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A C1 finite element for flexural and torsional analysis of
rectangular piezoelectric laminated/sandwich composite beams

M. Ganapathi1, B. P. Patel1,∗,† and M. Touratier2

1Institute of Armament Technology, Girinagar, Pune-411 025, India
2LMSP, URA CNRS, ENSAM, 151, Bd de l’Hopital, 75013 Paris, France

This work deals with the development of a new C1 finite element for analysing the bending and 
torsional behaviour of rectangular piezoelectric laminated/sandwich composite beams. The formulation 
includes transverse shear, warping due to torsion, and elastic–electric coupling effects. It also accounts 
for the inter-layer continuity condition at the interfaces between layers, and the boundary conditions 
at the upper and lower surfaces of the beam. The shear strain is represented by a cosine function of a 
higher order in nature and thus avoiding shear correction factors. The warping function obtained from 
a three-dimensional elasticity solution is incorporated in the present model. An exact integration is 
employed in evaluating various energy terms due to the application of field consistency approach while 
interpolating the transverse shear and torsional strains. The variation of the electric potential through 
the thickness is taken care of in the formulation based on the observation of three-dimensional solution. 
The performance of the laminated piezoelectric element is tested comparing with analytical results 
as well as with the reference solutions evaluated using three-dimensional finite element procedure. A 
detailed study is conducted to highlight the influence of length-to-thickness ratio on the displacements, 
stresses and electric potential field of piezoelectric laminated beam structures subjected to flexural and 
torsional loadings. 

KEY WORDS: piezoelectric; flexural; torsional; sandwich; finite element; warping

1. INTRODUCTION

There has been an increasing interest in recent years in the development of lightweight smart

structures for many engineering applications. For the weight optimization, the structures made

of composite materials having high stiffness-to- and strength-to-weight ratios, and sandwiches

separating the stiff facings with a thick core of low density as load-bearing substrates are

preferred in aerospace engineering. Such structures are integrated with distributed piezoelectric

∗Correspondence to: B. P. Patel, Institute of Armament Technology, Girinagar, Pune-411 025, India.
†E-mail: badripatel@hotmail.com

Contract/grant sponsor: Indo French Centre for the Promotion of Advanced Research; contract/grant number:
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materials that act as sensors and actuators because of the direct and converse piezoelectric

effects, respectively. These structural members while integrated with suitable control strategies

and circuits have the self-monitoring and self-controlling capabilities. For the effective utilization

of such structures, there is a growing appreciation among researchers in accurately modelling

and simulating the characteristics of smart composite structures.

Study on the behaviour of smart structures has received considerable attention in the literature

and reviewed by Tang et al. [1], Saravanos and Heyliger [2], Sunar and Rao [3], and Benjeddou

[4]. It is shown that the structures, in general, are characterized using classical/first-order shear

deformation theory coupled with either neglecting the electro-elastic interactions or introducing

constant electric field intensity over the piezoelectric layers with the substrate. It can be further

concluded that most of the studies are devoted to the flexural analysis of laminated smart

composite structures. Furthermore, a few studies have been devoted to the analysis of structures

with higher-order/layer-wise theory, and also assuming the through thickness variation for the

electric field of piezoelectric layers [5–10]. It is also observed that the available work of smart

structures is largely pertaining to laminated plates. Attempts are also made in deriving the

exact/analytical solutions for simple cases of geometry and boundary conditions [11–15]. As

the exact solution is not possible/feasible for more general cases of loading and complicated

boundary conditions, the improved approximate techniques such as finite element method has

been explored for the simulation of the behaviour of smart structures [5, 8, 16–18]. However, in

analysing thick smart structures, 3D finite elements [19, 20] are used which are computationally

expensive. But it is highly desirable for the designers/analysts to have a model that can capture

the important 3D effects due to the through-thickness variations of displacements and stresses

in thick laminates but maintain the efficiency and convenience of a 1D model. To the best

of authors’ knowledge, however, the study on the torsion of laminated piezoelectric composite

beam structures has not received adequate attention in the literature [21–25].

Here, a new finite element for the analysis of laminated smart beam with rectangular

cross-section, having only the independent generalized displacements and electric potential,

is proposed by extending the recent work of Ganapathi et al. [24]. The element developed is

one-dimensional model from the point of view of structural behaviour and utilizes C1 con-

tinuous function for the transverse displacement associated with bending in accordance with

the refined shear deformation theory, and the torsional warping of the beam is accounted for

based on 3D elasticity solution. The electric field variation is taken as three-dimensional one

in which quadratic form of through-thickness variation in the piezoelectric layer is considered.

The element has good features for all the standard requirements such as free from locking,

spurious rigid modes, etc. The formulation includes electro-elastic coupling effects, and has

no requirement of introducing arbitrary shear correction factor as the shear strain is defined

through the cosine function of a higher order nature. The efficacy of the present formulation

is tested comparing the solutions with those of three-dimensional analysis. A detailed study is

carried out to bring out the effect of length-to-thickness ratio on the variation of displacements,

stresses and electric potential fields due to both bending and torsional loads.

2. FORMULATION

A laminated composite beam is considered with the co-ordinates x along the length, y along

the width and z along the thickness directions as shown in Figure 1. The displacements in

2



Figure 1. Laminated beam co-ordinate system.

kth layer uk , vk and wk at point (x, y, z) from the median surface are expressed as functions

of mid-plane displacements u0, v0, w0, independent shear bending rotations �x and �y of the

normal in xz and yz planes. They are also the functions of torsional rotation � and independent

parameter � for torsional rotation gradient in the length direction as

uk(x, y, z) = u0(x) − yv0,x (x) + f2(y)[v0,x (x) + �y(x)] − zw0,x (x)

+ [f3(z) + gk(z)][w0,x (x) + �x(x)] + �k(y, z)�(x)

vk(x, y, z) = v0(x) − z�(x)

wk(x, y, z) = w0(x) + y�(x) (1)

where the subscript comma denotes the partial derivative with respect to spatial co-ordinate

succeeding it. The functions f2(y), f3(z) and gk(z) are defined as

f2(y) = b/� sin(�y/b) (2a)

f3(z) = h/� sin(�z/h) − h/�b55 cos(�z/h) (2b)

gk(z) = akz + bk (2c)

b and h are width and total thickness of the beam.

In Equation (2), coefficients bk are determined such that the contribution to the displacement

component uk , due to bending in xz plane, is continuous at the interface of adjacent layers and

is zero at the mid-point of the cross-section. Finally, coefficients b55 and ak in Equation (2)

are computed from the requirement that the transverse shear stress due to bending in xz plane

is continuous at the interface of the adjacent layers and vanishes at the top and bottom surfaces

of the beam. The detailed derivation of these constants b55, ak and bk can be obtained from

the work of Beakou and Touratier [26]. The kinematics shown in Equation (1), in particular

for torsion, allows one to represent the constrained torsion where axial stress is not zero, for

instance near the clamped support, and free torsion i.e. Saint-Venant torsion when � approaches

�,x , which may be realized far away from the support of a thin beam.

The torsional warping function �k used in defining the kinematics in Equation (1) is the

solution derived from three-dimensional elasticity equations in conjunction with Saint-Venant

assumption of torsion, for composite beam of rectangular cross-section made of different layers.
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The general expression for �k is taken in the form of a harmonic function and is expressed as

�k =
∞
∑

N=1,3,...

(Ck
N sinh(�z) + Dk

N cosh(�z)) sin(�y) + yz (3)

where � is defined as N�/b.

The coefficients Ck
N and Dk

N , in Equation (3), while defining the warping function for

the rectangular cross-section, are determined such that the contribution to the displacement

component uk due to torsion is continuous at the interface of adjacent layers, and the transverse

shear stress associated with torsion, is continuous at the interface of the adjacent layers and

vanishes at the top and bottom surfaces of the beam [27].

The strains in terms of mid-plane deformation for kth layer can be written as
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where superscripts b and t denote the strain contributions due to bending and torsion, respec-

tively.

The mid-plane strains, �p, strain terms associated with bending and torsion in Equation (4)

are written as

�p = u0,x (5a)
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The total strain can be rewritten as

{�k} =


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where

[Z] =


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{�̄} = {u0,x −v0,xx v0,xx + �y,x −w0,xx w0,xx + �x,x v0,x + �y w0,x + �x �,x � �,x}
T

(6c)

For a composite laminated beam of layer thickness hk (k = 1, 2, 3 . . .), and the ply-angle

�k (k = 1, 2, 3, . . .), the necessary expressions for computing the stiffness coefficients, available

in the literature [28], are used.

The stress–strain relation, incorporating the piezoelectric effect, for kth layer is written as
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where Qk
ij (i, j = 1, 4, 6) are the reduced stiffness coefficients of kth layer, ēk

ij are reduced

piezoelectric coefficients, 	̄k
ij are reduced dielectric coefficients, Dk

x , Dz
y and Dk

z are electrical

displacements.

The electrical field intensities Ek
x , Ek

y and Ek
z can be related to the electric potential 
k as

{Ek
x Ek

y Ek
z }T = −

{

�
k

�x

�
k

�y

�
k

�z

}T

(8)

The total potential energy functional U of the system is given as

U(�) = (1/2)

∫ L

0

∫ b/2

−b/2

∑

k

∫ hk+1

hk

[{�k}T{�k} − {Dk}T{Ek}] dx dy dz

−

∫ L

0

{d}T{fx fy fz my mz mx}
T dx (9)
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where � and L are the vector of the generalized co-ordinates and length of the beam, re-

spectively. fx , fy , fz are the distributed forces in x, y and z directions and mx , my , mz are

the distributed moments about x, y and z axes. The vector {d} is the vector of generalized

displacements and is given by {d}T = {u0 v0 w0 �x �y �}.

Using Equations (6) and (7), Equation (9) can be rewritten as

U(�) = 1/2

∫ L

0

∫ b/2

−b/2

∑

k

∫ hk+1

hk

[{�̄}T[Z]T[Qk][Z]{�̄} − {Ek}T[e][Z]{�̄}

− {�̄}T[Z]T[e]{Ek} − {Ek}T[	]{Ek}] dx dy dz

−

∫ L

0

{d}T{fx fy fz my mz mx}
T dx (10)

The governing equations obtained by minimization of total potential energy functional given

by Equation (10) can be analytically/numerically solved.

Here, finite element approach, developing an element describing the structural field variables

through three nodes along the length and the electrical field variable three-dimensionally through

27 nodes, is employed. The structural fields are based on Hermite cubic functions for transverse

displacements (v0 and w0 according to the C1 continuity requirements), quadratic functions for

rotations (�x , �y and �), and linear functions for in-plane displacement, u0 and rotation gradient

pertaining to torsion, �. The electric potential 
k is interpolated using Lagrangian function with

quadratic variation along length (x), width (y) and thickness (z) directions. Accordingly, the

element needs nine structural (u0, v0, v0,x , w0, w0,x , �x, �y, � and �) degrees of freedom at

both ends of the 3-noded beam element and the centre node requires three structural degrees

of freedom �x , �y , and �, as shown in Figure 2(a). Similarly, the description of electrical

potential field is based on one degree of freedom per node in all the 27 nodes of the element,

i.e. 3 nodes in all directions as shown in Figure 2(b). To account for the accurate variation of

electrical field, each layer can be divided into many such elements through thickness, along

the length and width directions of beam structure. The actual element for the analysis is the

integration of Figures 2(a) and (b).

For obtaining the element level governing equations, the vectors {�̄} and {d} involved in

Equation (10) are expressed in terms of shape/interpolation functions, their derivatives and the

vector of element level degrees of freedom/generalized displacements {�e
u} as

{�̄}10×1 = [Bu]10×21{�
e
u}21×1; {d}6×1 = [Hu]6×21{�

e
u}21×1 (11)

The matrices [Bu], [Hu] and vector {�e
u} involved in Equation (1) are defined in Appendix A.

Similarly, the electric field intensity vector in an element within the layer can be expressed

in terms of Lagrangian shape functions, their derivatives and element level potential degrees

of freedom as

{Ek}3×1 = −[Z̄
]3×18[B
]18×27{�
e

}27×1 (12)

The matrices [Z̄
], [B
] and vector {�e

} involved in Equation (12) are given in Appendix B.

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 61:584–610
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Figure 2. (a) Details of structural degrees of freedom of piezoelectric beam element; and (b) description
of electrical potential degrees of freedom (1 DOF per node) in piezoelectric beam element.

Using Equations (11) and (12), the total potential energy expression for the element can be

written as

U(�e
u, �

e

) =

1

2
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u
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


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T{F e
u } (13)

where [Ke
uu], [Ke




], [Ke

u

] and [Ke


u
] are the elemental stiffness matrices resulting from

mechanical, electrical fields and due to electro-mechanical couplings, and {F e
u } the elemental

load vector due to applied mechanical loads.

The minimization of total potential energy functional given by Equation (13) leads to the

governing equation for the element as




[Ke
uu] [Ke

u
]

[Ke

u] [Ke



]





{

{�e
u}

{�e

}

}

=

{

{F e
u }

{0}

}

(14)

The coefficients of stiffness matrices involved in governing equation (14) can be rewritten as

the product of terms having thickness (z) and width (y) co-ordinate, and the term containing

x. In the present study, while performing the integration, terms having thickness and width

co-ordinates are explicitly integrated whereas the terms with x are evaluated based on full

integration, using 3 points Gauss integration rule.
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Following the finite element assembly procedure, the governing equations for the beam

structure are obtained as




[KG
uu] [KG

u
]

[KG

u] [KG



]











{�G
u }
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


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{F G
u }

{0}

}

(15)

where superscript G denotes the global matrices and vector.

The Equation (15) can be solved using any standard method.

3. RESULTS AND DISCUSSION

The aim of the present study is to examine the efficacy of this new element for analysing the

bending and torsional behaviours of the laminated or sandwich piezoelectric beam. The choice

of the interpolation functions made here in developing the element allows to have the same

order of interpolation for both w0,x and �x , v0,x and �y in the definition of shear strain and

permits to avoid transverse shear locking phenomena. Similarly, the �,x and � in the torsional

strain are interpolated with same degree polynomial which recovers the Saint-Venant torsion

(� = �,x ). The element behaves very well for both thick and thin situations as highlighted in

the work of Ganapathi et al. [24]. Furthermore, it has been demonstrated [24] that this element

has no spurious mode and is represented by correct rigid body modes pertaining to flexure and

torsion when exact integration is applied to evaluate all the strain energy terms and, for the

sake of brevity, these results are not presented here.

The problems chosen for the evaluation of the performance of the element are given below

as:

3.1. Flexural analysis

Problem 1 (Simply supported laminated piezoelectric composite beam subjected to mechanical/

electrical loads (Reference [15])): The properties such as elastic, piezoelectric/dielectric coef-

ficients used are

• for skin (PZT): C11 = C22 = 139 GPa, C12 = 77.8 GPa, C13 = C23 = 74.3 GPa,

C33 = 115 GPa, C44 = C55 = 25.6 GPa, C66 = 30.6 GPa; e31 = −5.2 C/m2, e32 =

−5.2 C/m2, e33 = 15.1 C/m2, e15 = e24 = 12.7 C/m2; 	11 = 	22 = 13.06 × 10−9 F/m,

	33 = 11.51 × 10−9 F/m.

• for core (Graphite epoxy): C11 = 134.86 GPa, C12 = C13 = 5.1563 GPa, C22 = C33 =

14.352 GPa, C23 = 7.1329 GPa, C44 = 3.60955 GPa, C55 = C66 = 5.654 GPa; 	11 =

	22 = 0.031 × 10−9 F/m, 	33 = 0.0266 × 10−9 F/m.

• Geometrical properties: Skin thickness h1 = h3 = 0.2 h, core thickness h2 = 0.8 h; width

b = 0.0125 m; L/h is varied as 10 and 50.

Problem 2 (Cantilever piezoelectric sandwich beam subjected to mechanical/electrical loads):

The material properties such as elastic, piezoelectric/dielectric coefficients are taken as

• for face/skin (PZT): E1 = 66.0688 GPa, E2 = 66.0688 GPa, E3 = 54.6788 GPa, G12 =

25 GPa, G23 = 29.5 GPa, G13 = 29.5 GPa, �12 = 0.324, �23 = 0.4715, �13 = 0.4715;
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e31 = −4.3C/m2, e32 = −4.3C/m2, e33 = 16.7C/m2, e15 = 11.8C/m2, e24 = 11.8C/m2;

	11 = 12.75 × 10−9 F/m, 	22 = 12.75 × 10−9 F/m, 	33 = 7.41 × 10−9 F/m.

• for core: E = 70 GPa, G = 26.9 GPa, � = 0.3011, 
 = 2700 kg/m3.

• Geometrical parameters: Width (b) = 0.02 m, total thickness of the beam h = 0.1 m. The

ratio of thickness of face-to-core (h1/h2) is assumed as 2 and length to thickness ratio

(L/h) is varied as 3 and 10.

Figure 3. Comparison of non-dimensional displacements (U and W ), electrical potential
(�) and stress Txx for laminated piezoelectric beam subjected to mechanical (left side) and

electrical (right side) loadings (in Problem No. 1): (a) L/h = 10; and (b) L/h = 50.
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Figure 3. Continued.

3.2. Torsional analysis

Problem 3 (Cantilever piezoelectric (PZT/epoxy) sandwich beam subjected to mechanical/

electrical loads): The properties such as elastic, piezoelectric/dielectric coefficients considered

here are (Reference [29]):

• for face (PZT/Epoxy): E1 = 37.8 GPa, E2 = 6.98 GPa, E3 = 6.98 GPa, G12 = G23 =

G13 = 2.89 GPa, �12 = �23 = �13 = 0.26; d31 = −274 × 10−12 m/V, d32 = −120 ×

10−12 m/V, d33 = 374 × 10−12 m/V; 	11 = 	22 = 	33 = 16.5 × 10−9 F/m.

• for core: E = 73 GPa, G = 29.2 GPa, � = 0.25.
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Table I. Convergence for No. of elements along thickness in each skin layer (Nesk) for Problem No.
2 (No. of elements along the width direction=1, No. of elements along the length=12).

Nesk u (m) w (m) 
 (V) �xx (N/m2) �xz (N/m2) �∗
xz (N/m2)

1 2.021E-07 2.715E-06 4.956 24 200 742.6 567.4
2 2.021E-07 2.715E-06 4.956 24 200 742.6 567.4
4 2.021E-07 2.715E-06 4.956 24 200 742.6 567.4
6 2.021E-07 2.715E-06 4.956 24 200 742.6 567.4

(x, y, z) location for u = (1.0 m, 0.0, −0.05 m), (x, y, z) location for w = (1.0 m, 0.0, 0.0), (x, y, z) location
for 
 and �xx = (0.2 m, 0.0, −0.05 m), (x, y, z) location for �xz = (0.2 m, 0.0, 0.0), (x, y, z) location for
�∗
xz = (0.2 m, 0.0, −0.025 m).

Table II. Convergence for No. of elements along length (Nel) for problem No. 2 (No. of elements
along the thickness in each skin layer (Nesk)=4, No. of elements along width=1).

Nel u (m) w (m) 
 (V) �xx (N/m2) �xz (N/m2) �∗
xz (N/m2)

2 2.021E-07 2.714E-06 4.951 24 240 741.4 567.2
4 2.021E-07 2.714E-06 4.962 24 140 737.8 571.1
6 2.021E-07 2.715E-06 4.955 24 230 741 568
8 2.021E-07 2.715E-06 4.955 24 210 738.9 568.3

10 2.021E-07 2.715E-06 4.956 24 160 736.7 568.7
12 2.021E-07 2.715E-06 4.956 24 200 742.6 567.4
14 2.021E-07 2.715E-06 4.956 24 200 743 568
16 2.021E-07 2.715E-06 4.956 24 200 743.5 567
18 2.021E-07 2.715E-06 4.956 24 200 743.7 567.2
20 2.021E-07 2.715E-06 4.956 24 200 744 567.5

(x, y, z) location for u = (1.0m, 0.0, −0.05m), (x, y, z) location for w = (1.0m, 0.0, 0.0), (x, y, z) location
for 
 and �xx = (0.2 m, 0.0, −0.05 m), (x, y, z) location for �xz = (0.2 m, 0.0, 0.0), (x, y, z) location for
�∗
xz = (0.2 m, 0.0, −0.025 m).

• Geometrical parameters: Width (b) = 0.15 m, total thickness of the beam h = 0.1 m,

h1 = 0.025 m, h2 = 0.05 m, h3 = 0.025 m, length L = 1 m.

The boundary conditions used are

Simply supported case: u0 = v0 = w0 = 0 at x = 0, L.

Clamped end: u0 = v0 = v0,x = w0 = w0,x = �x = �y = � = � = 0 at x = 0.

The transverse shear stress �xz is evaluated employing the constitutive relations and the 3D

stress equations of equilibrium. Since the results yielded by the later method were found to

be more close to three-dimensional finite element solutions, equilibrium equations are used for

evaluating the transverse shear stress for the detailed study presented here.

Based on progressive mesh refinement, mesh idealization of 10-element along the length

and 1-element in each piezoelectric layer along width and thickness directions is found to

be adequate to model Problem 1, for the bending analysis. Further, for the flexural problems

considered here, the solution is insensitive to number of terms in Equation (3) due to the

absence of torsional warping. For mechanical case, a uniform pressure of 0.05 MPa is assumed

on top surface, in addition to zero electrical potential conditions at the top and bottom surfaces
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Figure 4. Distribution of displacements, electrical potential and stress along length (at z = −0.05)
due to 1 N transverse tip load in Problem No. 2: (a) length to thickness ratio (L/h) = 3

(left side); and (b) L/h = 10 (right side).

as well as core of the beam. For electrical loading situation, the potential of 100 V at the top

and bottom surfaces of the beam, and −100 V at the top and bottom surfaces of the core are

applied. The normalized displacements/stress due to mechanical load (U = u(0, 0, z)C00/(hq);

W = w(L/2, 0, z) C00/(hq); � = 
(L/2, 0, z) C00/(hqE0); T11 = �11(L/2, 0, z)/q where

C00 = 134.86 GPa and E0 = 1 × 1010 V/m) and applied electrical field (U = u(0, 0, z)E0/V0;

W = w(L/2, 0, z)E0/V0; � = 
(L/2, 0, z)/V0; T11 = �11(L/2, 0, z) hE0/(C00V0) where

V0 = 100 V) obtained through the thickness of the simply supported piezoelectric beam using

present element are shown in Figures 3(a) and (b) along with the exact analytical solutions
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Figure 5. Distribution of displacements, electrical potential and stress along length (at z = −0.0375)
due to 1 N transverse tip load in Problem No. 2: (a) length to thickness ratio (L/h) = 3

(left side); and (b) L/h = 10 (right side).
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Figure 6. Distribution of displacements, electrical potential and stresses along the thickness (at
x/L = 0.2) due to 1 N transverse tip load in Problem No. 2: (a) length to thickness ratio (L/h) = 3

(left side); and (b) L/h = 10 (right side).
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Figure 7. Distribution of displacements and stresses along length (at z = −0.05m)
due to electrical load in Problem No. 2: (a) length tothickness ratio

(L/h) = 3 (left side); and (b) L/h = 10 (right side).

Figure 8. Distribution of displacements, electrical potential and stresses along length (at
z = −0.0375 m) due to electrical load in Problem No. 2: (a) length to thickness ratio

(L/h) = 3 (left side); and (b) L/h = 10 (right side).
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Figure 9. Distribution of displacements, electrical potential and stress along thickness (at
x/L = 0.2) due to electrical load in Problem No. 2: (a) length to thickness ratio (L/h) = 3

(left side); and (b) L/h = 10 (right side).

[15] for both thick and thin cases (L/h = 10, 50). The present model predicts the solutions

accurately and they match very well with the available analytical results. It is further inferred

from Figure 3(b) that the element does not lock and free from locking phenomenon, irrespective

of the type of loading.

Next, a cantilever piezoelectric composite beam is examined considering two values for

length-to thickness ratio (L/h = 3, 10) for the bending characteristics under mechanical and

electrical loads (Problem 2). A tip load of 1 N is considered for mechanical load whereas

the potential of 100 V at the top and bottom surfaces of the beam is assumed for electrical

case. Furthermore, the electrical potentials in the core as well as along the interfaces of the

laminated beam are taken as zero, irrespective of loading cases. The convergence study made

by varying the number of elements in the thickness of piezoelectric layers (skins), to take into

account the appropriate variation in electrical potential, and along the length of the beam is

presented in Tables I and II. It is noticed from these tables that the number of elements required

for displacement convergence is less compared to that of stress evaluation, as expected. It is

further seen from these tables that the idealization of 1-element in the thickness (each skin) and

12-element along the length yields the converged solutions for the problem considered here.

The response characteristics pertaining to in-plane and lateral displacements, electric potential,

normal and transverse stresses along the length (on the free surface and within the piezoelectric

layer) and thickness (near the fixed support) directions of the beam calculated based on such

mesh are highlighted in Figures 4–6 for mechanical load. Similar study is made for electrical
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Figure 10. Distribution of displacements, electrical potential and stress along the thickness
[at(x, y) = (0.5 m, 0.075 m)] due to 1 Nm torque applied at free end in Problem No. 3.

loading situation and the results are described in Figures 7–9. All these results evaluated here

are compared with those of three-dimensional finite element model from ANSYS 5.6. It can be

observed from these figures that the performance of the present element is, in general, very good

except near the fixed support and free end of the beam. Near the fixed support and free end,

the results, in particular, stresses and potential predicted by the present one-dimensional model

have not matched well with those of the three-dimensional model. However, the discrepancy

associated with the displacement values is not very significant. The difference in the results near

the clamped/free ends of the beam may be attributed to the existence of three-dimensional state

of stress near these locations whereas the present structural model is based on one-dimensional

approximation. For certain cases, the changes in the trends of variation of potential and stresses

along the length is observed near the support/free ends which may be possibly due to the

boundary layer effects. It can be noted here that the beam element with two-dimensional

representation (x and z directions) of electrical field is sufficient for the bending analysis. It

is apt to make a brief mention here about the mesh size used for the three-dimensional study
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Table III. Convergence for No. of elements along thickness in each skin layer (Nesk) for Problem
No. 3 (No. of terms in the warp. Func. N = 12, No. of elements along the width direction = 6).

Nesk u (m) v (m) w (m) 
 (V) �xx (N/m2) �xy (N/m2) �xz (N/m2) �∗
xz (N/m2)

1 1.137E-09 −6.694E-08 −1.004E-07 1.423 852.3 −2040 −3484 −1333
2 1.136E-09 −6.694E-08 −1.004E-07 1.423 854.4 −2045 −3492 −1342
4 1.135E-09 −6.694E-08 −1.004E-07 1.423 856 −2049 −3491 −1341
6 1.135E-09 −6.694E-08 −1.004E-07 1.423 856.3 −2050 −3491 −1341

(x, y, z) location for u = (0.5 m, 0.075 m, 0.05 m), (x, y, z) location for v = (0.5 m, 0.0, −0.05 m), (x, y, z)
location for w = (0.5m, 0.075m, 0.0), (x, y, z) location for 
,�xx and �xy = (0.5m, 0.0, −0.05m), (x, y, z)
location for �xz = (0.5 m, 0.075 m, 0.0), (x, y, z) location for �∗

xz = (0.5 m, 0.075 m, −0.05 m).

Table IV. Convergence test for number of terms (N) in the warping function for Problem No. 3 (No.
of elements in the width direction = 6, No.of elements along thickness in each skin=4).

N u (m) v (m) w (m) 
 (V) �xx (N/m2) �xy (N/m2) �xz (N/m2) �∗
xz (N/m2)

2 9.304E-10 −6.695E-08 −1.004E-07 1.397 821.1 −1969 −2473 −992.9
4 1.090E-09 −6.695E-08 −1.004E-07 1.419 847.2 −2029 −3071 −1207
6 1.119E-09 −6.695E-08 −1.004E-07 1.422 852.1 −2040 −3283 −1276
8 1.129E-09 −6.694E-08 −1.004E-07 1.422 854.2 −2045 −3387 −1308

10 1.133E-09 −6.694E-08 −1.004E-07 1.423 854.8 −2046 −3450 −1329
12 1.135E-09 −6.694E-08 −1.004E-07 1.423 856 −2049 −3491 −1341
14 1.135E-09 −6.694E-08 −1.004E-07 1.423 856 −2049 −3516 −1345

(x, y, z) location for u = (0.5 m, 0.075 m, 0.05 m), (x, y, z) location for v = (0.5 m, 0.0, −0.05 m), (x, y, z)
location for w = (0.5m, 0.075m, 0.0), (x, y, z) location for 
,�xx and �xy = (0.5m, 0.0, −0.05m), (x, y, z)
location for �xz = (0.5 m, 0.075 m, 0.0), (x, y, z) location for �∗

xz = (0.5 m, 0.075 m, −0.05 m).

Table V. Convergence test for number of elements in the width direction (Ney) for Problem No. 3
(No. of terms in the warp. Func. N = 12, No. of elements along the thickness in each skin layer=4).

Ney u (m) v (m) w (m) 
 (V) �xx (N/m2) �xy (N/m2) �xz (N/m2) �∗
xz (N/m2)

1 1.137E-09 −6.696E-08 −1.004E-07 1.427 865.2 −2073 −3536 −1384
2 1.137E-09 −6.695E-08 −1.004E-07 1.426 847.1 −2025 −3538 −1387
4 1.136E-09 −6.694E-08 −1.004E-07 1.422 855.3 −2047 −3515 −1365
6 1.135E-09 −6.694E-08 −1.004E-07 1.423 856 −2049 −3491 −1341
8 1.135E-09 −6.694E-08 −1.004E-07 1.423 856.1 −2049 −3474 −1324

(x, y, z) location for u = (0.5 m, 0.075 m, 0.05 m), (x, y, z) location for v = (0.5 m, 0.0, −0.05 m), (x, y, z)
location for w = (0.5m, 0.075m, 0.0), (x, y, z) location for 
,�xx and �xy = (0.5m, 0.0, −0.05m), (x, y, z)
location for �xz = (0.5 m, 0.075 m, 0.0), (x, y, z) location for �∗

xz = (0.5 m, 0.075 m, −0.05 m).

of this problem. Based on 8-noded brick element (4-degrees of freedom per node) the beam is

modelled using 40 × 1 mesh discretization along length and width directions, and 10 elements

in each skin (piezoelectric layer) and 20 elements in the core along the thickness direction.

Finally, the torsional characteristics of the piezoelectric beam is analysed considering a

cantilever with geometrical parameters and material properties given in Problem 3 for both
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Figure 11. Distribution of displacements, electrical potential and stresses along the thickness [at
(x, y) = (0.5 m, 0.0375 m)] due to 1 Nm torque applied at free end in Problem No. 3.
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Figure 12. Distribution of displacements, electrical potential and stresses along the width [at
(x, z) = (0.5 m, 0.0375 m)] due to 1 Nm torque applied at free end in Problem No. 3.

20



Figure 13. Distribution of displacements, electrical potential and stresses along the thickness [at
(x, y) = (0.5 m, 0.0375 m)] due to electrical load in Problem No. 3.
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mechanical and electrical loading situations. Unlike in Problems 1 and 2, here, the skins are

treated as PZT/Epoxy layers. The lamination scheme considered for this case is −45◦ (bottom

skin)/0◦ (core)/45◦ (top skin). A torque of 1 Nm is assumed at the free end of the cantilever

beam for mechanical case whereas the electrical potential of 100V at the bottom surface of the

beam and −100V at the top surface of the beam are considered for electrical loading case. The

electrical potential conditions in the core and along the interfaces of the laminate are treated

as zero values for all the analyses. Detailed convergence study is conducted by increasing the

number of elements in the thickness as well as width directions, and also increasing number of

terms in the warping function, and the results are tabulated in Tables III–V. It can be opined

from these tables that 14-term in the warping function in conjunction with 4- and 6-element

idealization along the thickness and width of the each piezoelectric layers of sandwich beam,

respectively, are required for the accurate prediction of the various deflections and stresses. For

the length direction, 8-element idealization gives converged results and, for the sake of brevity,

these details are not shown here. The numerical results generated here along the thickness (at

x/L = 0.5, y/b = 0.5, 0.25) and width (at x/L = 0.5, z/h = 0.375) directions of the beam

are plotted in Figures 10–13 and compared with those of three-dimensional finite element model

using ANSYS 5.6. Furthermore, the present model exhibits the presence of axial stress due to

the torsional load and this is due to the fact that the formulation accounts for the constrained

torsion. It is revealed from these figures that the results predicted by the present element are,

in general, fairly good agreement with three-dimensional solution. Some differences noticed in

the results between the present one and 3D model for the distributions of stress/potential fields

may be attributed to the presence of three-dimensional state of stress/potential distributions for

this class of problem whereas the element treated here is essentially based on one-dimensional

structural approximation. It is worthwhile again giving the details of the mesh using 8-noded

brick element (with 4-DOF per node) for 3D modelling of this problem from ANSYS. The

beam for the torsional analysis is discretized, using 20 × 30 mesh along length and width

directions, 20 elements in each skin (piezoelectric layer) and 40 elements in the core along

the thickness direction.

It is apt to mention here that the converged mesh of the present element results in about

500 degrees of freedom for bending problems and about 3700 for torsional problems. Whereas,

the converged mesh of 3D finite elements yields about 13 000 and 200 000 degrees of freedom

for bending and torsion examples, respectively. This is the major difference between these

models for the problems solved here. Thus, it may be concluded that the present model is

computationally very efficient for the accuracy achieved here.

4. CONCLUSIONS

A new beam finite element to analyse laminated/sandwich piezoelectric structures has been

constructed using refined shear deformation theory and including torsion warping under the

more general constrained torsion formulation. Nonlinear variation of electrical field is assumed

in all the directions. The element derived here exhibits good convergence and free of shear

locking syndrome. Some of the general observations made through this study are:

1. The present element, in general, performs well for both flexural and torsional behaviours

of laminated piezoelectric beam with rectangular cross-section.
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2. The prediction of electrical potential distribution and transverse shear/axial stresses under

mechanical load are accurate for simply supported case whereas, except the free ends

and fixed support, the results are in good agreement with three-dimensional solutions for

cantilever case.

3. The presence of axial stress while beam under torsional load is brought out as the

formulation includes the constrained torsion.

4. The problems with variation of electrical potential field in all the three directions can be

analysed using the present model.

5. For the given accuracy, the present element results in significant reduction in computational

time and memory requirements.

APPENDIX A

The various matrices involved in Equation (11) are

[Bu] =













































n1,x 0 0 0 0 0 0 0 0 0 0 0

0 −h̄1,xx −h̄2,xx 0 0 0 0 0 0 0 0 0

0 h̄1,xx h̄2,xx 0 0 0 s1,x 0 0 0 s2,x 0

0 0 0 −h̄1,xx −h̄2,xx 0 0 0 0 0 0 0

0 0 0 h̄1,xx h̄2,xx s1,x 0 0 0 s2,x 0 0

0 h̄1,x h̄2,x 0 0 0 s1 0 0 0 s2 0

0 0 0 h̄1,x h̄2,x s1 0 0 0 s2 0 0

0 0 0 0 0 0 0 s1,x 0 0 0 s2,x

0 0 0 0 0 0 0 0 n1 0 0 0

0 0 0 0 0 0 0 0 n1,x 0 0 0

n2,x 0 0 0 0 0 0 0 0

0 −h̄3,xx −h̄4,xx 0 0 0 0 0 0

0 h̄3,xx h̄4,xx 0 0 0 s3,x 0 0

0 0 0 −h̄3,xx −h̄4,xx 0 0 0 0

0 0 0 h̄3,xx h̄4,xx s3,x 0 0 0

0 h̄3,x h̄4,x 0 0 0 s3 0 0

0 0 0 h̄3,x h̄4,x s3 0 0 0

0 0 0 0 0 0 0 s3,x 0

0 0 0 0 0 0 0 0 n2

0 0 0 0 0 0 0 0 n2,x
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(A1)
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[Hu] =




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
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







n1 0 0 0 0 0 0 0 0 0 0 0 n2 0 0 0 0 0 0 0 0

0 h̄1 h̄2 0 0 0 0 0 0 0 0 0 0 h̄3 h̄4 0 0 0 0 0 0

0 0 0 h̄1 h̄2 0 0 0 0 0 0 0 0 0 0 h̄3 h̄4 0 0 0 0

0 0 0 0 0 s1 0 0 0 s2 0 0 0 0 0 0 0 s3 0 0 0

0 0 0 0 0 0 s1 0 0 0 s2 0 0 0 0 0 0 0 s3 0 0

0 0 0 0 0 0 0 s1 0 0 0 s2 0 0 0 0 0 0 0 s3 0
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(A2)

where (n1, n2), (s1, s2, s3) and (h̄1, h̄2, h̄3, h̄4) are the set of shape functions (linear, quadratic

and Hermite) used for interpolating the structural field variables [(u, �), (�x, �y, �) and (v, w),

respectively. They are defined as

n1 = 1 − (x − x1)/L
e, n2 = (x − x1)/L

e

s1 = 1 − 3(x − x1)/L
e + 2

(

x − x1

Le

)2

, s2 = 4(x − x1)/L
e − 4

(

x − x1

Le

)2

,

s3 = −(x − x1)/L
e + 2

(

x − x1

Le

)2

h̄1 = 1 − 3

(

x − x1

Le

)2

+ 2

(

x − x1

Le

)3

, h̄2 = (x − x1)

(

1 −
x − x1

Le

)2

,

h̄3 = 3

(

x − x1

Le

)2

− 2

(

x − x1

Le

)3

, h̄4 = (x − x1)

[

(

x − x1

Le

)2

−
x − x1

Le

]

Here, x1 is the global x co-ordinate of first node of an element.

The vector of elemental structural degrees of freedom is denoted as

{�e
u}

T = {u01 v01 v0,x1 w01 w0,x1 �x1 �y1 �1 �1 �x2 �y2 �2 u03 v03 v0,x3 w03 w0,x3 �x3 �y3 �3 �3}

(A3)

APPENDIX B

The matrices involved while defining the electrical field intensities in Equations (12) are

[Z̄
] =









l1 l2 l3 l4 l5 l6 l7 l8 l9 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 l1,y l2,y l3,y l4,y l5,y l6,y l7,y l8,y l9,y

0 0 0 0 0 0 0 0 0 l1,z l2,z l3,z l4,z l5,z l6,z l7,z l8,z l9,z









(B1)
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The non-zero elements of matrix [B
] are

B
(i, i) = s1,x, B
(i, i + 9) = s2,x, B
(i, i + 18) = s3,x

B
(i + 9, i) = s1, B
(i + 9, i + 9) = s2, B
(i + 9, i + 18) = s3 (i = 1, 2, . . . , 9)

(B2)

The shape functions (l1, l2, . . . , l9) which are expressed as the product of quadratic Lagrangian

polynomials in y (n
y
i , i = 1, 2, 3) and z(nz

i ) directions, and (s1, s2, s3) quadratic shape functions

along the length (x) employed for the interpolation of electrical potential field are

l1 = n
y
1nz

1, l2 = n
y
2nz

1, l3 = n
y
3nz

1, l4 = n
y
1nz

2, l5 = n
y
2nz

2, l6 = n
y
3nz

2,

l7 = n
y
1nz

3, l8 = n
y
2nz

3, l9 = n
y
3nz

3

n
y
1 = 1 − 3(y − y1)/b

e + 2

(

y − y1

be

)2

, n
y
2 = 4(y − y1)/b

e − 4

(

y − y1

be

)2

,

n
y
3 = −(y − y1)/b

e + 2

(

y − y1

be

)2

nz
1 = 1 − 3(z − z1)/he + 2

(

z − z1

he

)2

, nz
2 = 4(z − z1)/he − 4

(

z − z1

he

)2

,

nz
3 = −(z − z1)/he + 2

(

z − z1

he

)2

s1 = 1 − 3(x − x1)/L
e + 2

(

x − x1

Le

)2

, s2 = 4(x − x1)/L
e − 4

(

x − x1

Le

)2

,

s3 = −(x − x1)/L
e + 2

(

x − x1

Le

)2

Here, (x1, y1, z1) are the global co-ordinates of first node of an element.

The vector of element level electrical potential degrees of freedom is described as

{�e

}T = {
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14


15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27} (B3)
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