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Résumé. 2014 Nous avons calculé la réponse en fréquence en courant alternatif pour un réseau du type
Sierpinski dans lequel les liens sont soit des résistances R (ou des impédances Zh) et où tous les n0153uds
sont reliés à la terre par l’intermédiaire de capacités C identiques (ou d’impédances Zv). Pour toutes
les fréquences plus petites que 1/RC, l’admittance complexe résultante entre chacun des n0153uds
« principaux » et la terre peut être exprimée avec précision au moyen d’une fonction d’échelle avec
effet de taille finie, tous les exposants de cette fonction étant des combinaisons des dimensions fractale

df et spectrale ds du tamis de Sierpinski. La dépendance en fréquence de la fonction de réponse pré-
sente une très forte ressemblance avec celle d’un mélange aléatoire de particules conductrices et iso-
lantes.

Abstract. 2014 We calculate the a.c. frequency response of Sierpinski-gasket networks, in which the
bonds consist of resistors R (or of impedances Zh) and all nodes are connected to the circuit ground
by identical capacitors C (or by impedances Zv). The resulting complex, size-dependent admittance
between any of the « principal » nodes and the circuit ground can be accurately described at all
frequencies less than 1/RC by a finite-size scaling function whose exponents are combinations of the
fractal dimension df and the spectral or « fracton » dimension ds of the Sierpinski gasket. The response
function also bears a striking similarity to experimental observations of the a.c. response of a random
mixture of conducting and insulating particles.
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1. Introduction.

It is generally recognized that a fundamental property of percolation clusters is their self-similarity.
This has prompted Gefen et al. [1] to suggest that self-similar fractal lattices such as the Sierpinski
gasket might be a useful tool to understand percolation since the properties of these lattices can in
general be computed exactly. This idea has been explored further. Alexander and Orbach [2]
and Rammal and Toulouse [3] inspired by the properties of the Sierpinski gasket, have derived
interesting scaling laws which apparently apply to real percolation clusters. One should keep in
mind that, as pointed out before deterministic nonhomogeneous fractals, such as Sierpinski gaskets,
display only qualitative, not quantitative, similarities with real percolation clusters.
The model we consider in this paper is the Sierpinski gasket (Fig.1 ) with nodes interconnected

through impedances Zh (we specifically treat the case for which 4 is purely resistive), in which
each of the circuit nodes is connected to the circuit ground through an impedance Zv (which here
we treat as purely capacitive). This model is admittedly somewhat artificial, but has the advantage
that it is exactly soluble, and that it can be proved that a scaling function exists from which pro-
perties of the system can be computed
The scaling function we propose accurately describes the frequency-dependent admittance

Y(ico) for a Sierpinski gasket with Zh = R, Zv = 1/ic~C, throughout the frequency range co  IIRC.
We, in fact, also show that for this network the scaling function can be explicitly derived. We
further find a low-frequency crossover which is not only size-dependent but also in qualitative
agreement with some experimental data obtained on heterogeneous metal-dielectric mixtures.
We find an additional crossover at co &#x3E; (J~C)* ~ which also seems to be in good agreement with
some experimental data on the loss tangent.
We proceed to show how the admittance function V(Ku) can be exactly calculated by circuit-

theory methods, developing recursion relations for the various iterations of the Sierpinski gasket
We give physical arguments for the scaling-function analysis and show that the exactly calculated
frequency and size dependence of Y(ico) accurately follows the power laws predicted on the basis
of the scaling function. Finally, we point out in what sense some of our results are similar to those
obtained for real systems, even though quantitative agreement would be expected only for sys-
tems with grounded capacitors at each node. (While we treat in detail the case of the two-dimen-
sional Sierpinski gasket, which is evidently the easiest to visualize and to illustrate, we will equally
quote the results for the general d-dimensional gasket We have actually carried out those calcu-
lations as well, and find that they follow the corresponding predictions just as well as the two-
dimensional case detailed in this paper.)

In the appendix, we explicitly derive the scaling function from a generating-function approach,
and we carry out the fixed-point analysis. The admittance we study there would be the analog
of the inverse of a single-site density-of-states in the mass and spring problem [4] whose electrical
analog has Zh inductive instead of resistive.

2. Exact network solution and recursion relations for Y(iro).

Figure 1 provides a reminder of the iterative procedure for constructing the Sierpinski gasket.
The network is built up by starting out with the basic « element » sketched in figure la for the
RC network, and with that of figure 1 b for the general case. Thus the bonds of the Sierpinski
gasket become resistors R (impedances Zb, in general), while each node of the basic « element »
is connected to circuit ground through a capacitance C/2 (in the general case, through an impe-
dance 2 ZJ. When the blocks are connected to construct the next iteration of the Sierpinski
gasket, this results in a capacitance C (impedance Zv) to ground from each internal node of the
resultant network, and C/2 (impedance 2 Zv) from the principal nodes at the comers. In the ulti-
mate calculation of the admittance Y(ico) at a principal node, two gaskets are connected together
as illustrated in figure Ic, thus giving an identical capacitance C to ground from every electrically
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Fig. 1. - The two-dimensional Sierpinski-gasket circuits. The upper three figures illustrate the traditional
iterative construction. Each of the shaded areas represents the basic circuit shown in detail in the figures (a)
or (b) below (m : iteration; L : linear dimension of a side; N : the number of bonds in the lattice ; S : the
number of sites, or nodes, of the lattice). (c) illustrates the exact electrical configuration for which the admit-
tance is calculated at the principal node where the power source is shown connected.

independent node. (In the case of Sierpinski gaskets of higher dimensionality d, the procedure is a
generalization to d-dimensions of the two-dimensional triangle and of the three-dimensional
regular tetrahedron which are used to generate the Sierpinski gasket in the corresponding embedd-
ing space.)
For the exact calculation, each individual « element » of the gasket is considered a three-ter-

minal network for which the voltages at the principal nodes are related to the three currents
entering the corresponding nodes by a (3 x 3) z-matrix. By symmetry, all diagonal elements of the
matrix have an equal value z, while all off-diagonal elements have the value zl. Operationally,
these quantities are defined by the relations z = Y1/h, zl = V 21 II’ where V1 is the voltage at
principal node 1 when a current II is injected into that node, and the currents entering all other
nodes are zero, while V 2 is the voltage at any other principal node under the same conditions.
With the construction of figure Ic, the admittance between node 1 and ground is then very simply
Y(ico) = 2/z. Because of the iterative construction of each Sierpinski gasket from the previous
one, the impedance coefficients themselves can be shown to obey the recursion relations (1) :

(1) For the d-dimensional gasket :

with initial conditions for the RC case :
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where the primed quantities are those corresponding to the newly iterated gasket, and the unprim-
ed ones refer to the previous iteration. The initial values corresponding to the iteration m = 0
of the « fundamental » building block (Fig. la) are :

for the RC case with T = RC, while for the LC case we have :

We can therefore calculate z and hence Y(ico) = G’(u) + ~C((u) as functions of frequency,
obtaining the results displayed in figures 2, 3, and 4, which show respectively the loss tangent
{ tan 0 = coC((o)IG((o) }, C(co), and G(~)/co as functions of the frequency.

3. Scaling predictions.

We now present the major results and physical consequences of the scaling approach. (For a
detailed treatment and fixed-point analysis, the reader is referred to the appendix.)
As usual in applications of finite-size scaling, we write the admittance as a generalized homo-

geneous function

where L is the linear dimension of the system, in units of the lattice spacing, r = RC as before, a is
an exponent defined below, and T is a characteristic diffusion time for the given lattice, which may
be obtained from detailed random-walk considerations [5]. The scaling of ip with L can also be
obtained from a very simple physical argument : Rammal and Toulouse [3] have indicated that
the mean number of distinct sites visited during a random-walk of t steps varies as tds/2, where ds
is the spectral or « fracton » dimensionality. In any fractal lattice, the-number of sites, or bonds,
varies as Lf, with df the fractal dimension. Equating these two numbers, we obtain that !D the
characteristic time to explore given finite lattice of size L scales as Ldw, with the random-walk
exponent dw = 2 dflds. Thus, the characteristic scaling variable of equation (2), (icorD)5 can also be
written as K~L~. The latter result and a scaling function analogous to (2) were suggested before
by Straley [6]. Note that for a real percolation problem, one expects [5] iwL(s+t)/v as a scaling
variable instead of ~L~. As shown in the appendix, the scaling variables icold- is simply related
to the ratio zlzl of the quantities defined in equation (1) above.
Equation (2) describes in fact three different regions, with crossovers between them at DTp

(= wLdw) ’" 1 and W! ’" 1 respectively. Since tD increases with L, we have !D ~ ! for large L,
so that starting from low frequencies, we can at first set rot ’" 0, and we have for the first two
regions :

With the usual finite-size scaling assumption that F is an analytic function, we can expand (2a)
at very low frequencies in a power series obtaining

t

Since G(O) must vanish, as there is physically no resistive path to ground in the circuit, we have
F(O; 0) = 0 and we thus find that for low frequencies C{ro) = L0152+dw F’(O; 0). Since further,
at very low frequencies, resistive bonds have negligible potential drops across them, all capacitors
add in parallel. Thus the total capacitance, proportional to the number of sites, varies as Ldf,



L-917a.c. RESPONSE OF FRACTAL NETWORKS

giving us a = df - dw. We therefore further predict the low frequency behaviour of G(~) ~
W2 Ldr+dVtl and of the loss-angle tangent tan 6 ~ 1/c~Ld~. For Sierpinski gaskets in d-dimensions,
the exponents are exactly known [3] : df = In (d + l)/ln 2, and ds = 2 In (d + l)/ln (d + 3),
(giving dw = In (d + 3)/ln 2). We have been able to verify these predictions both with calcula-
tions on electrical networks and on generating functions (Appendix). Note that the result

a = df - dw = df( B 1 
- 2 was found in reference [3] (where it was called PL) for geometries

where the conductance is finite at c~ = 0. In our case G ~ W2 ~L+2~~ instead of G ~ L~~.
The scaling expression (Eq. (2a)) predicts further a first crossover at c~L~ ~ 1 and the beha-

viour in the second frequency region, beyond this first crossover. Indeed, in that region, the
behaviour of Y(ico; L) must become independent of L

which can hold provided that F(x ; 0) - xu for large x, with u = 1 - ds/2. Then

whence also

We thus find a frequency region in which the loss-angle tangent is frequency independent, with a
predicted value having no adjustable parameter. This is verified in the exact results displayed in
figure 2. Equations (4) to (6) are discussed in greater detail in the appendix.

Finally, the last crossover point is seen, from equation (2), to occur at ro’C (= c~C) ~ 1. This
follows almost trivially from the physical fact that for ro’C &#x3E;&#x3E; 1 all capacitors become virtual short-
circuits to ground. By inspection of figure Ic, we thus conclude that Y(ico) must then be the
parallel combinaison of a single capacitance at the measuring node, in parallel with four resistors
(for the two-dimensional gasket). All dimension-dependent effects then disappear and G(ro)
and C(c~) become constants, with the loss tangent proportional toco.

In summary then, the loss tangent should display three distinct regions : one at low-frequen-
cies, size-dependent, and varying as 1/~, one constant at intermediate frequencies, and one at high
frequencies varying as co. This is seen explicitly in figure 2, with C( ro) and G’(co), displayed in
figures 3, 4, also following quite accurately the above predictions.

Finally, let us consider in figure 5 experimental data [7] on the loss tangent of a percolation
system near but below threshold A 1 /c~ behaviour is clearly seen for at least two decades at low
frequencies and a c~ behaviour at high frequencies for about one decade. These two regimes are
clearly in agreement with our results. Furthermore the experimental data depend on (p-Pc)
at low frequencies and not at high frequencies. This is also consistent with the fact that our results
are size dependent at low frequencies and size independent at high frequencies. While we predict
a constant intermediate regime, this is not yet clearly confirmed by experiment More data are
needed in that region.
The experimental system is expected to have a fractal structure at length scales smaller than the

correlation length but it certainly does not have grounded capacitors at each node. The above
agreement between theory and experiment is thus at first surprising. All this means however, is
that the equivalent high and low frequency circuits of the model and of the real system have
something in common. In the Sierpinski case, the high frequency equivalent circuit reduces to a
capacitor in parallel with a resistor. The result is size independent because the capacitors short the
system to ground very rapidly. At low frequencies the equivalent circuit is a size dependent (renor-
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Fig. 2. - (a) Loss tangent vs. frequency (measured in units of 1/,r). We observe here the unit slopes in both
the low- and high-frequency domains, the characteristic minimum region where the loss is independent of
both frequency and sample size, and the low-frequency crossover breakpoint which shifts to lower and lower
frequencies as the system size increases (tan 8 = coC/G’). (b) Expanded detail of figure 2a. The horizontal
line is the predicted asymptotic mid-frequency value tan 8 = tan [(1 - (ds/2)) (~/2)] = 0.5444.

malized) resistor in series with a size dependent capacitor. More details on that may be found
in the appendix.

In the real system, since p  Pc’ there exists a continuous path of dielectric from one electrode
to the other which one may represent by a capacitor C1. Elsewhere, where there are resistors and
capacitors in series, the resistors dominate the admittance at high frequencies and they are in
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Fig. 3. - Variation of the effective capacitance with frequency. The low frequency plateaus correspond to
the sum of all capacitances for the given network, and coincide exactly with the theoretically expected value.
The straight line is drawn with the theoretical slope ( - ds/2) = - 0.6826.

Fig. 4. - Real part of the admittance (displayed as Giro) vs. frequency. Here again the straight line tangent
is drawn with slope (- ~/2).

parallel with C~, which means that tan 0 ~ ro. This is the same equivalent circuit as the Sier-
pinski gasket. The admittance is weakly dependent on ~-~e because : a) it is the most direct
dielectric conduction path which dominates the value of Cl, and this dielectric path still exists for
p  Pc in three dimensions; b) at high frequencies, the total resistance does not depend very
much on whether or not there exists an infinite cluster of resistors since anyway the capacitors
act as shorts. At low frequencies on the other hand one must first renormalize up to length scales
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Fig. 5. - Experimental curve of loss tangent vs. frequency. These data were obtained on a mixture of sil-
vered and unsilvered glass microbeads just below the percolation threshold. (Courtesy of Clerc, Giraud and
Laugier.) .

of the order of the correlation length to find effective circuit elements such as Cl. The value of these
effective admittances is thus going to depend on /?~. When effective resistors are in series with
effective capacitors, the capacitors dominate. A power series expansion leads to admittances of
the form, ic~C + ro2 R. The effective parallel capacitor C, simply adds to C in the latter expres-
sion. Once more this is the same low frequency equivalent circuit as for the Sierpinski gasket.
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Appendix.

For definiteness, we restrict ourselves to the two-dimensional Sierpinski Gasket (S.G.) illustrated
in figure 1. We use periodic boundary conditions. The nodes of the usual lattice are connected
with each other by a complex impedance Zh and to the ground directly through an impedance Z,
Setting the sum of the currents at each node equal to zero and cancelling the sum of the voltages
around each loop formed by an impedance Zh and the two impedances Zv connected to it, one
finds the following equations of motion for the currents Ii going to the ground through the impe-
dance Zv at node i,
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7~ is an external current fed at node i and the sum over j is over the four ( = 2 d) nearest neigh-
bours to the node i. If Zh is inductive (= icvL with co the circular frequency and L the inductance)
and Zv capacitive (= (iroC)-l with C the capacitance) then Zh/Zv = - ro2 LC. In this case,
clearly, equation (1) is the exact electrical analog of the mass and spring problem considered by
various authors [2-4, 8]. In our problem, Zh is resistive and Zv capacitive, Le. Zh/Zv = ic~RC.
To study the scaling properties of the admittance Yij = I!xtIVi, where Vi = Z~ I, is the voltage

measured between node i and the ground, we use a generating function for the equations of
motion (A .1 ) which is the analog of the free energy in critical phenomena. Calculations of impe-
dances for resistor-capacitor networks using a generating function have been performed before
by Stephen [9]. The generating function is obtained as follows [9-11 ]. Let us first write equa-
tion (A. 1) for all nodes in the form,

where H is a real symmetric matrix and 3 is the identity matrix. Then let U T be the row vector

where the ui are continuous variables which are defined for every one of the N lattice sites i

then the generating function is, in matrix notation

The impedance is the analog of the Green’s function, hence the admittance may be obtained from,

From now on, we work in units where R and C are unity, hence Zh/Zv = ico. Note that the argu-
ment of the exponential in (A. 6) is such that the integrals are convergent
We are interested in Y11, the admittance measured at one of the principal nodes in figure 1.

This means that we can use equation (A. 5) with all the elements of the row vector (A. 4) equal to
zero except that one, 0, which corresponds to the site of interest Then one can compute,

F may be obtained from an exact renormalization group transformation [12] : integrals over
the ui on triangles at the smallest scale are performed and renormalized parameters are defined
so that the generating function is preserved [11 ]. The recursion relations for the diagonal and off-
diagonal elements of H may be found in the paper by Domany et al. [8]. The so-called « constant
term » in F, which is independent of the non-integrated variables, is also clearly independent of 0
since ul is not integrated over. This means the « constant term » will not contribute to Y11
(Eq. (A. 7)) and hence may be dropped. One then rescales the non-integrated variables so that the
off-diagonal elements of H become equal to unity as they were at the beginning. This introduces
(through the Jacobian) another cp independent term in H’ which may be dropped. One is left
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with two recursion formulas, one for the diagonal element of (- iro3 - H), say 6, and one for 0.
The recursion formula for the variable x = (e ~- 4)/5 takes the well known form

with A = 5. This map for x in the complex plane, the case of interest to us, has been discussed by
Mandelbrot [13]. Since the initial value of x is x = - ic~/5, it is more convenient to work in terms
of a variable c/ which obeys .

In terms of this variable, the recursion formula for cp is,

The above arguments and the invariance of F under renormalization imply

where we have explicitly written down the size dependence, L, in units of the lattice spacing and
defined b = 2 as the length rescaling factor. Equation (A. 11) becomes our basic result :

To understand the scaling behaviour of (A. 12), one thus needs to understand the fixed points
of equation (A. 9). These are located at c~ = 0, co = 4 i and I co I = oo. The fixed point at ro = 0
is unstable in the real and imaginary directions with an eigenvalue 5 while c~ I = oo is stable.
These two fixed points are those which interest us. We will not discuss the co = 4 i fixed point
because it is unstable in all directions and there is no initial value ofco for our problem which is
close to that fixed point There are three typical frequency regions for Y11.

a) c~L~ ~ 1.

Close to the fixed point ro = 0, the recursion relation (A. 9) may be linearized and equa-
tion (A. 12) reduces to

where we defined df = In (3)/ln 2 and dw = In (5)/ln 2, with b = 2. df is the usual fractal dimen-
sion and dw is related to the anomalous diffusion exponent [2, 3, 5]. When condition a) is satisfied,
the linearization of the recursion formula remains valid even if one iterates n times, up to Llbn = 1.
Then Y, I (ib~‘~ (o; 1) is the impedance at frequency roL dw of a S. G. formed of a single unit (with
periodic boundary conditions) which may easily be calculated as, Yl i~ix; 1) = (6 ix - x2)/
(2 + ix). Thus, when a) is satisfied,

which agrees with equation (3).
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It is clear from the recursion relation (A. 9) that non-linear terms start to be important when
a) - 5. When co  1, the recursion relation may be linearized and equation (A. 13) still applies.
Since in b) we have also L -dw  co, we can iterate up to &#x26;"~ ~ ~ I while remaining in the limit
(L/b") N (Lc~ 1~~) &#x3E; 1. When Z/ ~&#x3E; 1, Yll(i; L’) is independent of the system size because at
those frequencies (co ~ 1 ~ IIRC) the capacitors are becoming short-circuits and do not allow
the input current to go very far down the S.G. If equation (A. 13) is iterated n times then

Equation (A. 15) must be independent of n. This will be so if [14]

with u = (dw - df)ldw = 1 - ds/2 and f(t + 1) = f(t) a periodic function. The admittance
must be a smoothly varying function of w because the eigenvalues of H in equation (A. 2) are real
and finite while - Z~/Zy = 2013 iw is imaginary which means that there are no poles nor zeros in
the impedance matrix for w real (by contrast with what happens in the LC case). It is thus a good
approximation to take f as independent of o. In that case f must be real since the imaginary
quantity apJ7Cars. only in the combination iw which tneans that a function which is independent
of c~ must also be real. Hence we are left with 

°

in agreement with equation (5).

Then one is clearly very close to the domain of attraction of the fixed point at I w 1 = oo which
we consider as the analog of a phase sink (trivial) fixed point. In that regime, one may compute
the admittance of the S.G. from that of the first elementary triangles attached to the current
source. The effect of triangles further away may be taken into account perturbatively for example
and is of higher order in powers of 1/co. One thus finds,

The above three asymptotic regimes, equations (A. 14), (A. 16) and (A .18) may be seen expli-
citly from the results of numerical calculations exhibited in figures 3 and 4.
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