routines

which constitute the library (fplib.a). The routines operate on a

structured data set of external variables, which remain hidden to the user,

and provide information on the quantities of interest to the user on an

output file. The output data, which may be further processed if necessary,

are given in terms of real world coordinates whereas external variables are

defined in screen coordinates to improve efficiency.

Since the library must have access to the video main frame memory to

retrieve information on the gray level of the image stored and to the

overlay frame memory to plot the results of image processing, it cannot

obviously be completely machine independent. However, in order to assure

the maximum portability, the device dependent routines have been

maintained as much as possible separate from the "fplib". In fact, it has

only been necessary to include in the library the call to two device

dependent functions, the first of which plots a dot on the screen while the

second retrieves the gray level of a picture element of the image. Other

device dependent routines are supposed to be accessible by the user

program for graphic input (via trackball or similar devices) and graphic

output (color plotting of line segments, selective erasing of overlay planes,

etc.).
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Figure 1. Overview of the interconnections between the user application

program and the fringe processing routines.

The software was developed on a general purpose digital image

processing computer. An input monochrome video signal (european

standard: 625 lines, 50 fields/sec) is digitized in real time according to the

CCIR digital coding recommendation by a 8-bit A/D converter operating at

13.5 MHz. The resolution of the digitized image (aspect ratio 4:3) is 702 x

576 pixels (256 gray levels); the pixel aspect ratio differs consequently

from unit of about 0.7%. The image is stored in the main frame memory

and is displayed on an analogic RGB color monitor by means of three D/A

converters. Three 14-bit output look-up tables are available for each r-g-b

8-bit D/A converter. The data stored in the 6 most significant bits of the

overlay frame memory (8-bit planes) may be displayed together with the

acquired image through the output look-up tables. By individually

addressing the bit planes of the overlay frame memory, 6 different sets of

graphic information can be overlayed in different colors and selectively

erased when no longer necessary.

A basic set of user-callable routines is provided for handling the

overlay planes and plotting line segments. Two additional routines are

included in the device dependent library which return the pixel

coordinates of the end points of a segment or of the vertices of a polygonal

line selected by the trackball.

sgt_ball (&il,& jl,&12,

sgs_ball (&n, i, j) ;

and a third routine which enables the user to interupt a loop cycle

b_ball() ; .
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Even if these routines, being machine dependent, are not included in the

"fplib", they are reported here since they will be encountered in the test

examples described later.

The functions available to the user when the library is linked to an

application program can be subdivided into three classes: point-level

operating functions; peak-level operating functions; scaling and i/o

functions. A fourth class consists of functions which are employed for

internal data processing and are not directly accessible to the user.

Storage allocation for the variables used by the functions to exchange

data must be provided in the user program by a file inclusion statement

^include "myfp.h"

Point-level operating functions

All the functions of this class operate on a structured sequence of points.

Points are defined in the coordinate system of the screen wherein

coordinates are assumed to coincide with the row and column indices of

the matrix containing the picture elements (see fig.2). The location of a

point must not necessarily coincide with that of a picture element; points

may hence belong to any geometric entity and their position will be

generally identified by real coordinates. When necessary, the nearest pixel

will be used for the representation on the overlay planes.

The term "point" will denote henceforth a more complex structure

which will include the components of the unit vector tangent to the line to

which the point belongs.

Sequences of points are generated (i.e. coordinates and tangent vector

components are stored in the respective arrays in the exchange data set)

by functions such as those listed below

mkpnt (10, jO,di,dj) ; generates a single point at iO, JO with

direction di, dj;

mksgt (il, jl,i2, j2) ; generates a sequence of points along a

segment from il, jl to i2, j2;

mkpts (n, i, j); generates a sequence of n single points at i[k], j[k]

(k=l,n);

mksgs (n, i, j); generates a sequence of points along a polygonal line

connecting n key-points;

mkspl (n, i, j); generates a sequence of points along a cubic spline

through n key-points;

Input to these function can be quite simply supplied interactively by the

trackball routines.
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Figure 2. Structured set of points in the screen coordinates system.

Point spacing is made equal to pixel spacing so that each point is

mapped, by rounding its coordinates, into a different pixel with the same

correspondance as that given by the algorithms generally used in raster

graphics representation. For example point coordinates defined by the

mksgt function, when rounded to the closest integer numbers, define the

same pixel locations obtained by the integer arithmetic Bresenham

algorithm.

The defined sequence of points can be visualized by the function

base (); displays the pixels corresponding to the points of the defined

sequence;

Once a structured set of points has been defined by the procedures

previously described, it is quite straightforward to plot the gray level of a

digitized image along any straight or curve segment chosen by the user.

On this purpose, two functions can be used to retrieve the gray levels to be

plotted:

rdpointsO; reads the gray levels at the points of the defined

sequence (by bilinear interpolation);

rdpixels (); reads the gray levels at the pixels corresponding to the

points of the defined sequence;

the first one defines the gray level at a point by a bilinear interpolation of

the gray levels of the four picture elements surrounding the point; the

second takes the level to be equal to that of the closest pixel.

The gray levels thus defined can be eventually plotted in the form of a

graph or a histogram, using a scale defined by the user, by the two

functions:
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graph (scale); plots a graph of the gray levels along the defined

sequence of points;

histo (scale) ; plots a histogram of the gray levels of the defined

sequence of points;

Any reference value of the gray level (e.g. the maximum:255) can be

displayed by the user using the function

value (value); plots a constant value along the defined sequence of

points;

Whatever the mk-function employed to generate the sequence of

points, having previously defined the tangent vector components provides

the plotting function with the data necessary to perform its task in an

identical and simple way.

The point-level functions described in the present paragraph enable

simple utility programs to be built-up for acquiring and processing the

light intensity of a digitized image. These same functions can be also used

to define manually fringe center lines and to supply the input data to the

functions for automatic peak-searching which will be described in the

following paragraph.

Peak-level operating functions

Once a structured sequence of points has been defined with the aid of the

point-level operating functions, the user may access the higher level peak

optimization and searching functions. The term "peak" is used here and in

the following to indicate the location of a local minimum (or maximum) of

brightness. A peak will belong to a bright or dark fringe according to

whether it corresponds to a maximum or a minimum; a fringe will be

hence treated as a sequence of peaks, where a peak, analogously to a

"point", is defined not only by its screen coordinates but also by the

components of the unit vector tangent to the fringe center line. Peak

definition includes an additional information, that is distance between

fringes measured orthogonally to the fringe center line. An estimate of

fringe spacing will in fact be useful to the peak optimization functions in

searching the peak location.

All the information specified above is stored in the exchange data set

in array form. Five different arrays contain the sequence of the peak

coordinates, the correspondent components of the unit vector defining the

tangent direction and fringe spacing; each row of the arrays refers to a

same fringe (or portion of fringe). Fringe values, defined in units chosen by

the user or simply coincident with fringe orders, are stored in a separate

array whose elements are associated with the rows of the peak arrays.
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Functions pertaining to this section of the library can be used to

develop different procedures with different level of automation and/or

accuracy.

For example, the cumbersome and inaccurate procedure consisting in

tracing manually the fringe center lines can be made less time consuming

and much more precise. A structured point sequence can in fact be

generated by linear (mksgs function) or cubic (mkspl) interpolation

through a few key-points located, via the trackball, on a fringe center line

visually estimated by the user; the user is also required to assign

interactively the fringe value. All the information concerned to the points

is hence transferred to the proper row of the peak arrays by the function

addpeaks (fringe) ; converts a sequence of points into a sequence of

peaks which is appended to the fringe of index

<fringe>;

The number of peaks thus defined will coincide with the number of points

in the sequence. Recalling the criteria followed in generating peak

sequences, point density will result the same as pixel density, that is the

density which enables all the information actually available to be exploited

in the subsequent peak optimization process. The first manual

approximation will in fact be automatically refined using the peak

optimization routines described later.

A procedure with a much higher degree of automation has been

developed which involves "cutting" a set of fringes with a line (or more

than one, if necessary) approximately orthogonal to the fringes. The line is

defined manually by the user, using once again the trackball, who also

identifies approximately the points where the line intersects the fringe

center lines and inputs for each of them the corresponding fringe order. A

point sequence is thus generated (mkpts) which includes the fringe centers

only. Although, at the present stage of development, this first step of the

procedure must be accomplished manually, it is susceptible of being

completely automated where the location of the fringe centers along the

"cutting" line is concerned, and partially automated in the assignement of

fringe values; in this latter respect the user intervention may in fact be

limited to defining the first fringe value and its increment between two

consecutive fringes. The operator is free to choose whether to work on dark

or bright fringes, or on both.

Point information is transferred by the function

addfringes () ; converts each point of the sequence into a peak

pertaining to a different fringe;

to the first column (starting from the first free row) of the peak arrays;

note that the unit tangent vector must be rotated counterclockwise of 90°

to be approximately aligned with the tangent to the fringe center line
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while fringe spacing can be automatically calculated from the distance

between the intersection points previously identified.

Starting from each intersection point, each fringe can be now

automatically traced. After the location of the peak has been more

accurately determined by the peak optimization functions, a second peak

is searched advancing along the tangent direction of an increment defined

by the user. An appropriate function

gopeak(fringe,increment); adds a peak to the fringe of index

<fringe> moving along the unit tangent

vector of an increment of length

<increment>;

is provided, whereby a new element is added to the row of the peak arrays

which corresponds to the fringe being processed. The same function

performs the additional task of checking whether the screen or object

boundary (or the starting point in the case of closed loop fringes) has been

reached. Once the new peak location has been optimized, the unit tangent

vector is updated on the basis of the previous peak coordinates to be kept

as much as possible aligned with the actual tangent to the fringe center

line. The function

udpeak (fringe); updates the unit tangent vector of the last peak of

the fringe of index <fringe>;

is used on this purpose.

All the procedures presently developed for locating automatically the

peak on the top of the ridge (or on the bottom of the valley) of light

intensity, involve searching the peak on a point sequence distributed along

a segment normal to the tangent to the fringe center line, whose length is

related to fringe spacing. The simplest approach consists in searching

along the point sequence the minimum (or maximum) of the gray levels

acquired. This task is performed by

ominpeak (fringe, peak) ; relocates the peak of index <peak>

pertaining to the fringe of index <fringe>

on the point with the lowest gray level

detected along the normal to the fringe

center line;

or by the analogous omaxpeak.

A more sophisticated approach, which enables a sub-pixel accuracy to

be achieved, can be optionally adopted. The procedure makes use of the

function

o2peak (fringe, peak); optimizes peak location by 2-nd order

polynomial fitting;

                                                             Transactions on Modelling and Simulation vol 5, © 1993 WIT Press, www.witpress.com, ISSN 1743-355X 



Computational Methods and Experimental Measurements 231

and identifies the peak as the minimum (or maximum) of the second order

polynomial which best fits the gray level values on a segment equal to the

half of fringe spacing. It must be pointed out that this second approach

must necessarily substitutes the first when noise is present.

The procedure has proved effective for fringes which are

approximately equispaced; when, on the contrary, fringe spacing varies

sensibly running along a fringe, a different procedure should be employed

which enables fringe spacing to be continously updated. The function

o4peak (fringe,peak); optimizes peak location by 4-th order

polynomial fitting;

has been developed whereby a 4-th

order polynomial is adopted to fit

the gray level values on a point

sequence of length equal to fringe

spacing (see fig.3); fringe spacing

can thus be estimated as the double

of the distance between the points

where the second derivative of the

best fitting polynomial is zero.

Other functions pertaining to

this section of the library are utility

functions necessary for developing

application programs

x : first estimation for peak location
•: optimized peak location

Figure 3. 4-th order polynomial fit-

ting of the gray levels.

nf ringes (); returns the total number of fringes;

lastf ringe (); returns the index of the last fringe;

npeaks (fringe) ; returns the total number of peaks defined on the

fringe of index <fringe>;

lastpeak (fringe) ; returns the index of the last peak defined on the

fringe of index <fringe>;

or graphic functions used to visualize peak locations, such as

dotpeaks (fringe) ; displays a dot at each of the pixels corresponding

to the peaks of the fringe of index <fringe>;

or the analogous dmdpeaks which replaces the dot with a (x).

Scaling and I/O functions

Whenever an accurate quantitative analysis is to be carried out, peak

locations (together with the associated fringe values) must be returned to

the user in terms of real world coordinates. On this purpose scaling and

I/O functions are provided which transform the screen coordinates stored

in the peak arrays into real world coordinates and output them on an

                                                             Transactions on Modelling and Simulation vol 5, © 1993 WIT Press, www.witpress.com, ISSN 1743-355X 



232 Computational Methods and Experimental Measurements

ASCII format file opened by the user program. Reconstruction of the peak

arrays from a peak file previously saved is also possible.

Scaling functions are mainly intended for internal use with the

exception of those functions which are accessed by the user to define

scaling parameters. On this respect note that when different fringe

patterns are processed which are observed on the same object from the

same point of view by the same imaging system, the scaling parameters

can be loaded from a previously saved file.

Even in the simplest case where the object surface is plane, an a-priori

evaluation of the trasformation matrix from screen to world coordinates

(and of its inverse) can prove a difficult task. In fact, not only the

magnification ratio is affected by several different factors such as the focal

length of the imaging lens, the distance of the object and the sensing area,

but it also varies with direction when the pixel aspect ratio differs from

unit. Furthermore, the most convenient orientation of the object

coordinate system could not necessarily coincide with that of the screen

coordinate system. A further and greater difficulty derives from the

perspective distortion which is introduced by oblique viewing. It must

eventually be pointed out that the image may also be distorted by the

imaging lens and/or the sensing device; should this latter type of distortion

be significant, it would prove necessary to carry out a pointwise evaluation

of the trasformation matrix.

When the coordinate trasformation is carried out on a plane surface

sufficiently small with respect to the its distance from the point of view to

involve only a shear trasformation, all the probems mentioned above can

be overcome by evaluating a-posteriori the trasformation matrix by means

of functions accessible by the user. The trasformation matrix is then

stored, together with its inverse, in the exchange data set.

The user is required to identify the location of the origin of the

coordinate system attached to the object on its image on the screen and to

input a reference length on each of the two axes (which, when imaged, do

not necessarily form an angle of 90°) and the resulting projected length on

the screen axes. The reference length can be input in units chosen by the

user whereas the projected length must be given in screen coordinate

units. The task can be quite easily accomplished by imaging a test target

(or the object itself, provided that appropriate reference points have been

marked on it) and by subsequently re-tracing the reference segments with

the trackball cursor.

origin (iO, j 0) ; locates the origin of the world coordinate system;

xscale (u,di,dj) ; defines the first column of the trasformation

matrix;
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yscale (u, di, d j); defines the second column of the trasformation

matrix;

scale () ; evaluates the inverse trasformation matrix;

TEST EXAMPLES

A few examples are reported where a fringe pattern, obtained by Digital

Speckle Pattern Interferometry, represents the out-of-plane displacements

detected on an inflected membrane with a sensitivity of about 4

fringes/M.m. When this particular technique is employed, correlation

fringes are obtained by subtracting the gray levels of two speckled images

produced by a speckle interferometer. A high noise level is always present;

poor results are hence generally obtained if the usual image processing

techniques or automatic fringe analysis algorithms developed for high

quality interferograms are used.

A central region (512x512) of the fringe pattern has been subjected to

a histogram equalization while a smaller internal zone has been processed

with a non-linear filter developed on-purpose (7x7 window size) and,

subsequently, with a Sobel filter (5x5 window size).

Figure 4 shows two different plots of the gray level obtained by the

program lines listed below.

int il,jl,i2,j2;

float scale=1.5;

sgt_ball(&il,&jl,&i2,&j2) ;

mksgt(il,jl,i2,j2) ;

rdpixels() ;

base () ;

histo(scale);

value(255/scale);

int n,i[8],j [8];

float scale=2.0;

sgs_ball(&n,

mkspl(n,i,j)

rdpoints ();

base () ;

graph(scale)
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Figure 4.

An example of manual tracing of a fringe center line followed by peak

optimization is illustrated in figg. 5, 6 and 7. The corresponding program

lines are:

int n,i[8],j[8],fringe=0,peak;

sgs_ball (&n,i,j); (see fig.5)

mkspl(n,i,j);

base() ; (see fig.6)

addpeaks(fringe);

for(peak=0;peak<npeaks(fringe);peak++)

{o2peak(fringe,peak);}

dotpeaks (fringe) ; (see fig.7)

The final examples reported in fig. 8 and fig.9 are relative to the

automatic peak location obtained by:

int n, i[8], j[8],fringe;

float increment=l.0;

sgs__ball (&n,i, j ) /

mkpts (n,i,j);

addfringes();

for(fringe=0;fringe<nfringes();fringe++)
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Figure 5.

Figure 6.

Figure 7.
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gopeak ( fringe , increment ) ;

o4peak (fringe, lastpeak (fringe) ) ;

udpeak (fringe) ;

if (b_ball() ) break;

}

for (f ringe=0; f ringe<nf ringes ( ) ; fringe++)

dotpeaks ( fringe ) ; (see fig.8)

An analogous procedure was employed for locating the fringe peaks

shown in fig.9 which have been evidenced by the dmdpeaks function. The

increment between peaks was in this case of 8 raster units.

Figure 8.

Figure 9.
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CONCLUSIONS

In the paper the structure of a C-library for fringe analysis is outlined and

the routines directly accessible by the user briefly described.

The library is obviously susceptible of several improvements. More

sophisticated peak optimization functions should be developed, using, for

example, a local approximation by a second-order surface. Further

improvements are necessary to enable more robust procedures to be built-

up and memory allocation optimized. Higher level functions might anyhow

be implemented even using only the functions currently available.

User friendly problem-oriented programs can be easily developed; the

level of automation can be particularly high when the programs are aimed

to analyze fringe patterns presenting similar features, typically

encountered within the same class of problems.
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